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Abstract
The use of composite wheat-pea flours is of nutritional interest because their essential amino acid profile is closer to human needs
than that of wheat alone. However, composite flours might be more variable than wheat flour alone, so manufacturers need to be
able to monitor the quality of the cakes. The effects of the quality of the rawmaterial and cakemanufacturing process variables on
cake density and shape and crumb color, texture, and cell structure were studied. An experimental design with seven flour quality
and processing variables was implemented (56 trials). A multiobjective model was built, and its prediction capacity was
validated. It is able to compensate for variations in flour quality by adjusting the levels of the processing variables.
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Introduction

The wheat supply chain is organized for the regular produc-
tion of grain, flour and end products of high quality, leading to
a very large commodity market. However, wheat still depends
on high levels of synthetic inputs, mostly nitrogen fertilizers.
Agricultural research has demonstrated the benefits of
intercropping cereals with legume species to reduce the quan-
tity of such inputs (Nemecek et al. 2008). Mixing wheat and
legume flours in foods also improves protein quality by
balancing the essential amino acid profiles (Farooq and
Boye 2011; Young and Pellett 1994). The formulation of
legume-enriched cereal products is one possible way to pro-
mote the development of more sustainable food chains includ-
ing production and processing steps that are the same for the
legume and cereal grains. This would enable the production of
composite flour, i.e., a mix of flours milled either together or
separately. This would require being able to handle more

variable grain quality (the proportions of both grains in a
mix, the mechanical properties of the grain resulting from
the growing conditions) and the quality of the resulting com-
posite flour (composition and particle size) by introducing
more flexibility in the processing steps (De Vries et al.
2017). Many studies have shown that including legume flour
in cereal foods modifies their properties (color, texture, struc-
ture, and sensory acceptability) (Monnet et al. under revision;
Noorfarahzilah et al. 2014).

To provide products of constant satisfactory quality, it is
thus necessary to provide the secondary processing industry
with tools to adjust processing variables as a function of flour
quality and of the properties of the desired end product
(Farooq and Boye 2011). Such an approach, sometimes re-
ferred as Breverse engineering^ or Bquality driven design^,
can be achieved through process modeling and optimization
using response surface methodology (De Vries et al. 2017;
Esveld et al. 2008; Noorfarahzilah et al. 2014). According to
Esveld et al. (2008), the longtime expertise of the bakery in-
dustry is mostly rooted in empirical knowledge that may be
lost if not carefully saved, and what is more, this empirical
knowledge has not been extensively translated into numerical
models. Nevertheless, a few studies aimed at optimizing bread
or cake processing with response surface methodology. Such
studies use central composite designs (Ferrari et al. 2013;
Sanchez et al. 2004) or Box-Behnken designs (Tan et al.
2012; Turabi et al. 2008) to model the effect of several
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processing and/or formula variables on each quality parameter
of the product, i.e., the Bresponses^. One model per response
is generally proposed, followed by single or multiple optimi-
zation of the responses using contour plots or desirability
functions. In a study on the optimization of wine filtration,
Gergely et al. (2003) argued that technological optimization
tasks are always multiobjective problems. An integrated
multiobjective optimization approach consists in taking all
the responses into account simultaneously in the selection of
the most significant effects. This gives rise to a
Bmultiobjective model^ that is the aggregate of the models
of all responses with the same list of effects. Using a desir-
ability function, this approach makes it possible to obtain the
best solution, i.e., a trade-off between all responses even if
they are of different dimensions, orders of magnitude, or im-
portance (Gergely et al. 2003). Multiobjective models that
enable to predict the best settings of the processing variables
to reach the target properties of a given product are very valu-
able tools for industry, and also hold great promise for the
future of food process design (Asselman et al. 2007).

In the study of cakes, a set of physical variables can be
defined as quality criteria relevant to the consumers. Soft
cakes are chemically leavened products characterized by an
aerated crumb whose textural attributes (expressed as softness
or freshness) are crucial to the definition of quality, as are the
specific appearance of the crumb and the flavor attributes
(Heenan et al. 2010). Texture is a multidimensional sensorial
property that results from the expression of the structural and
mechanical properties of the product (Szczesniak 2002).
Consequently, soft cakes can be defined as solid foams of
variable density, symmetry, and cellular structure, with a
crumb varying in stiffness and color.

The aim of this study was to design a tool to optimize the
quality of soft cakes enriched with pea flour as a function of
upstream—uncontrolled but measurable—flour quality vari-
ables using controlled processing variables. After screening
the processing variables in preliminary tests using a Bone-var-
iable-at-a-time^ technique, an I-optimal experimental design
was set up with seven independent variables (three concerning
flour quality and four concerning processing) and six response
variables (cake density, cake symmetry index, crumb stiffness,
cell fineness, cell wall thickness, and crumb lightness). A
multiobjective model was designed, and its prediction capac-
ity was checked in validation trials.

Materials and Methods

Materials

Wheat flour (55% extraction rate, 9.5% protein, 13.9% mois-
ture, 0.5% ash) was supplied by Grands Moulins de Paris
(Ivry-sur-Seine, France) and pea flour (21.4% protein, 9.8%

moisture, 2.1% ash) was supplied byMoulin Meckert-Diemer
(Krautwiller, France). Moisture contents were determined by
oven drying for 90 min at 130 °C (French standard NF V03-
707), and ash contents by dry combustion for 90min at 900 °C
(French standard NF V03-720). Protein contents were ana-
lyzed using the Kjeldahl procedure (AACC 46-12 standard
method) with the most usual conversion factors of 5.7 for
wheat flours and 6.25 for legume flours. All contents are
expressed on a wet basis. Other cake ingredients were pasteur-
ized liquid whole eggs (Ovoteam, Locminé, France), rapeseed
oil (Lesieur, Asnières-sur-Seine, France), white sugar (Saint
Louis Sucre, Paris, France), glucose syrup (Louis François,
Croissy-Beaubourg, France), glycerol (Louis François,
Croissy-Beaubourg, France), Spongolit® 542 emulsifier
(BASF France S.A.S, Levallois-Perret, France) composed of
lactic and acetic esters of mono- and diglycerides of fatty
acids, baking powder (Dr. Oetker France S.A.S, Schirmeck,
France), and commercial grade salt. In the preliminary tests,
vital wheat gluten from Roquette Frères (Lestrem, France)
was used to produce 100% wheat reference formulas (0 wt%
of pea flour of the total mass of flour) with an equal amount of
proteins to formulas containing 29 wt% of pea flour of the
total mass of flour.

Preparation of Flour Fractions

Particle size distribution of wheat and pea flours was deter-
mined by laser diffraction using a Mastersizer 2000 equipped
with the Scirocco 2000 dry dispersion unit (Malvern
Instruments, Worcestershire, UK). Both flours had a bimodal
particle size distribution composed of a Bfine^ fraction mostly
composed of particles the size of starch granules (23 μmmean
particle size for both flours) and a Bcoarse^ fraction mostly
composed of particles the size of cells or groups of cells
(91 μm and 182 μm mean particle sizes for wheat and pea
flours, respectively). Six-hundred grams of flour were
weighed and sieved with an Analysette 3 SPARTAN vibratory
sieve shaker (FRITSCH GmbH, Idar-Oberstein, Germany)
equipped with three sieves of 63 μm, 80 μm, and 125 μm
stacked in decreasing size order. The flour was separated for
90 min at an amplitude setting of 2.5 mm. Fractions above
63 μm formed the Bcoarse fraction^, while fraction below
63 μm formed the Bfine fraction^.

Batter and Cake Preparation

The cake formula was an industrial formula taken from
Dewaest et al. (2017a). It was composed of 350 g flour,
135 g eggs, 125 g sugar, 118 g glucose syrup, 110 g water,
62 g glycerin, 17 g emulsifier, 12 g baking powder, and 2 g
salt for a total batch of 1011 g of batter. In the preliminary
tests, 17 g of wheat gluten was added to the 100% wheat
reference formula.
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The day before the experiment, a mix of liquids was prepared
for every batter batch by weighing glucose syrup, glycerin, and
water in a bowl and stirring the mix with a whisk until complete
dissolution. Eggs were added. The resulting mix of liquids was
stored at 4 °C for 24 h in a bowl covered with aluminum foil.
The batter was prepared following a three-stage mixing proce-
dure in a planetary mixer equipped with a vertical whisk
(Kitchen Aid 5KSM150, St. Joseph, MI, USA). The reference
procedure for preparation of the batter for both preliminary tests
and the experimental plan was as follows. First the dry ingredi-
ents (flour, sugar, emulsifier, baking powder, salt) were homog-
enized at speed 1 for 1 min. The liquids were added and mixed
at speed 1 for 30 s and at speed 4 for 1 min 30 s. The oil was
added and mixed at speed 1 for 1 min during which the batter
was continuously scraped down towards the center with a rubber
scraper for better homogenization.

After mixing, the batter was left to stand for 30 min before
baking. During the waiting period, the consistency of the bat-
ter was measured and the batter was transferred into previous-
ly coded disposable aluminum pans (length 98 mm, width
62 mm, height 33 mm). The pans were oil coated, filled with
50 g of batter each, and placed on the baking rack in a specific
spatial design to ensure a zone of good heat homogeneity. The
oven was a forced air convective type specially designed by
the constructor (Bongard, Wolfisheim, France) for experimen-
tal purposes. The reference baking temperature and time was
180 °C for 13 to 14 min for the preliminary tests and for
18 min for the experimental plan. After baking, cakes were
cooled at room temperature for 45 min and then sealed in
individual polyethylene bags in their pans using a
t h e r m o s e a l i n g m a c h i n e ( C 2 0 0 , M u l t i v a c ,
Wolfertschwenden, Germany). They were stored at room tem-
perature for at least 1 week before physical measurements.
The mechanical properties of the cakes were measured exactly
1 week after manufacturing, and they were followed by the
other measurements within a week.

Preliminary Tests

Preliminary tests were performed to select the most influential
independent variables. Six processing variables that could af-
fect the quality parameters of the cakes were listed: order of
the mixing stages (dry ingredients-liquids-oil or dry ingredi-
ents-oil-liquids), liquids and oil mixing speeds and times, and
baking temperature with adjusted time. Three variables were
also tested for flour quality: the proportion of pea flour in the
total mass of flour, pea flour particle size, and wheat flour
particle size (expressed as the proportion of fine fraction to
the total mass of flour in both cases). In order to check for the
presence of quadratic trend effects and to screen the variation
ranges of the factors, a Bone-variable-at-a-time^ technique
was used (Baş and Boyacı 2007). Classical screening designs
such as fractional factorial designs or Plackett-Burman

designs enable to study the effect of a high number of factors
in a reduced number of trials, implying that only two levels are
tested for each factor. However, to screen precisely the varia-
tion ranges of the factors and to identify quadratic trend ef-
fects, at least three levels per factor are necessary, which was
easily performed using the Bone-variable-at-a-time^ tech-
nique. Starting from the reference batter and cake preparation
procedure, the level of each factor was varied one after the
other within the widest possible range while keeping all the
other factors constant at the reference level. The widest possi-
ble range was either the widest range allowed by the equip-
ment (liquids and oil mixing speeds), the widest range in re-
gard to what was known of the industrial practice and seemed
realistic (liquids and oil mixing times, baking temperature), or
the widest range per se (proportion of pea flour and flours
particle size) (Table 2). Each factor was varied at three levels
to detect quadratic trend effects, except for the proportion of
pea flour that was varied at five levels for a more precise
representation. One batter and cake preparation procedure
(i.e., one batch) was carried out for each combination. The
reference batter and cake preparation procedure was carried
out five times across the preliminary tests: three times with a
baking time of 13 min and twice with 14 min, respectively.
Measured responses in the preliminary tests included: batter
density, batter consistency, cake density, two variables related
to cake mechanical properties (crumb stiffness and cell wall
stiffness), and two variables related to cake cellular structure
(cell fineness and cell wall thickness). No interaction effect
was tested except for oil mixing time, which was tested with
two different levels of oil mixing speed (speed 1 correspond-
ing to the reference procedure and speed 10) because an inter-
action was expected to occur. A total of 34 trials (34 batches)
were performed.

Methodology of Experimental Design

The preliminary tests led to the selection of four processing
variables and to the identification of quadratic trend effects,
meaning that a second-order model equation was required. In
order to check and to counterbalance the effect of the day of
preparation on the response variables, a blocking factor was
included in the design. This led to the choice of an optimal
design with seven independent variables at three coded levels
(− 1, 0, + 1). The chosen model was a second-order polyno-
mial model with all linear, quadratic, and second-order inter-
action effects. Four repetitions were performed at the center of
the domain to estimate experimental error. The total number of
trials for these conditions was 56, split into seven blocks. The
order of the trials within the blocks was fully randomized.

The levels for the seven independent variables are listed in
Table 1. They were chosen to explore the widest range of
variation for each factor while being centered on the level of
the reference batter and cake preparation procedures used by
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industry. All speed settings were converted into revolutions
per minute in the experimental design (Table 1). Baking trials
were performed in order to identify the baking times that
would enable to reach a constant water activity of 0.75 (stan-
dard target for good conservation) at all baking temperatures.
The proportion of pea flour in the total mass of flour was
varied between 10 and 60% to obtain an intermediate level,
35%, that corresponded to the best estimated balance in the
essential amino acid profiles.

Response variables for the experimental design are listed in
Table 1. Batter properties and cell wall stiffness were mea-
sured but not included in the multiobjective model because
they were not considered as direct quality criteria for con-
sumers. Indeed, batter properties are only indicative of cake
properties and were not impacted by the baking variables. The
reduction of the number of responses for the optimization of
the prediction capacity of the model led also to eliminate cell
wall stiffness which was considered redundant with cell fine-
ness in terms of quality perceived by the consumer. However,
the measurement of crumb color (CIE L*a*b) was added to
the physical measurements, and crumb lightness (L*) was
selected as the most significant variable to include in the
multiobjective model.

Batter Properties

Batter density was measured just after the end of mixing using
a 40-mL container. Density (g cm−3) was calculated from the
ratio of the mass of the batter (g) to the volume of the container

(cm3) defined using water (1 g cm−3). The measurement was
performed in triplicate.

The consistency of the final batters was measured on the
same three samples used for the measurement of density (i.e.,
in triplicate). A texture analyzer (TA-XT2i, Stable Micro
Systems, Surrey, UK) equipped with a 5-kg load cell was
used, following a back extrusion method. The level of batter
inside the container (height 62 mm, diameter 22 mm) was
reduced to approximately 50 mm with a spatula to prevent
batter overflow. A 20-mm diameter aluminum plate was driv-
en 30 mm into the batter at a constant speed of 0.5 mm/s (pre-
test speed 1 mm/s, trigger force 0.01 N). The force of resis-
tance to compression of the batter (N) was followed versus the
distance in the sample (mm). Batter consistency was estimated
from the average value of force over the constant part of the
curve (5–25 mm).

Cake Properties

The cakes were weighed immediately after being unwrapped,
and their volume was measured using a laser-based scanner
(VolScan Profiler, Stable Micro Systems, Surrey, UK) with an
increment of 2 mm and a rotation speed of 1 rps. Cake density
(g cm−3) was calculated from the ratio of their mass (g) to their
volume (cm3). The laser-based scanner provided a profile of
the cake representing the change in its circumference along its
longitudinal axis through the succession of 46 to 47 slices
separated by an increment of 2 mm (total cake length was
approximately 90 mm). This data was used to calculate an
adapted symmetry index as defined by the AACC method

Table 1 Variables and levels used in I-Optimal design

Variable Level

Low Medium High
(- 1) (0) (+ 1)

Independent variables (X)

Flour variables, Proportion of pea flour, XP (wt% of total flour) 10 35 60

uncontrolled Proportion of pea fine fraction, XPF (wt% of pea flour) 0 50 100

in real conditions Proportion of wheat fine fraction, XWF (wt% of wheat flour) 0 50 100

Process variables, Liquids mixing speed, XLS (Kitchen Aid setting; rpm) 1; 104 4; 171 8; 266

controlled Oil mixing speed, XOS (Kitchen Aid setting; rpm) 1; 104 6; 218 10; 342

in real conditions Oil mixing time, XOT (min) 1 3 5

Baking program, XB (°C; min) 160 °C; 22.5 min 180 °C; 18 min 200 °C; 15.0 min

Dependent variables (Y)

Cake density, Y1 (g cm-3)

Cake symmetry index, Y2
Crumb stiffness, Y3 (kPa)

Cell fineness, Y4 (PC1 score)

Thickness of cell walls, Y5 (PC2 score)

Crumb lightness, Y6 (L)
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10-91 (AACC, 2010). The height in the center of the slice was
measured on three slices situated respectively at one fourth
(B), one half (C), and three fourths (D) of the cake length,
and the usual calculation was done (symmetry index = 2 ×
C – B −D). Density and symmetry measurements were done
on three cakes per batch (i.e., per trial), and the same cakes
were kept for the characterization of cell structure.

The mechanical properties of the cake were determined
after 1 week of storage using a TAHD plus texture analyzer
(Stable Micro Systems, Surrey, UK) equipped with a 750-kg
load cell. Just after the cake was unwrapped, a cutting tem-
plate and a bread knife were used to remove its top crust and a
part of the four sides to obtain rectangular crumb samples
(length 58 mm, width 26 mm, height 26 mm) located in the
bottom center of the cakes. Each sample was subjected to 90%
uniaxial compression with a 10-cm diameter aluminum plate
at a constant speed of 2 mm/s (pre-test speed 1 mm/s, trigger
force 0.5 N). The resulting curves of force (N) versus distance
(mm)were converted into stress-versus-strain curves using the
sample dimensions. The apparent Young modulus of the aer-
ated crumb, representing crumb stiffness, was calculated as
the initial slope of the stress-versus-strain curve. The apparent
Young modulus of the cell walls, representing cell wall stiff-
ness, was calculated from the slope of the stress-versus-strain
curve at large deformation (end of the compression curve).
Texture was measured on three cakes per batch (i.e., per trial).

The cell structure of the crumb was characterized using
image analysis by mathematical morphology described in
Dewaest et al. (2017b). For image acquisition, the cakes were
cut with a bread knife along their longitudinal axis. Both sides
were gently cleaned with a brush to remove loose crumbs
from the cellular structure and the sample was placed on a
flatbed scanner (HP Scanjet G31110, Hewlett-Packard, Palo
Alto, CA, USA). A black box was placed on top of the sample,
and a full color image was acquired at a resolution of 600 dpi.
The program for image processing was run using Matlab
Software version 7.9.1.705 (The MathWorks, Natick, MA,
USA), and the PCA was realized with XLSTAT Software
version 18.06 (Addinsoft, Paris, France). In this study, inter-
pretation of the similarity map of the cake crumb structures
gave PC1 as the expression of cell fineness and PC2 as the
expression of cell wall thickness. Two values were obtained
for each one of the three cakes per batch (i.e., per trial), giving
a total of six values per batch.

Crumb color was measured using a spectrophotometer
(Spectro-guide 6834, BYK-Chemie GmbH, Wesel,
Germany) with standard illuminant D65. One cake per batch
was cut with a bread knife along its longitudinal axis, and one
of the two sides was chosen for color measurement. After
calibration and verification of the measurement repeatability
on the first sample, color measurement was made one time at
the center of the longitudinal slice for each cake. Results are
expressed in the CIE L*a*b space.

Statistical Analysis

JMP software version 13.1.0 (SAS Institute Inc., Cary, SC,
USA) was used for I-optimal design and analysis. I-
optimality refers to the orientation of the design towards a
good prediction capacity of the model through the minimiza-
tion of the average variance of prediction. Multiple regression
analysis was performed to model the variation of each re-
sponse variable and evaluate the significance of the effects
of all independent variables (i.e., all regression coefficients)
that contributed to it. In a multiobjective approach, the soft-
ware ranked the effects of all the independent variables on all
response variables in order of decreasing significance. In the
ranking, the p value of each effect corresponded to the lowest
p value of the effect among all models for the response vari-
ables, and was expressed as a LogWorth value (LogWorth = −
log10(p value)). The most significant effects (p ≤ 0.05) were
selected from the ranking using a backward elimination pro-
cedure. Regression coefficients were calculated for each mod-
el. An analysis of variance (ANOVA) for the evaluation of
model performance was performed (F-test for significance,
lack-of-fit test, and coefficient of determination R2). To illus-
trate the distribution of all trials as a function of the most
distinctive response variables, a principle component analysis
(PCA) was performed using XLSTAT Software version 18.06
(Addinsoft, Paris, France).

Results and Discussion

Preliminary Tests for the Selection of the Independent
Variables

The influences of the seven processing variables chosen and
three flour quality variables were investigated on seven phys-
ical properties of batter and cake using the Bone-variable-at-a-
time^ technique. An illustration of four trend effects is shown
in Fig. 1. An increase in liquid mixing time appeared to have a
minor effect on cake density (Fig. 1a), whereas an increase in
the proportion of pea flour had a quadratic trend effect on cake
density (Fig. 1b). Indeed, cake density decreased from 10 to
60% of added pea flour and increased from 60 to 100%. A
similar trend effect was observed on batter consistency
(Table 2) that could explain the effect on cake density. It is
known that there is an optimal batter consistency to obtain
(Ronda et al. 2011) that should be high enough to retain the
bubbles in the batter but not be too high to allow the structure
to rise (Sahi and Alava 2003; Gómez et al. 2008). Here, the
optimal batter consistency for a low cake density was obtained
for a proportion of pea flour comprised between 40 and 60%.
The quadratic variation of batter consistency as a function of
legume flour introduction has already been observed by
Gómez et al. (2012) when 0 to 25% (decrease), 25 to 50%,
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and 100% of pea flour (increase) were added to layer cakes.
This variation suggests the presence of competing effects re-
lated to the structure of the dispersed phases (distribution of air
bubbles or oil droplets) and/or to the structure of the continu-
ous phase (viscosity lowering or enhancing effect of legume
proteins). The increase in the proportion of the wheat fine
fraction had a logarithmic decreasing trend effect on crumb
stiffness (Fig. 1c). This could either be due to a decrease in

cake density, a decrease in cell wall stiffness, or a change in
the cell structure according to the results of Gibson and Ashby
(1982). The other trend effects observed showed that there
was no decrease in cake density or in cell wall stiffness
(Table 2). However, the increase in the proportion of the wheat
fine fraction caused an increase in cell fineness and a decrease
in cell wall thickness that could explain the decrease in crumb
stiffness. The presence of the wheat fine fraction composed

Fig. 1 Illustration of various effects of independent variables on
dependent variables: a cake density evolution versus liquids mixing
time, b cake density evolution versus the proportion of pea flour, c cake

stiffness evolution versus the proportion wheat fine fraction, d cell
fineness evolution versus liquids mixing time. The standard error bars
represent the standard deviation on mean values

Table 2 Selection of independent variables for the experimental design based on the summary of their effects on all dependent variables. When X
increased: (=) Y did not vary; (↗) Y increased; (↘) Y decreased; linear or quadratic tendencies are given if observed

Independent variables (X) Dependent variables (Y)

(unit)
Levels

Batter 

density

Batter 

consistency
Cake 

density

Crumb 

stiffness

Cell wall 

stiffness
Cell 

fineness

Cell wall 

thickness
SELECTION

Proportion of pea flour

(wt% of total flour)

0; 10; 29; 40; 

60; 100
quadratic

quadratic 

above 0%

quadratic 

above 0%
= YES implicit

Proportion of pea fine fraction

(wt% of pea flour)
0; 50; 100 = YES implicit

Proportion of wheat fine fraction

(wt% of wheat flour)
0; 50; 100 = YES implicit

Mixing order: dry ingredients-oil-

liquids instead of 

dry ingredients-liquids-oil

- = = = = = = NO

Liquids mixing speed

(Kitchen Aid setting)
1; 4; 10 linear linear linear = = = YES

Liquids mixing time

(min)
1.5; 3; 6 linear = = = = linear = NO

Oil mixing speed

(Kitchen Aid setting)
1; 4; 10 linear = linear = = = YES

Oil mixing time at speed 1

(min)
1; 3; 5 = = linear linear = = =

YES

Oil mixing time at speed 10

(min)
1; 3; 5 = = =

Baking temperature (°C),

adjusted to time

160; 180; 

200
- - = = YES

Data in bold refers to the dependent variables onwhich a priority was given for the selection of the independent variable, because theywere considered as
directly related to cake quality as perceived by the consumers
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mostly of particles the size of starch granules compared to
particles the size of cells for the coarse fraction could help to
maintain a distribution of small air bubbles throughout baking.
Indeed, starch granules are the structuring Bbricks^ of the cell
walls (Donovan 1977). The predominance of individual starch
granules vs. bigger structural elements (endosperm cells con-
taining several starch granules) prevents the mechanical dis-
ruption of the bubble interfaces in the first stages of baking
and contributes to make the cell walls thinner. The increase in
liquid mixing time had a linear increasing trend effect on cell
fineness (Fig. 1d). During the second stage of mixing, the
liquids are added to the dry ingredients and mixed at medium
speed which enables the expression of the surface-active prop-
erties of the egg compounds and of the emulsifier. Massey
et al. (2001) have shown that the mean size of the bubble size
distribution in a cake batter decreased with mixing time until
the maximum volume fraction of air was reached. Beyond the
maximum, an increase in the mixing time decreased the air
volume fraction and increased the mean bubble size. Here, the
increase in the liquid mixing time from 1.5 to 6 min did not
allow to reach the maximum air volume fraction but allowed
to decrease the mean bubble size in the batter. This advantage
was maintained throughout the third stage of mixing (oil ad-
dition) and the baking step, leading to cakes with higher cell
fineness.

The observations of all 70 trend effects are summarized in
Table 2, which lists independent variables versus responses.
This gives a quick overview of which factors influenced
which responses. No factor impacted all the responses, and
each response was impacted by a different set of factors.
Some decreasing-increasing or increasing-decreasing trend
effects were detected that could correspond to quadratic trend
effects, and were even more obvious in the case of the pro-
portion of pea flour. For the selection of the independent
variables, priority was given to those impacting responses
that were directly related to cake quality as perceived by the
consumers, i.e., cake density, crumb stiffness, cell fineness,
and cell wall thickness (in bold in Table 2). The order of the
mixing stages was left out because it had no effect on any
responses except on cell fineness. Among other processing
variables, all affected two out of four of the target responses,
except liquids mixing time, which only affected cell fineness.
Oil mixing time had different effects when tested at speed 1
or 10, confirming the need to study two-way interactions.
Finally, four processing variables were selected: liquids
mixing speed, oil mixing speed, oil mixing time, and baking
temperature. They were added to the three independent flour
quality variables that were implicitly included in the study.
The presence of suspected quadratic effects confirmed the
need to fit the responses with second-order models.
Furthermore these preliminary tests confirmed that the
broadest ranges should be investigated for the ranges of var-
iation of the selected factors.

Response Surface Regression Analysis

An I-optimal design with seven independent variables gener-
ated 56 soft cakes with very distinctive properties. The re-
sponses varied between 0.31–0.48 g cm−3 for cake density,
− 5.4–17.1 for symmetry index, 11–104 kPa for crumb stiff-
ness, − 11.5–18.5 for cell fineness, − 6.4–7.0 for cell wall
thickness, and 77–89 for crumb lightness. The principal com-
ponent analysis of the response variables is shown in Fig. 2.
The two first principal components accounted for more than
70% of the variance. The loadings plot (Fig. 2a) indicated
some correlations between response variables, mainly a posi-
tive correlation between crumb lightness and cell fineness (+
0.765) and a negative correlation between crumb lightness
and crumb stiffness (− 0.686). It also identified a low degree
of correlation between the response variables and the indepen-
dent variables introduced as supplementary data. The only
remarkable correlations were negative correlations between
the proportion of pea flour and cell fineness and crumb light-
ness (− 0.676 and − 0.639, respectively). Overall, these results
show that the variation in dependent variables was explained
by multiple regression of independent variables rather than by
single correlations. The product map in Fig. 2b shows the
distribution of all trials according to the directions of the re-
sponse variables on the loadings plot (Fig. 2a). All products
from the upper to the lower right (18, 4, 54, 41, 44, 7, 26)
contained 35 to 60 wt% of pea flour. They corresponded to
very stiff crumbs with thick cell walls (18, 4, 54, 41) or stiff
crumbs with low fineness and lightness (44, 7, 26). Gómez
et al. (2008, 2012) and De la Hera et al. (2012) showed that
including legume flour in similar layer type formulas in-
creased crumb stiffness and decreased crumb lightness.
Using a pound cake formula containing more fat, Monnet
et al. (unpublished works) showed a decrease in cell fineness
and a slight increase in cell wall thickness with an increase of
the proportion in pea flour. However, in this case, it was as-
sociated with lower stiffness of the crumbs showing that the
effect depended on several variables (as established by Gibson
and Ashby (1982)). Products in the third quartile were defined
by low density and thin cell walls. Products from the center to
the upper left (45, 19, 12, 46, 8) corresponded to cakes contain-
ing 10 wt% of pea flour produced under extensive mixing con-
ditions (highmixing speeds and/or longer times), thus exhibiting
crumbs with low stiffness, high lightness and high cell fineness.
Overall, the product map shows that the combination of all the
factors enabled the creation of a diversity of structures that were
correctly distinguished by the response variables.

Table 3 presents the regression coefficients for the second-
order models of all responses with their p values. Selection of
the most significant effects (p ≤ 0.05) among the ranking of all
the response variables resulted in a list of 23 significant effects
from an original total of 35. Table 3 lists them in the form of
LogWorth values with their significance levels (last column
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on the right). These effects represent the core of the
multiobjective approach because they model and optimize
all responses simultaneously. The effects with the highest sig-
nificance were the proportion of pea flour (LogWorth = 11.7)
for its significant impact on crumb stiffness, cell fineness, and
crumb lightness, and the baking program (LogWorth = 10.0)
for its significant impact on cake density, symmetry, and
crumb lightness. The increase in crumb stiffness and the de-
crease in cell fineness due to the introduction of pea flour are
linked, as demonstrated by Gibson and Ashby (1982). The
decrease in cell fineness in pea-enriched cakes can be explained
by a late or less efficient structuring of the cakes during baking,
due to their reduced starch content, late starch gelatinization,
and protein denaturation (Monnet et al. under revision). The
decrease in crumb lightness is related to the greenish color of
the pea flour. It is known that the baking temperature has an
impact on the kinetics of cake expansion (Lostie et al. 2002).
Sato et al. (1987) have shown that an increase in baking tem-
perature caused an increase in the volume and in the symmetry
index. The temperature also impacts the Maillard reactions that
are responsible for a decrease of lightness of the product, even
if it is classically more observed in the crust than in the crumb.
The following effects in the order of decreasing significance
were the oil mixing speed (LogWorth = 7.1) and the oil mixing
time (LogWorth = 4.9) that both had a global impact on several
response variables. The fact that processing variables were
among the most significantly influential variables means their
ability to correct the impact of uncontrolled variations in flour
quality shows promise.

Compared to a standard selection of effects executed in the
model of each response individually, multiobjective selection

keeps the same number of effects for all models, and a higher
number of effects in each model. This is illustrated in Table 3
by the fact that all models included a high number of non-
significant effects. However, this did not compromise the per-
formance of the models whose F ratios ranged between 4.9
and 12.3 with p values below 0.01%. They also exhibited
insignificant lack-of-fit and high coefficients of determination,
explaining 78 to 90% of the variation of the responses. This
shows a good quality fit (even if R2 values were artificially
raised by the presence of non-significant effects).

The number of significant coefficients in the models varied
between six and 11. All dependent variables did not affect the
same responses so that each response was explained by a
different set of variables. Flour quality variables and process-
ing variables could be compared for their significant effects on
the responses and the sign of such effects. An increase in the
proportion of pea flour significantly increased crumb stiffness
and decreased cell fineness and crumb lightness. These im-
pacts could be counteracted by an increase in one to four of the
processing variables. However, an increase in the proportion
of the pea or wheat fine fraction decreased crumb stiffness and
increased cell fineness that could not be counteracted by any
processing variable, except by the effect of the interaction
between liquids mixing speed and oil mixing time in the case
of crumb stiffness (Table 3). Moreover, an increase in the
proportion of the pea fine fraction caused an increase in cake
symmetry and a decrease in cell wall thickness. Cake symme-
try could be either decreased or increased by an increase in
processing variables. Cell wall thickness was decreased by an
increase in oil mixing speed and time, but was increased by an
increase in the interactions between liquids mixing speed and

Fig. 2 Principal component analysis (71.6% of information). a Loadings plot of dependent variables as principal variables ( , bold characters) and
independent variables as supplementary variables ( ). b Product map showing the repartition of the 56 trials
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oil mixing speed and time, respectively. Overall, the process-
ing variables appear to provide rather good flexibility to com-
pensate for uncontrolled variations in flour quality. However,
crumb stiffness and cell structure (cell fineness and cell wall
thickness) appear to be a little more difficult to monitor by
processing variables with regard to their dependence on flour
particle size.

Validation of the Multiobjective Model

To validate the prediction capacity of the multiobjective mod-
el, two trials that were not included in the experimental design
were defined and repeated three times each, several weeks
apart. The settings of the independent variables for these trials
are listed in Table 4. Given that the average variance of pre-
diction of the model varies in all points of the space design, the
two trials corresponded to different variances of prediction
(Table 5). Because the lowest average variance of prediction
corresponds to the central point (settings 35; 50; 50; 4; 6; 3;
180), the variance of prediction for product 2 (0.81) was
higher than that of product 1 (0.56). The comparison between
experimental and predicted responses is shown in Table 5. In
most cases, the mean measured value was in the 95% confi-
dence interval of prediction (calculated according to Student’s
law). Only in the case of crumb stiffness, cell wall thickness,
and crumb lightness for product 1, and cell wall thickness for
product 2, the mean measured value was slightly out of the
predicted confidence interval, but the measured and predicted
confidence intervals still overlapped. The good agreement be-
tween experimental and predicted responses indicated a good
prediction capacity of the multiobjective model.

In order to confirm this interpretation, the results of two
other sets of trials were analyzed. These trials were set up to
evaluate the capacity of the multiobjective model to correct
the physical and sensory properties of the product in the case
of invented case studies (results not shown in this article). One
set of seven trials corresponded to the repetitions of the seven
most different trials from the 56 original trials defined by
hierarchical cluster analysis. The remaining three trials
corresponded to external trials (like the two validation trials
presented above) that were set up in the case of the case stud-
ies. The results of these two sets enabled respectively to con-
firm good data repeatability (cake processing repeatability and
measurement repeatability) and to confirm a good prediction
capacity of the multiobjective model (results not shown).

Conclusions

An I-optimal design was used to study the effect of upstream
flour variability and process parameters on the quality of pea
flour enriched cakes. Fifty-six cakes were obtained with very
distinctive properties that were properly distinguished by the
response variables. All the response variables were taken into
account simultaneously in the selection of the most sig-
nificant effects in order to build a multiobjective model.
The models for the individual responses constitutive of
the multiobjective model performed well, and the predicting
capacity of the multiobjective model was validated. A rapid
comparison of the impact of flour quality variables and pro-
cessing variables on the responses indicated that the
multiobjective model is able to compensate very satisfactorily

Table 4 Experimental conditions for the two validation trials

Levels of independent
variables

XP (wt%
of total flour)

XPF (wt%
of pea flour)

XWF (wt% of
wheat flour)

XLS (Kitchen
Aid setting; rpm)

XOS (Kitchen
Aid setting; rpm)

XOT (min) XB (°C; min)

Product 1 35 50 50 4; 171 1; 104 1 180 °C; 18.0 min

Product 2 35 0 0 4; 171 1; 104 1 180 °C; 18.0 min

Table 5 Calculated and experimental responses with confidence intervals for the two validation trials (three replicates of cake preparation)

Response with 95%
confidence interval

Density Y1
(g cm−3)

Symmetry Y2
(index)

Crumb stiffness
Y3 (kPa)

Cell fineness Y4
(PC1 score)

Cell wall thickness Y5
(PC2 score)

Crumb lightness
Y6 (L*)

Product 1

Predicted (avp = 0.56) 0.40 ± 0.02 8.8 ± 1.9 47.4 ± 8.6 − 4.3 ± 3.0 1.8 ± 1.7 81.7 ± 1.0

Experimental 0.38 ± 0.02 8.6 ± 2.8 38.5 ± 23.2 − 5.5 ± 1.3 4.0 ± 2.7 79.6 ± 5.6

Product 2

Predicted (avp = 0.81) 0.41 ± 0.02 8.4 ± 2.4 64.5 ± 10.7 − 8.0 ± 3.8 4.5 ± 2.1 81.0 ± 1.3

Experimental 0.41 ± 0.04 6.9 ± 1.1 62.2 ± 30.1 − 4.6 ± 2.6 8.4 ± 1.8 80.4 ± 1.9

avp average variance of prediction
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for variations in flour quality by adjusting the levels of the
processing variables.
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