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Abstract Hyperspectral imaging is built with the aggregation
of imaging, spectroscopy and radiometric techniques. This
technique observes the sample behaviour when it is exposed
to light and interprets the properties of the biological samples.
As hyperspectral imaging helps in interpreting the sample at
the molecular level, it can distinguish very minute changes in
the sample composition from its scatter properties.
Hyperspectral data collection depends on several parameters
such as electromagnetic spectrum wavelength range, imaging
mode and imaging system. Spectral data acquired using a
hyperspectral imaging system contain variations due to exter-
nal factors and imaging components. Moreover, food samples
are complex matrices with conditions of surface and internal
heterogeneities, which may lead to variations in acquired data.
Hence, before extracting information, these variations and
noises must be reduced from the data using reference-
dependent or reference-independent spectral pre-processing
techniques. Using of the entire hyperspectral data for informa-
tion extraction is tedious and time-consuming. In order to
overcome this, exploratory data analysis techniques are used

to select crucial wavelengths from the excessive hyperspectral
data. Using appropriate chemometric techniques (supervised
or unsupervised learning techniques) on this pre-processed
hyperspectral data, qualitative or quantitative information
from sample can be obtained. Qualitative information for
analysing of the chemical composition, detecting of the de-
fects and determining the purity of the food product can be
extracted using discriminant analysis techniques. Quantitative
information including variation in chemical constituents and
contamination levels in food and agricultural sample can be
extracted using categorical regression techniques. In combi-
nation with appropriate spectra pre-processing and chemomet-
ric technique, hyperspectral imaging stands out as an ad-
vanced quality evaluation system for food and agricultural
products.

Keywords Hyperspectral imaging . Data collection . Spectral
pre-processing . Chemometric techniques . Qualitative
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Introduction

The revolutions in computer, optical and image sensor tech-
nologies and their applications in the field of agriculture have
led to sensing techniques like imaging systems which are ca-
pable of automated and quick quality analysis on the process-
ing line, with very little human interference (Zayas et al. 1985;
Sapirstein et al. 1987; Symonds and Fulcher 1988; Brosnan
and Sun 2004; Du and Sun 2004; Gowen et al. 2007). Initial
applications of image processing to the food and agricultural
products were the use of red-blue-green colour vision system
for colour and size grading and later for identifying defects
(Chen et al. 2002; Paliwal et al. 2005; Ramalingam et al. 2011;
Singh et al. 2012). Although colour imaging can perform the
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quality analysis, when it comes to the identification of minor
constituents or contaminants, it is ineffective. Multispectral
imaging systems have been developed using few narrow
wavelengths generally less than 20, to detect features of inter-
est (Gowen et al. 2007; Yang 2012). These wavelengths may
range from visible to near infrared. The number of wave-
lengths used to constitute a multispectral image cube may
range based on the imaging system, number of filters used
and features of interest. For instance, if the feature of interest
is already known, the research acquires images in those
wavelength ranges that can accurately provide information
about that feature. Novales et al. (1999) used multispectral
fluorescence imaging for the identification of maize, peas,
soybean and wheat. Their multispectral imaging system was
built to take 12 images and was able to identify each of these
food products with classification accuracy up to 98.8 %. Liu
et al. (2014) used multispectral imaging to take images at 19
wavelengths ranging from 405 to 970 nm for determining
various quality attributes (firmness, total soluble solids
(TSS)) and ripeness of strawberry fruits. Multispectral imag-
ing has proven to be advantageous over conventional chemi-
cal analysis routines like gas chromatography (GC) and high-
performance liquid chromatography (HPLC) which are de-
structive in nature. Multispectral imaging finds itself as the
basis for the evolution of hyperspectral imaging system,
which is capable of acquiring images over a wide range of
wavelengths along the electromagnetic spectrum and correlat-
ing the spectral variation with the chemical constituent of
interest. The multispectral imaging typically involves acquir-
ing images in the three to six spectral bands that range from
visible to near-infrared (NIR) range (Jensen 2007). Acquiring
images in such a few narrow wavelengths is the primary dis-
advantage of multispectral imaging. Acquiring images in this
small wavelength range provides gaps in the spectral band to
exploit the entire signature. Hyperspectral imaging fills this
gap by acquiring images in a broader wavelength range of
more than 200 spectral bands that range from visible to NIR
section. Hyperspectral imaging is an advanced technique for
the quality evaluation in the food and agricultural industry,
which is built with the combination of regular imaging, radi-
ometry and spectroscopic principles. Radiometry is the mea-
sure of the amount of electromagnetic energy (generally
expressed in common energy units, W) present within a spe-
cific wavelength range. Typical radiometer is designed with
only one sensor with a filter installed to just to select the
intended wavelength range. Spectrometry is a measure of
light’s intensity (generally expressed in W/m2) within specific
wavelength range. Unlike radiometer, spectrometers use dif-
fraction grating or prisms or multiple sensors to divide the
wavelength range into different wavelength bands. Goetz
et al. (1985) used the word ‘hyperspectral imaging’ for the
first time when they were discussing their remote sensing of
earth using spectroscopic imaging techniques. The term

‘hyper’, meaning too much, has a negative implication in the
medical sense, like hypertension, but in image processing,
‘hyperspectral’ imaging means acquiring images at ‘many
bands’ along the electromagnetic spectrum. Chemicals when
available in pure form and to be identified uniquely do not
require hundreds of spectral bands spread over several octaves
of the electromagnetic spectrum (Goetz 2009). But biological
materials exist as a complex system of chemical compounds
with interactions and bonds between them. Application of
image processing in combination with spectroscopic tech-
nique makes it possible for automatic target detection and
measurement of the analytical composition of that material;
hence, hyperspectral imaging can be effectively applied for
quantitative and qualitative analyses, as it can identify the
presence of the material as well as their spatial location.

Hyperspectral imaging is an appropriate technique for
many operations as it can generate both a spatial map and
spectral variation (ElMasry and Sun 2010). Data acquired
from hyperspectral imaging system are three-dimensional
structures made up of one spectral and two spatial dimensions,
commonly known as the ‘hypercubes’ or the ‘datacubes’
(Fig. 1) (Schweizer and Moura 2001; Chen et al. 2002; Kim
et al. 2002; Mehl et al. 2004).

Goetz et al. (1985) originally developed the hyperspectral
imaging for the remote sensing; later, its applications were
expanded to various fields like agriculture (Du et al. 2013;
Suzuki et al. 2012; Gracia and León 2011; Pérez-Marín et al.
2011), environment (Wang et al. 2016), food science (Lu
2003; Cheng et al. 2004; Nicolai et al. 2006; Gowen et al.
2007; ElMasry et al. 2007; Qu et al. 2016; Xu et al.
2016a,b; Xie et al. 2016, Wold 2016, Cheng et al. 2016),
material science (Neville et al. 2003; Tatzer et al. 2005), bio-
medicine (Zheng et al. 2004; Kellicut et al. 2004; Liu et al.
2012; Akbari et al. 2012; Kiyotoki et al. 2013), astronomy
(Zhang et al. 2008; Soulez et al. 2011; Nguyen et al. 2013)
and pharmacy (Amigo and Ravn 2009; Lopes et al. 2010;
Amigo 2010; Vajna et al. 2011). In the field of food and agri-
culture, hyperspectral imaging is used to determine the quality
in fruits (Lu 2003;Mehl et al. 2004; Xing et al. 2005; Lee et al.
2005; Nicolai et al. 2006; Lefcourt et al. 2006; Qin et al. 2008;
Bulanon et al. 2013; Pu and Sun 2016; Pu et al. 2016), vege-
tables (Cheng et al. 2004; Ariana et al. 2006; Gowen et al.
2009; Taghizadeh et al. 2011; Wang et al. 2012; Su and Sun
2016), meat and meat products (Park et al. 2002; Park et al.
2006; Sivertsen et al. 2009; Qu et al. 2016; Xu et al. 2016a,b;
Xie et al. 2016; Wold 2016; Cheng et al. 2016; Chen et al.
2016; Ma et al. 2016), cereals (Cogdill et al. 2004; Zhang et al.
2007; Mahesh et al. 2008; Choudhary et al. 2009; Singh et al.
2010) and diseases in crops (Smith et al. 2004; Keulemans
et al. 2007; Qin et al. 2009; Kumar et al. 2012; Xie et al. 2015;
Kuska et al. 2015). Hyperspectral data collection is the most
important step to understand the properties of the sample.
Significant scientific literature has been published in recent
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years regarding the data acquisition using hyperspectral imag-
ing system (Varshney and Arora 2004; Borengasser et al.
2007; Park and Lu 2015; Vadivambal and Jayas 2016).

Hyperspectral Data Collection

Understanding the behaviour of food sample at molecular lev-
el on its exposure to the light photons is the basis for the
hyperspectral imaging (ElMasry and Sun 2010).
Hyperspectral imaging deals with the sample at the molecular
level; therefore, it can distinguish even slight changes in the
sample composition. Biological materials continuously ab-
sorb or emit energy (radiation) by lowering or raising its mol-
ecules from one energy level to another. The strength and
wavelength of this radiation depend on the nature of the ma-
terial (ElMasry and Sun 2010). Hyperspectral imaging gener-
allymeasures the intensity of the absorbed or emitted radiation
over a range of spectral band along the electromagnetic spec-
trum. Data collected using a hyperspectral imaging system are
the absorbed or emitted radiation values and are stored in the
form of a hypercube. The hypercube is a complex data unit,
which contains abundant information about the physical and
chemical properties of the sample. Data collection using a
hyperspectral imaging system depends on various parameters
such as electromagnetic spectrum wavelength range used for
imaging, type of the imaging system and type of the imaging
mode.

Imaging Spectrum Range

Electromagnetic spectrum (Fig. 2) is the distribution of all
types of electromagnetic radiation arranged in one spatial
scale ranging from very short wavelength (very high frequen-
cy and energy) gamma radiation to the long wavelength (very
low frequency and energy) radio waves. Electromagnetic ra-
diation is a wave of energy packets called photons with both
magnetic and electrical properties which when interact with

matter produce a spectrum. Gamma radiation (wavelength less
than 0.01 nm) has very high energy and good penetration
potential. In food and agricultural industry, it is used for mi-
crobial safety as it can kill the microorganisms by disrupting
their DNA bonds. X-rays are classified into two forms, hard
X-rays (wavelength between 0.01 and 0.1 nm) and soft X-rays
(wavelength between 0.1 and 10 nm), and are used in food
applications for detection of hidden infestation in grains
(Karunakaran et al. 2003) and defects in fruits and vegetables
(Schatzki et al. 1997). There is a limitation in the use of gam-
ma rays and X-rays for biological materials as their high en-
ergy damages the structure and components of biological ma-
terials. The use of ultraviolet light (wavelength between 10
and 100 nm) is well established in the food industry for water
treatment, air disinfection and surface decontamination due to
its low penetration power (Koutchma 2008). Microwaves
(wavelength range from 106 to 109 nm) and radio waves
(wavelength range from 109 to 1017 nm) have been used for
grain disinfestation (Vadivambal et al. 2007) and to study the
grain moisture distribution (Ghosh et al. 2007) due to their
high transmission power. Visible range (400 to 700 nm) im-
aging is used mainly for colour-based sorting of agricultural
and food materials. Visible light is generally used in combi-
nation with near-infrared radiations (400–1000 nm range) to
achieve a robust hyperspectral range for quality identification
in various foods. This range is called the visible-infrared (Vis-
IR) region. Kim et al. (2002) effectively detected faecal con-
tamination on apples using hyperspectral imaging in the Vis-
IR region (450 to 851 nm). Mehl et al. (2004) applied Vis-IR
hyperspectral imaging within the spectrum of 430 to 900 nm
for the detection of surface defects such as side rots, bruises,
flyspeck, scrubs and moulds, fungal infection and soil
contamination on apples. Delwiche et al. (2011) applied Vis-
IR hyperspectral imaging (400–1000 nm) to find Fusarium
head blight damage in wheat kernels. Infrared radiation with
a wavelength range of 900 to 12,000 nm falls within electro-
magnetic spectrum between the visible and microwave re-
gions and is the most explored region for hyperspectral image
analysis. Infrared spectrum that is closest to visible light is
called NIR (ranging from 900 to 1700 nm) spectrum.
Hyperspectral instrument designed for use in NIR region will
have a very high signal-to-noise ratio (10,000:1) (Hans 2003).
In recent years, NIR hyperspectral imaging has been exten-
sively applied for understanding the quality characteristics of
food and agricultural materials. Vermeulen et al. (2011) ap-
plied NIR hyperspectral imaging (900–1700 nm) to identify
the presence of ergot bodies in wheat kernels. NIR
hyperspectral spectral imaging was used to identify the level
of Fusarium infection in maize using 720 to 940 nm range
(Firrao et al. 2010) and in wheat using 400 to 1000 nm range
(Bauriegel et al. 2011). Dacal-Nieto et al. (2011) applied NIR
hyperspectral imaging for the identification of hollow heart in
potato using 900 to 1700 nm range. Short-wave infrared

Fig. 1 Schematic diagram of hyperspectral imaging ‘hypercube’
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(SWIR) (970–3000 nm) hyperspectral imaging technique has
been used for identification of undesirable substances in food
and feed (Pierna et al. 2012), wheat kernels damaged by in-
sects (Singh et al. 2010), moisture content of cereals like bar-
ley, wheat and sorghum grain (McGoverin et al. 2011). Mid-
wave infrared (MWIR) (3000 to 5000 nm) and long-wave
infrared (LWIR) (8000 to 12,000 nm) hyperspectral imaging
has been used for the identification of hot gases and minerals,
respectively, from the earth, using remote sensing techniques
(Anonymous 2013).

Imaging System

The three-dimensional hypercube (x, y, λ), which is a pile of
two-dimensional spatial images acquired at various wave-
lengths can be obtained in any one of these three approaches:

1. Intensity data collected at all the wavelengths for one
pixel at a time.

2. Intensity data collected at all the wavelengths for one row
of pixels at a time.

3. Intensity data collected at one wavelength for all the
pixels at a time.

In a hypercube, a spatially arranged image at each wave-
length contains an equal number of pixels. Each pixel contains
the spectrum, which relates to the chemical composition of the
sample at that individual pixel. The three-dimensional
hyperspectral image datacube can be acquired using any one
of these four approaches (Wang and Paliwal 2007):

1. A point-to-point spatial pattern (whiskbroom method).

2. Fourier transform imaging.
3. A line-by-line spatial scan pattern (line scan or

pushbroom imaging system).
4. Wavelength tuning with filters (area scan or staring array

imaging system).

The line scan and area scan imaging system are better suit-
ed for quality analysis of food and agricultural materials (Mehl
et al. 2004) (Fig. 3).

Line Scan or Pushbroom Imaging System

Line scan or pushbroom imaging system is proficient by
collecting spectral data of single spatial line at a time and
progressively constructing the hypercube (Wang and Paliwal
2007). The light intensity of the narrow line of the sample
along all the wavelength range is imaged onto one row of
the hypercube using two-dimensional dispersing element
and a two-dimensional detector array. This imaging system
generally operates with an imaging lens having a slit-shaped
opening aperture. The pushbroom hyperspectral imaging sys-
tem uses wavelength dispersive system that uses a diffraction
grating (transmissive or reflective) or prism techniques.
Pushbroom imaging works either by physically moving the
sample (Martinsen et al. 1999) or by directing the beam and
detector to the region of interest (Nicolai et al. 2007). Unlike
area scan imaging system, spectral record of the entire imag-
ing session can be controlled in the pushbroom technique.
Pushbroom imaging system has been adopted in food and
agricultural industries because of its speed and adaptability
(Manley et al. 2009).

Fig. 2 Electromagnetic spectrum
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Area Scan or Staring Array Imaging System

Area scan or staring array imaging system acquires the entire
spatial image of the sample at one wavelength and steps
through the next wavelength. This technique is also called
wavelength scanning or tunable filter scanning or focal plane
scanning. Generally, it uses tunable filters to collect images at
one wavelength at one time. Tran (2005) had provided an
extensive review of the principles, instrumentation and appli-
cation of filters in infrared multispectral imaging systems. The
most frequently used tuning filters in staring array
hyperspectral imaging system are filter wheels, liquid crystal
tunable filter (LCTF) and acousto-optic tunable filter (AOTF)
(Fig. 4).

Filter wheels are used in the most basic form of multi-
spectral imaging systems, where a mechanical filter wheel
is incorporated into the optical path during imaging. The
number of imaging wavelengths is determined by the
number of windows in the filter wheel. This technique is
restricted to a limited number of fixed wavelengths, which
is initially determined by the prior knowledge about the
sample’s spectral behaviour (Fong and Wachman 2008).
This technique is mechanically restricted to change wave-
length at a relatively slow pace. Filter wheels are only

used in inexpensive imaging systems (Wang and Paliwal
2007). AOTFs are crystals with optical properties, and the
wavelengths are controlled by sending acoustic waves
through them. These sound waves are created by applying
radiofrequency electrical signals, AOTF wavelength and
bandwidth that can be regulated electronically. LCTFs,
also known as Lyot filters, can select various band passes
from the sample (band-sequential scanning system), as
they are generated by alternative layers of crystal quartz
plates and liquid crystal polarizer. LCTFs generally work
in between visible and SWIR of the electromagnetic spec-
tra. Use of these filters with hyperspectral imaging system
increased the speed of data acquisition, made auto wave-
length change and random wavelength selection possible,
but, in turn, increased the overall cost of the system. The
staring array imaging system is applicable for many oper-
ations where the sample is fixed at one point, for example,
these tunable filters are used to change the excitation and
emission wavelengths electronically to achieve excitation-
emission matrix in florescence imaging (El Masry and
Sun 2010). The two main drawbacks of staring array im-
aging systems when compared to the pushbroom imaging
system are

1. Because of lengthy imaging time and continuous expo-
sure to the illumination system, the sample gets heated up
and sometimes loses moisture.

2. It is not useful for online sensing or real-time application
in industrial scale, as stationary samples are needed.

Imaging Mode

Understanding the theory of interaction of light with the
surface of the studied material is important for under-
s tanding the concept of hyperspectral imaging.
Generally, hyperspectral imaging is carried out in any
one of the optical modes (reflectance, absorbance and
transmittance) or in florescence mode. According to the
optical property of the sample, when the electromagnetic
radiation is incident on this sample, the radiation is
reflected, absorbed and transmitted. The absorbed light
can sometime be re-emitted at lower energy and longer
wavelength, and this aspect is known as fluorescence.
The fluorescence and optical properties are the unified
functions of the wavelength and angle of the incident
radiation as well as physical and chemical characteristics
of the sample (Chen et al. 2002; ElMasry et al. 2012a).
According to Beer-Lambert law, the absorbance of the
sample is directly proportional to the concentration of
the chemical constituent of that sample. This law had laid
the base for the concept of chemical composition analysis
using hyperspectral imaging.

Fig. 3 Hyperspectral imaging systems: a line scan or pushbroom
imaging system and b area scan or staring array imaging system
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Reflectance

Reflection is a process where the fraction of the electromag-
netic radiation (radiant flux) incident on the surface of the
sample returns into the same hemisphere whose base is the
surface of the sample and which contains the incident radia-
tion. The reflectance of light occurs in three main types: spec-
ular (reflects back from the surface at the same angle as that of
incoming light), diffuse (scattered or reflected at many differ-
ent angles) or a combination of both. Most of the biological
materials reflect light in the diffusionmode. The general math-
ematical definition for reflectance ρ is given by the radiant
flux reflected ϕr divided by the radiant flux incident ϕi:

ρ ¼ ϕr=ϕi

Reflectance is the most common hyperspectral imaging
mode used for the analyses of food quality and safety.
Reflectance mode measurements are easy to conduct without
any contact with the substance, and light level is reasonably
high in relation to the sample (El Masry et al. 2012a).
Hyperspectral reflectance imaging is commonly applied in
Vis-NIR (400–1000 nm) or NIR (1000–1700 nm) spectrum
and has been applied to identify defects, quantify contaminants
and analyse quality attributes of fruits, vegetables and meat
products (Gowen et al. 2007;Wu and Sun 2013b). In particular,
it has been used to classify cereals (Mohan et al. 2005; Gorretta
et al. 2006; Mahesh et al. 2008), identify fungal infection in
agricultural products (Wang et al. 2003; Pearson et al. 2001)
and determine quality of fruits and vegetables (Kim et al. 2002).

Transmittance

Transmittance is a process by which the fraction of the elec-
tromagnetic radiation (radiant flux) leaves the surface of the

sample from the side (usually opposite) other than that of
incident radiation. Within the electromagnetic spectral range,
transmittance is more commonly measured in the 700 to 1100-
nm NIR region (Givens et al. 1997; Ariana and Lu 2010).
Although in transmittance, the extent of light passing through
the sample is relatively small; it contains significant valuable
information to detect internal defects and estimate the internal
ingredient concentration of the food more accurately (Schaare
and Fraser 2000; Shenderey et al. 2010). As it requires a
strong light source and a sensitive detector, transmissionmode
is not always preferred when compared to the reflectance
mode (ElMasry et al. 2012a). In agricultural and food appli-
cations, transmittance hyperspectral system was used to ex-
tract the data from cucumbers for detection of insects, using a
moving sample (Lu and Ariana 2013) and other vegetables
and soybeans (Huang et al. 2012b), from cod fish sample for
detection of parasite load (Heia et al. 2007; Sivertsen et al.
2011), from tart cherries for detection of pits (Qin and Lu
2005) and from corn for estimation of moisture content and
oil of kernels (Cogdill et al. 2004).

Interactance

Interactance is an image sensing mode where the light is
allowed to fall on the sample and detected using a detector
lying on the same side of the sample (Wu and Sun 2013a). The
part of light that interacts with the sample and re-emitted is
analysed in interactance mode. Due to exploration of this
property of light in interactance hyperspectral imaging, it
can deliver more valuable information about the deeper prop-
erties of the sample compared to reflectance. It is also advan-
tageous than transmittance due to reduced influence of thick-
ness of the sample. Unlike transmittance, where a special set-
up is required for sealing the light to prevent it from entering
directly into the detector, interactance is also advantageous in

Fig. 4 Tuning filters used for
hyperspectral imaging: a filter
wheels, b liquid crystal tunable
filter and c acousto-optic tunable
filter
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its simple setup (Nicolai et al. 2007). Interactance imaging is
widely used for the determination of fat content of humans
and animals. Interactance hyperspectral imaging system appli-
cation for food and agricultural products has been limited, but
it was used for detection of fat content of beef (Wold et al.
2011), ham (Gou et al. 2013) and pork (O’Farrell et al. 2010)
and nematodes in cod fish (Sivertsen et al. 2012). Wang et al.
(2013) and Schaare and Fraser (2000) compared the reflec-
tance, interactance and transmittance hyperspectral imaging
for the quality assessment of the fruits and vegetables.

Absorbance

Absorbance is the process by which a portion of incident
electromagnetic radiation (radiant flux) is retained in the sam-
ple without complete reflectance or transmittance. In this case,
the incident energy is converted into different form and pre-
served within the sample. Amount of energy converted into
different form is dependent on chemical constituents of the
sample. The general mathematical definition of absorbance
α is the ratio of the radiant flux absorbed ϕa to the radiant flux
incident ϕi:

α ¼ ϕa=ϕi

Extrinsic characteristics like size, geometry, appearance
and colour and chemical compositions like water content,
fat, protein and carbohydrate of the sample can be identified
using hyperspectral absorbance imaging (Lu and Chen 1999).
Most biological materials have stronger absorption in the
spectral range of 600–1000 nm (Kavdir et al. 2009).
Although the use of hyperspectral absorbance imaging mode
is very limited when compared to the reflectance mode, effec-
tive literature in the field of food and agriculture was identi-
fied. For cereal grain research, spectroscopic absorbance im-
aging was used for categorization of vitreous and non-vitreous
kernels (Dowell 2000), detecting insect infestation (Baker
et al. 1999) and quantifying essential nutrients and chemical
constituents (Wang et al. 2004) of various cereals. In general,
hyperspectral data acquired using any of the radiometric prop-
erties (reflectance, absorbance or transmittance) can be ex-
changed between each other.

Fluorescence

Fluorescence is a technique in which light absorbed at a given
wavelength by a chromophore of the sample is retained and
later emitted at higher wavelength (Kim et al. 2001). This
difference in absorption and emission wavelengths is called
Stokes shift. The phenomenon of fluorescence is observed in
various samples in the visible region (400–700 nm), when
excited with ultraviolet (UV) region radiation (Chappelle
et al. 1991; Lang et al. 1992). In the areas of cell biology,

medicine, forensic and environmental sciences, steady-state
fluorescence imaging is regarded as a sensitive optical tech-
nique and used for scientific research (Harris and Hartly 1976;
Chappelle et al. 1984; Albers et al. 1995). Changes in fluores-
cence emission of food due to contaminations with faecal
material and infection with pathogens serve as a basis for
application of fluorescence hyperspectral imaging for foods.
Despite these advantages, the use of fluorescence imaging for
the online quality and safety assessment in food industry is not
fully explored due to the complexity in this phenomenon (Kim
et al. 2001). Fluorescence hyperspectral imaging system was
used for assessing various quality parameters like skin and
flesh colour, firmness, soluble solids and titrateable acidity
(TA) in apples (Noh and Lu 2007), for detecting skin tumours
in chicken carcasses (Kim et al. 2004). This technique was
also used for detection of the faecal contamination on apples
(Kim et al. 2002; Lefcourt et al. 2006) and cantaloupes
(Vargas et al. 2005).

Hyperspectral Imaging Sample Complexities

In comparison with the traditional imaging, hyperspectral im-
aging is complex, as it involves working with more number of
images at the same time in both spatial and spectral dimen-
sions. In order to say that hyperspectral imaging results are the
perfect representation of the objective results, there is a need to
consider the drawbacks and issues that arise due to sample
complexity. In this section, the most common sample com-
plexities that are to be considered while working with
hyperspectral images are as follows:

Variations in Sample Surface

Food materials are complex and show very high variations in
the sample surface. In reflectance mode, incident radiation in
the form of photons falls on the sample surface. Based on the
sample surface condition, this radiation may enter the sample
or get reflected from the surface. The amount of the photons
that reflected back to the sensor is based on the incident radi-
ation wavelength and the nature of the sample surface (Clark
and Sasic 2006). The reflected radiation that reached the de-
tector contains both the sample composition at different
depths and location within the sample. This depth of penetra-
tion depends on the condition of the sample surface. Hence,
while conducting hyperspectral imaging, it is important to
consider the sample surface variations to arrive at an accurate
analysis in the later stages.

Asymmetry in Sample Surface

Considering the focus nature of the hyperspectral imaging
systems, the use of flat-surfaced materials for imaging is
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preferable. The use of flat-surfaced sample makes the sample
surface parallel to the imaging plane (Amigo 2010). In con-
trast to these food materials, sample surfaces are irregular with
variations in colour and surface conditions. Most of the dry
food and agricultural materials are having large variations in
the surface roughness, which creates incident light to scatter.
Hence, the collected information may not be the exact repre-
sentative of the sample spectra. While acquiring hyperspectral
images, it is important to keep in mind the asymmetry and
roughness of sample surface.

Sample Representativeness

Hyperspectral imaging involves extraction of information due
to the interaction of incident light mostly with the surface and
very little with the penetration of the food sample. In most
cases, penetration depth is negligible as the food samples are
complex and opaque. As the food sample matrix is very com-
plex, it can be imagined that if the sample is sliced into infinite
number of thin slices, the composition of each sliced surface
will show that each sliced surface itself will be very different
due to variation in composition and particle sizes in each layer.
Keeping this sample complexity in mind, it can be concluded
that the one single sample spectra cannot be considered as the
signature of the sample at that particular condition (Amigo
2010). Spectral signature can only be constructed by acquiring
hyperspectral images of large number of sample (replicates)
under that particular condition, to increase the sample
representativeness.

Hyperspectral Data Pre-Processing
Before Extraction of the Information

Unlike conventional imaging, hyperspectral imaging is more
subjected to variations due to external factors and imaging
components and complexities in food. Food samples being
complex matrices with conditions like surface inhomogenei-
ties bring variations in acquired data. Incident light on the food
material experiences both scattering and absorption effect due
to the complexity in its interaction with various components in
food material. This scatter effect is due to physical properties
of food material like cellular structure, particle size, density,
etc., and absorption effect is due to chemical composition like
carbohydrates, protein, fat, etc. Hence, before applying any
modelling method, the homogeneity among the input data
should be ascertained, as data are affected by outliers, sub-
groups or clusters (Centner et al. 1996). To reduce these var-
iations and to extract the useful information from
hyperspectral images, spectral pre-processing tools are gener-
ally used. In spectral data analysis, the most important func-
tion of the pre-processing techniques is to reduce the undesir-
able variation and noise during hyperspectral data acquisition

and make the data analysis more meaningful. If fair results are
expected from the hyperspectral data analysis, the pre-
processing step is often of vital importance (ElMasry and
Sun 2010).

Hyperspectral imaging involves the application of Beer-
Lambert lawwhich shows the interaction between the incident
light and chemical properties of the sample through which this
light passes. Beer-Lambert law can be mathematically repre-
sented as

a ¼ εbc

where ‘a’ is the absorbance of the sample, ‘ε’ is the molar
absorptivity of the sample, ‘b’ is the effective path length
and ‘c’ is the constituent concentration in the sample. As
the product of ‘ε × b’ remains constant, spectral pre-
processing techniques aim to maintain the relationship
between absorbance a and constituent concentration c to
be linear and making the measured absorbance a perfect
representation of constituent concentration. This linear re-
lationship is affected by undesirable phenomena such as
particle size effects, scattering of light, morphological dif-
ferences like surface roughness and detector artefacts. For
instance, if the spectrum of a sample is affected by light
scattering, Beer-Lambert law is not true and this kind of
spectrum need to be pre-processed in order to eliminate
this effect before model development (Stordrange et al.
2002). Pre-processing techniques are applied on spectral
data to promote the linear relat ionship between
hyperspectral data and concentration of sample constitu-
ent and to compensate for these deviations. Pre-processing
techniques that are established on feature selection or ex-
traction always intend to reduce or transform the primary
feature space into another space of lower dimensionality
(Melgani and Bruzzone 2004). Pre-processing and collec-
tion of accurate auxiliary data are the most important re-
quirements to extract qualitative information from the
hyperspectral data.

Pre-processing techniques are used on the hyperspectral
data for the following reasons:

1. Identification and removal of trends, outliers and noise in
data.

2. Improvement of the performance of the subsequent qual-
itative and quantitative analyses.

3. Enhancement of data interpretation.
4. Simplified machine learning using pre-processed data.
5. Removal of inappropriate and unnecessary information

from the data and reduction of the scale of data mining step.

For more systematic understanding, different spectral pre-
processing techniques can be categorized into reference-
dependent and reference-independent groups.
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Reference-Dependent Pre-Processing Techniques

Reference-dependent techniques use pre-determined refer-
ence values for spectral pre-processing. The main categories
of reference-dependent techniques are orthogonalization, op-
timized scaling and spatial interface subtraction.

Orthogonal Signal Correction

Hyperspectral data are generally analysed as multivariate data.
Application of partial least squares (PLS) to obtain projections
for the latent structures is one of the main methods to analyse
these multivariate data, where measurable relationship be-
tween a raw data matrix X and the response matrix Y is need-
ed. PLS is a useful tool in various areas like multivariate
calibration, classification, discriminate analysis and pattern
recognition (Martens and Naes 1992). PLS is very successful
in the multivariate data analysis because it can handle the data
with collinearity among the variables, missing data and noisy
data. Wold et al. (1998) had proposed the orthogonal signal
correction (OSC) as a reference-dependent pre-processing
technique. OSC technique removes all the variations in X that
are not corresponding to Y, in order to attain exceptional
models in multivariate data analysis (Trygg and Wold 2002).
From the general understanding of hyperspectral dataset, most
of the spectral variance is of very little or even nil analytical
importance. Therefore, for better analysis, it is important to
remove the variance that is orthogonal to the component of
interest from the dataset. The number of orthogonal factors to
be eliminated from the dataset must be decisive, and the more
the number of factors eliminated, the greater is the reduction
of orthogonal variance (Boysworth and Booksh 2007). In or-
der to achieve orthogonal correction models, three important
criteria must be met:

1. Component of interest should involve the large systematic
variation in X.

2. Component of interest must be predictive by X.
3. Component of interest must be orthogonal to Y (Trygg

and Wold 2002).

These three criteria are met by performing an OSC on X,
which will remove most of the components of X that are
unrelated to the model developed from Y. The main disadvan-
tages of OSC pre-processing technique are

1. Time-consuming, as OSC methods follow a number of
internal iterations to identify the orthogonal components
of X.

2. Additional time for cross-validation.
3. Difficult to estimate the correct number of components

that are needed to be eliminated from X, those are not
correlated to Y.

Raw hyperspectral data before PLS modelling are general-
ly pre-processed using OSC method to eliminate the variance
fromX that is not related to Y. OSC is also used for instrument
standardization by removing the variability which is inappro-
priate to the predicted variables.

Orthogonal Projections to Latent Structures

Orthogonalization is not a single pre-processing technique;
rather, it is a group of algorithms and programs, with a goal
to separate the variation in the sample spectrum, which will
not correlate with the reference value (Rinnan et al. 2009).
When the factors are too many and well collinear, PLS is used
to develop predictive models. PLS was first developed by
Herman Wold in 1960, as a statistical technique for econom-
ics. Since then, it was subjected to continuous improvement
and has been used in many different fields for multivariate
calibration, regression, classification, discriminate analysis
and pattern recognition. Projections to latent structures by
means of PLS is one of the important methods to analyse the
multivariate data, where measurable relationship between a
raw data matrix X and the response matrix Y is needed
(Trygg and Wold 2002). PLS is a very robust technique in
handling collinearity, noises and missing data in both descrip-
tor and response matrices. PLS was subjected to continuous
improvement like development of non-linear iterative partial
least square (NIPALS) method, partial least square discrimi-
nate analysis (PLS-DA), OSC, etc., since the time it was pro-
posed. Orthogonal projections to latent structures (O-PLS) is a
relatively new technique, which is developed as a spectral pre-
processing technique to enhance the interpretation of PLS
models and relatively reduce the model complexities.
Similar to OSC, the objective of O-PLS is to eliminate the
precise variations in X that are not correlated to Y. In O-
PLS, systematic variability in matrix X is separated into Y
predictive components and Y orthogonal components.
Components containing the variation that is commonly corre-
lated with X and Y are represented as Y predictive compo-
nents; these variations are in linear correlation with Y.
Components that have specific variation for X that is uncor-
related or orthogonal to Y are represented as Y orthogonal
(Cloarec et al. 2005; Trygg et al. 2007; Stenlund et al. 2009).

The main advantages of O-PLS method are

1. O-PLS-treated data are easier to interpret, as they have
limited components.

2. Data are more relevant because it not only separates non-
correlated variation from the dataset but also provides an
opportunity to study and analyse this non-correlated
variation.

3. Removal of non-correlated variance from the data before
modelling makes the prediction of component of interest
simple.

Food Bioprocess Technol (2017) 10:1–33 9



4. Data prediction ability of the model also increases.

Optimized Scaling

Optimized scaling (OS) was first introduced by Karstang and
Manne (1992), as a theoretical-based method for the linear
calibration of spectral data, when it does not have a fixed
intensity range. They proposed two calibration methods for
spectral datasets. Initially, this method gained little attention,
as it is advantageous only when one constituent calibration
data are available. But the secondmethod is more generalized.
Multiplicative scatter correction method uses reference spec-
trum (usually mean spectrum) for the spectral calibration, but
these problems are not faced when optimized scaling is used.
Karstang and Manne (1992) had shown the successful appli-
cation of optimized scaling for the data from X-ray diffraction
data of mixture of minerals, infrared spectra of organic liquids
and NIR spectra of various food products. They also proposed
that care must be taken while applying optimized scaling on
the data with additive or baseline effects.

Spectral Interference Subtraction

Target chemical constituent identification using hyperspectral
imaging is a demanding task. Hyperspectral data obtained for
the analysis of chemical components is generally affected by
unidentified components, component interaction, tempera-
ture, light scattering, etc. Spectral interfaces are generally
caused by interference (impurities) that interacts with the an-
alyte or constituent of interest. Spectral interference subtrac-
tion (SIS) method involves the removal or elimination of cer-
tain additive interferences from the input spectra. Martens and
Stark (1991) developed SIS method as a spectral pre-
processing technique for near-infrared spectroscopy and then
used it for the interference correction in the field of biomedi-
cine for speech and language processing (Hu andWang 2011),
electrocardiography (Levkov et al. 2005) and trace elements
using X-rays (Donovan et al. 1993). The three main purposes
of this technique are

1. To remove the additive interferences caused by the pres-
ence of known constituents from the spectra.

2. To maintain the changes as small as possible to the spec-
tral data.

3. To make the later regression analysis effortless to
interpret.

The use of SIS as a pre-processing technique not only
makes the data more effective for chemical analysis but also
decreases the analysis charges and enhances the accountability
of the subsequent multivariate regression analysis technique.
The effective use of SIS pre-processing technique can be

identified in online process control (industrial scale) where
there is a difficulty to generate real calibration samples for
spectral correction.

Reference-Independent Pre-Processing Techniques

Reference-independent pre-processing techniques provide
more generalized tools suitable for exploratory studies, where
there is no reference value available (Rinnan et al. 2009). The
most commonly used spectral pre-processing techniques are
broadly divided into four categories: scatter correction, nor-
malization, derivatives and baseline correction.

Scatter Correction

Scatter correction is a statistical method to remove the scatter
variations in the spectral data. Multiplicative scatter correc-
tion, standard normal variate and detrending are the most com-
mon scatter correction techniques.

Multiplicative scatter correction (MSC) also called multi-
plicative signal correction is the most common pre-processing
technique used for scatter correction of NIR and IR spectra
(Fig. 5a). Martens et al. (1983) developed MSC as a multivar-
iate linearity transformation technique; later, it was elaborated
and applied to NIR reflectance of meat by Geladi et al. (1985).
The main purpose of MSC is to reduce the scatter in the spec-
tra that is caused by various particles in the sample. Initially, it
was developed as a multiplicative scatter correction technique
to handle the multiplicative problems that arise from scatter
alone, but later, it was used to handle diverse problems, and
the abbreviation was changed to multiplicative signal correc-
tion (Rinnan et al. 2009). The MSC technique initially calcu-
lates the correction factor for the original spectra (Fig. 5b)
using reference spectra (generally mean spectrum) and then
corrects the original spectra using this correction factor by
back transformation. It is mathematically represented as

xORGi ¼ ai þ bixREF þ εi

xCORRi ¼ xORGi −ai
bi

¼ xREF þ unique structure

where xi
ORG, xREF and xi

CORR are the original, reference and
corrected spectrum, respectively.

ai and bi are the correction coefficients of the ith sample,
that are estimated by least square regression of the sample’s
original and reference spectrum. In other words, ai and bi are
the intercept and slope of the correction coefficient curve
drawn between reference spectrum on x-axis and original
spectrum on y-axis. From the mathematical derivation, it is
clear that MSC does not eliminate the scatter but decreases
the inter-sample variance of the scatter by implementing an
additive and multiplicative transformation of the individual
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spectrum into the simple idealized reference ormean spectrum
(Andersson 1999). Initial use of MSC was to choose the range
from the spectra with no chemical information, but in NIR
spectra, it is difficult to identify such a region without chem-
ical information at all (Stordrange et al. 2002), so Martens
et al. (1983) proposed that whole spectral range should be
used to determine the correction coefficients. MSC is restrict-
ed by assuming that there is no chemical variation between
original and reference spectrum (Wang et al. 2011). If this
assumption is not made, there might be error in the estimation
of correction coefficient (Chen et al. 2006). This problem was
addressed by Martens and Stark (1991) and Martens et al.
(2003) in their extended MSC (EMSC) technique by includ-
ing the wavelength correction to the MSC. Isaksson and

Kowalski (1993) had proposed piecewise multiplicative scat-
ter correction (PMSC) by introducing spectral value correc-
tion at each wavelength and independent intercept and slope
correction terms to the traditional MSC technique.

Standard normal variate (SNV) was first proposed by
Barnes et al. (1989) as a spectral pre-processing technique,
with an aim to remove the multiplicative interferences due to
particle size of the sample and scatter and to account for the
differences in the curvilinearity and baseline shift in the reflec-
tance spectra (Buddenbaum and Steffens 2012) (Fig. 5c). The
mathematical model for SNV is given as

xCORRi ¼ xORGi −ai
bi:

Fig. 5 Near-infrared reflectance
intensity spectra of 10 and 18 %
moisture content of Canada
Western Red Spring (CWRS)
wheat: a raw reflectance intensity,
b multiplicative scatter corrected
reflectance intensity, c standard
normal variate reflectance
intensity, d normalized
reflectance intensity and e
Savitzky-Golay smoothing and
derivative corrected reflectance
intensity

Food Bioprocess Technol (2017) 10:1–33 11



where xi
CORR and xi

ORG are the SNV corrected and original
spectrum, respectively.

ai and bi are the mean and standard deviation of the ith
sample, respectively.

As the correction factors used in this technique are the
mean and standard deviation, SNV is also called a z-transfor-
mation, centering or scaling (Otto 1998). Although SNV-
corrected spectrum is technically similar to MSC (Dhanoa
et al. 1994), SNV does not need any reference spectrum for
the calculation of correction factors; hence, the user loses the
grip on computation. As there is no least square step, SNV
technique is more affected by noise than the traditional MSC
(Rinnan et al. 2009). This technique makes the data more
understandable as corrected spectrum has a greater linear re-
lationship between spectrum and constituent concentration.

Trend is a statistical technique that helps to interpret the
spectral data. If the data follows a particular trend, this may
strongly confuse or superimpose the changes of interest.
Detrending is the most popular mathematical or statistical
method of removing the trends from the data. Barnes et al.
(1989) introduced the detrending along with SNV technique
for the NIR reflectance spectra pre-processing and which was
further applied by Buddenbaum and Steffens (2012). For in-
stance, detrending is applied for removing the long-term spec-
tral changes in spectral time series. One of the simple
detrending methods is by subtracting mean values of spectrum
from each column of that spectrum. More complicated
detrending methods aim at disintegrating the spectral changes
into the trend (low-frequency components) and the spectra of
interest (which are generally characterized by the higher fre-
quency component) (Lasch 2012).

Normalization

Normalization is a scatter correction technique applied to scale
up the spectra within its similar range (Fig. 5d). Normalization
was used in vibrational spectroscopy for correcting the spectra
that was affected with differences in optical path length (light
path) or difference in sample quality (Lasch 2012). In normal-
ization to equal length, spectra are generally divided by their
own norms, and eventually, the length of the spectra becomes
1 (Stordrange et al. 2002):

Norm of the spectrum xik k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xj

1

x2i1 þ x2i2 þ…x2i

vuut

normalized spectrum ¼ original spectrum
norm of the spectrum

xiNORM ¼ xij
xik k

Another method of normalization is to sum the spectral
data to 1. This technique is not commonly used as the data
can be misinterpreted. For example, when summing up the

positive and negative regions, improper zeros result in the
corrected data. Normalization had shown an increase in accu-
racy and efficiency of the spectral distance measurement
modelling (Heraud et al. 2006).

Derivative

Resolution of IR spectra is well enhanced by spectral deriva-
tives. Savitzky-Golay smoothing and derivative and Norris-
Williams derivation are the most common spectral derivative
techniques used with an aim to resolve and remove the over-
lapping bands in complex IR spectral signals.

Savitzky-Golay (SG) smoothing and derivative technique
was first proposed by Savitzky and Golay (1964) and further
elaborated by Steinier et al. (1972). Initially, this technique
was used for continuous and equally spaced data. Evaluation
of derivative is achieved by executing the data through a
window-wise symmetric filter (Brown et al. 2000) (Fig. 5e).
In this technique, the spectrum is elaborated with a window
having 2d + 1 points, where each window is used for the
estimation of the centre point and with d points on each side.
These 2d + 1 points are fitted by a polynomial of a given order,
and the coefficients found by this fit are used for the estima-
tion of the new value at this wavelength (either just by
smoothing or by both smoothing and differentiation)
(Rinnan et al. 2009). The main benefit of SG technique is that
it can carry out smoothing, noise reduction and computing
derivatives in one single step. The method proposed by
Savitzky and Golay (1964) contains some numerical errors
which were addressed and corrected by Steinier et al. (1972).

Norris (1983) introduced the derivative technique, which
was later modified by Norris and Williams (1984). This tech-
nique was named the Norris-Williams (NW) spectral deriva-
tive technique (Norris 1983; Norris and Williams 1984). The
principle behind NW technique is to smoothen the spectral
data based on a moving average (Massart et al. 1997) over
data points, and the gap between these data points is used to
estimate the derivatives, and then, finite difference is calculat-
ed based on this smoothing spectrum. Unlike the SG method,
the NW method is less prone to high-frequency noise, as it
uses both smoothing by moving average and gap size for
derivative. Application of NW pre-processing technique
(gap size for derivatives part) for spectral data is not properly
defended as the data are not presented in a time domain.

Baseline Correction

Reflectance or transmittance IR spectra often contain unwant-
ed background features or noise additionally to the desired
signal (Schulze et al. 2005). Spectral noise is caused due to
scattering, external factors causing variations in data acquisi-
tion (illumination, temperature, etc.) and instrumental noises.
To acquire proper information from the spectral data, it is
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important to remove this noise or background features from
the signal. Baseline correction is a pre-processing technique
used to eliminate these background noises from the spectral
data, thus making a more easy illustratable signal. It also gen-
erates more accurately predictable spectral parameters like
band positions and intensity values (Mazet et al. 2005).
Most common baseline correction techniques are offset cor-
rection, detrending (Barnes et al. 1989), SG technique
(Savitzky and Golay 1964; Steinier et al. 1972) and iterative
polynomial baseline correction (IPBC) (Lieber and
Mahadevan-Jansen 2003). As SG technique and detrending
are discussed in previous sessions, the focus is on remaining
techniques in this section. Offset correction is the easiest base-
line correction technique. Offset correction is conducted by
subtracting a linear horizontal baseline from the original spec-
trum. This horizontal baseline value is selected in such a way
that no less than one point of the corrected spectrum equals to
1 and spectra remain unscaled (Lasch 2012). Instead of using
simple straight horizontal baseline as offset correction, an nth-
order iterative polynomial function is used by IPBC in order to
fit the spectral data points. To prevent baseline correction ar-
tefacts, a lower order polynomial is recommended for IPBC
(Lasch 2012).

Types of Information Extracted from Hyperspectral
Data

The hypercube or datacube collected using high-performance
hyperspectral imaging can be visualized in two different ways:
one along all wavelengths of the imaging spectrum to obtain
spectral data and another at each wavelength to obtain spatial
data. Using these spectral and spatial data, either sample qual-
itative (e.g., detection of defects) or quantitative information
(e.g., quantification of chemical composition and contamina-
tion) can be gathered.

Qualitative Analysis

Qualitative analysis of food and agricultural products in-
cludes analysis of chemical composition of the materials,
detection of defects and purity of materials present.
Hyperspectral imaging technique has proved to be a
non-destructive analytical technique for the non-
destructive analysis of food quality and safety (Wu and
Sun 2013b). Qualitative information about the sample can
be obtained when spectral data of a hypercube are
analysed using proper chemometric techniques. Using
the entire spectra for the qualitative analysis is time-
consuming and burdensome on the statistical software.
In order to overcome this, exploratory data analysis tech-
niques are used to select indispensable wavelengths from
the excessive data for multispectral analysis. When

selecting the indispensable wavelengths, care should be
taken to avoid loss of crucial data. Qualitative parameters
are generally analysed using data exploratory techniques
or supervised or unsupervised classification techniques.
Out of all chemometric techniques, classification methods
are the basis for the qualitative analysis of chemical com-
position and purity of the component in the food and
agricultural sample. Classification methods are machine
learning techniques that develop mathematical models
that can recognize each member of the sample to its ap-
propriate class on the grounds of some set model param-
eters. Once the model is developed, it has the capability to
read the unknown sample using its model parameters and
later assign it to one of the classes. Classification tech-
niques are extensively used in the fields of chemistry,
process monitoring, medicine, pharmacy, social sciences,
economics and food science (Ballabio and Todeschini
2009). Rapid quality inspection is of major concern in
automated food and agricultural industries. Classification
modelling is the most appropriate technique to handle
these concerns.

Quantitative Analysis

Initially, the use of hyperspectral imaging in the field of food
and agriculture started to assess the quality of the product.
Quantification of various chemical constituents in food and
agricultural samples can be analysed using categorical regres-
sion techniques. Hyperspectral regression models are devel-
oped using known concentrations of chemical constituents,
and once the model is developed and validated, analysis of
an unknown sample is simple using this model. Detection of
various materials using hyperspectral imaging involves iden-
tification and quantification of those in a spatial image using
their respective spectral features. Every pixel of the identical
sample in an image has identical spectral signature.
Identification and quantification of various materials using
hyperspectral imaging is a challenging task. Hyperspectral
imaging applied along with image processing and
chemometrics makes the detection and quantification of ma-
terials possible. Chemometric techniques like principal com-
ponent regression (PCR), multilinear regression (MLR) and
partial least square regression (PLSR) are generally used to
measure various food components quantitatively. Regression
models are quantitative feedbacks on the basis of a set of
descriptive variables (Ballabio and Todeschini 2009).
Regression analysis helps to develop an association between
the hyperspectral data and the measured property of the ma-
terial. This mathematical expression relating the systematic
responses or signals to the constituent concentration of the
sample is also known as the calibration equation (Mark and
Workman 2003).
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Chemometric Tools for the Extraction
of Information from Hyperspectral Data

Exploratory Data Analysis

Exploratory data analysis technique when used as a sta-
tistical method can recognize the main characteristics of
the data and see what the data tells us beyond classifica-
tion modelling and regression analysis. Exploratory data
analysis technique was promoted by John Tukey as a
method to see what the data can offer for the researcher
other than the general modelling for performing qualita-
tive analysis (Tukey 1980). In a broad sense, these
methods are used for detecting the data errors, cross val-
idating the assumptions and selecting a suitable model. In
hyperspectral imaging, these are also used to reduce the
amount of information in the data. Most commonly used
exploratory data analysis methods are principal compo-
nent analysis (PCA) and independent component analysis
(ICA).

Principal component analysis is a method to transform
the dataset linearly into smaller dimension dataset with
variables that are uncorrelated with each other. It was
proposed for the first time by Pearson (1901) and
Hotelling (1933) to explore the invisible structures in the
data that assist in more accurate classification. In order to
achieve this, the data are rotated in the sample space of
observation. PCA is an important step for the identifica-
tion of key wavelengths and reduces the massive
hyperspectral imaging dataset. This reduction in data
makes it possible to use in online sensing. PCA is used
for feature reduction by changing data to a new set of
axes and creating subsets, and these subsets show higher
differentiability (when compared to the original data sub-
sets) (Jiang et al. 2010). Projection-based methods like
PCA are generally applied for data dimension reduction
and feature selection problems.

Principal components are the new components that are
generated by orthogonal linear transformation of the original
dataset. The new components are formed by rotating the data
so that the first principal component has the highest variance
by any projections of the dataset; the second principal compo-
nent has the second highest variance by any projection of the
dataset and so on. Hyperspectral dataset (hypercube)Hwith X
× Y × λ dimensions is decomposed using PCA into a set of
scores and loadings (Amigo 2010). Transformed dataset can
be represented in matrix form as

H I ¼ SLs þ E

where HI the transformed dataset with dimension XY × λ, S is
the score surface with dimension XY × F, LS is the loading
profiles with dimensionF × λ and E is the residual matrix with

dimension XY × λ. The main advantage of PCA is that the
number of principal components can be ascertained from the
principal component score, variance and factor loading re-
sults. The loading profile and the score surface of each prin-
cipal component can be an association of pure principal com-
ponent, a physical effect or even a combination of both
(Amigo et al. 2008). These properties of PCA make it a very
robust technique to handle the massive hyperspectral data.
PCA is the most useful exploratory data analysis technique
for food and agricultural materials (Xing et al. 2007; Vargas
et al. 2005; Barbin et al. 2012; Cho et al. 2013). Van Der
Maaten et al. (2009) provided a comparative review between
linear (PCA) and non-linear (multidimensional scaling, max-
imum variance unfolding, isomap, diffusion maps, multilayer
autoencoders, kernel PCA, manifold charting and locally lin-
ear coordination) dimensionality reduction techniques and
concluded that non-linear techniques, although they have
large variance, are not capable of outperforming the PCA
technique.

Independent component analysis (ICA) is another explor-
atory data analysis and hyperspectral image feature selection
method. It is also used for feature extraction, pattern
recognition and unsupervised classification. It was proposed
for the first time by Herault and Jutten (1986) and further
developed by Comon (1994). It is a method to separate spec-
tral signal into a number of additive subcomponents. These
subcomponents are believed to be statistically independent
(occurrence on a subcomponent does not affect the other) of
one another and are not following Gaussian function. It ob-
tains the independent source signals by searching for a linear
or non-linear transformation that maximizes statistical inde-
pendence between components (Jiang et al. 2010). Before
application of the ICA algorithm on the hyperspectral data,
it is recommended to centre, whiten and reduce the dimension
of the data (Polder et al. 2003). Data centring is done to sim-
plify the ICA algorithm and is attained by subtracting the
mean of the components of the vector from every
component. Whitening transformation technique transforms
the data so that they have the identity covariance which
suggests that all dimensions of the matrix are statistically
independent and the variance along each of the dimension is
equal to 1. Whitening and data reduction can be done using
PCA; hence, data are processed using PCA before applying
ICA. Du et al. (2003) and Botchko et al. (2003) had used ICA
for hyperspectral image processing primarily to reduce the
dimensionality and select the specific bands for feature
extraction. Polder et al. (2003) had applied ICA for tomato
sorting using visible spectral images in the spectral range of
400 to 710 nm. Application of ICA for hyperspectral images
was not as successful as PCA (Table 1), as it is necessary for
defining the number of independent components prior to the
computational analysis for ICA, which is not a usual practice
with PCA.
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Unsupervised Learning

Unsupervisedmachine learning techniques are used to explore
the hidden structures in a hyperspectral dataset. The main
difference that separates unsupervised from supervised ma-
chine learning techniques is that unsupervised techniques
when dealing with the unlabelled data deliver an underlying
structure of that data. As there are no generated response data
for comparison of results, this technique cannot generate the
error terms. Unsupervised learning will only have the original
input data to work on. Two most common unsupervised ma-
chine learning methods are dimensionality reduction and clus-
tering. PCA and ICA are the classic examples of dimension-
ality reduction techniques. PCA and ICA disintegrate the
spectral data into a number of components (principal or inde-
pendent) in order to distinguish the key directions of variabil-
ity in the high-dimensional data space (Wu and Sun 2013b).
The first few components of PCA and ICA carry most of the
information that can accurately distinguish between the
samples.

The K-means, fuzzy and hierarchical clustering are the
classic examples of clustering techniques. The K-means clus-
tering technique clusters input data into k cluster groups of
equal variance. Samples belong to their respective cluster

group by minimizing their distance to the cluster centroid.
K-means uses the centroid of the cluster as the criterion to
assign the cluster for each sample and is achieved byminimiz-
ing the sum of squared errors (Ding and He 2004). K-means is
also called hard clustering as it verifies whether the object
belongs to the cluster or not and the number of clusters is
initially specified. In contrast, fuzzy clustering method assigns
the samples to different clusters simultaneously with varying
degrees of membership (Amigo et al. 2008). Hierarchical clus-
tering is a method to build a hierarchy of clusters that is nor-
mally presented in the form of a binary tree diagram, com-
monly known as dendrogram. The main principle of hierar-
chical clustering is to group the sample to a cluster by mea-
suring the distance between the two consecutive samples. The
hierarchical clustering is not suitable for large datasets (Wu
and Sun 2013b). Among the clustering techniques, fuzzy clus-
tering is more prominently used for hyperspectral data analy-
sis. Although clustering techniques are very robust, their use
for hyperspectral data analysis is very limited as they lack the
ability to guess the correct number of clusters to be developed
(Amigo et al. 2008; Lopes andWolff 2009). Table 2 shows the
limited application of unsupervised learning techniques for
food and agricultural products using hyperspectral spectral
imaging technique.

Table 1 Application of exploratory data analysis techniques for hyperspectral data analysis in food and agro products

Mode System Wavelength (nm) Product Factor assessed Chemometric Reference

Reflectance Pushbroom 1235–2450 Wheat α-Amylase activity PCA Xing et al. (2011)

Reflectance Pushbroom 1000–2500 Cereals Viability PCA McGoverin et al. (2011)

Reflectance Staring array 1000–1600 Mung bean Insect damage PCA Kaliramesh et al. (2013)

Reflectance Pushbroom 400–1000 Apple Bruises PCA Xing et al. (2005)

Reflectance Pushbroom 900–1700 Apple Bruises PCA Lu (2003)

Reflectance Pushbroom 450–851 Apple Faeces PCA Kim et al. (2002)

Reflectance Pushbroom 400–1000 Mushrooms Freeze damage PCA Gowen et al. (2009)

Reflectance Pushbroom 900–1700 Cucumber Bruises PCA Ariana et al. (2006)

Reflectance Pushbroom 447.3–951.2 Cucumber Chilling injuries PCA Cheng et al. (2004)

Reflectance Staring array 400–1000 Spinach E. coli PCA Siripatrawan et al. (2011)

Reflectance Pushbroom 393–710 Tomato Sorting ICA Polder et al. (2003)

Reflectance Pushbroom 914–1715 Grapes Maturity PCA Rodríguez-Pulido et al. (2013)

Reflectance Pushbroom 400–2500 Apple Bruises PCA Baranowski et al. (2012)

Reflectance Pushbroom 900–1700 Pork Grade PCA Barbin et al. (2012)

Reflectance Pushbroom 900–1700 Lamb Grade PCA Kamruzzaman et al. (2011)

Reflectance Pushbroom 900–1700 Ham Grade PCA ElMasry et al. (2011)

Reflectance Pushbroom 900–1700 Lamb Classification PCA Foca et al. (2013)

Reflectance Pushbroom 900–1700 Salmon Colour PCA Wu et al. (2012)

Reflectance Pushbroom 380–1030 Halibut Frozen-thawed PCA Zhu et al. (2013)

Fluorescence Pushbroom 900–1700 Apple Starch index PCA Noh and Lu (2007)

Fluorescence Pushbroom 425–774 Cantaloupes and strawberries Faeces PCA Vargas et al. (2004)

Fluorescence Pushbroom 425–710 Chicken Skin tumour PCA Fletcher and Kong (2003)
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Supervised Learning

Supervised learning is a machine leaning technique which
groups the unknown samples into the known predefined
groups as per their measured features (Wu and Sun 2013b).
Supervised learning is a process of understanding a set of rules
from the instance (training set) with an aim to create a classi-
fier that can be used upon new instance (Kotsiantis 2007). A
training set consists of pairs of input vectors and desired out-
put. The output of the classifier can be a model to predict
unknown samples (for regression) or can anticipate a class
label of the input vectors (for classification). In other words,
supervised learning evaluates input testing set to develop
function that can be used for mapping the new set (testing
set). Supervised learning is the most successful statistical tech-
nique used along with hyperspectral imaging in food and
agricultural applications. Kotsiantis (2007) provided an exten-
sive review on different supervised machine learning tech-
niques and their use in classification of various real-world
problems. Table 3 shows the extensive application of super-
vised learning techniques for food products using
hyperspectral spectral imaging technique.

Discriminant Analysis

Discriminant analysis is by far the well-known and extensive-
ly used classification method (McLachlan 1992). It is a super-
vised learning technique which uses discriminant analysis
function to assign a dataset to one of the previously
established groups. Discriminant analyses are very robust,
but they overfit the multicollinear data (correlated among
themselves) (Hand 1997). Data reduction using stepwise dis-
criminant analysis (SWDA) (Jennrich 1977) or PCA (Pearson
1901; Hotelling 1933) can resolve this problem. Quadratic,
linear and partial least square discriminant analyses are a
few important discriminant analysis techniques.

Like PCA, discriminant analysis technique separates sam-
ples into different classes bymaximizing the variance between
classes and minimizing the variance within a class.
Mathematical relationship of this statement can be framed

from considering a classic classification problem, where a test
sample xi is designated to one of the prior defined class C
based on j measurements [xi = (xi1, xi2.....xij)

T]. The discrimi-
nant function (df) (classification score) is given below, and the
test sample is designated to the class which has the minimum
classification score (Wu et al. 1996):

d f xið Þ ¼ xi−xc
� �TX−1

c

xi−xc
� �

þ ln Σc½ �−2lnπc

The first two terms of this equation express the between the
test sample xi and centroid x̄c (Mahalanobis 1936) whereΣc is
the class C’s covariance matrix and calculated by

Σc ¼ 1
�
nc

X
i¼1

nc

xi−xc
� �

xi−xc
� �T

x̄c is the centroid of class C and calculated by

xc ¼ 1
�
nc

X
i¼1

nc

xi

πc is the class probability of class C and calculated by

πc ¼ nc=n

where nc and n are the total number of samples in class C and
training set.

Quadratic discriminant analysis (QDA) classifies the sam-
ples into the classes with quadratic-shaped boundaries and
assuming that multivariate normal distribution is common in
each class (Ballabio and Todeschini 2009). Mahesh et al.
(2008) and Choudhary et al. (2009) applied QDA for the clas-
sification of wheat classes using hyperspectral imaging, and
Singh et al. (2009, 2010) applied QDA for the classification of
midge-damaged and insect-damaged wheat using
hyperspectral imaging.

Linear discriminant analysis (LDA) is considered as the
special case of discriminant analysis, first proposed by
Fisher (1936). LDA follows all the principles of discriminant
analysis, but it uses pooled covariance Σp as it assumes that
the covariance matrices of the class Σc are equal.

Table 2 Application of unsupervised learning techniques for hyperspectral data analysis in food and agro products

Mode System Wavelength (nm) Product Factor assessed Chemometrics Reference

Reflectance Staring array 1000–1600 Wheat Fungal infection K-means Singh et al. (2007)

Reflectance Pushbroom 680–980 Apple Firmness Hierarchical evolutionary algorithm Huang et al. (2012a)

Reflectance Pushbroom 680–980 Apple Firmness and soluble solid
content (SSC)

Hierarchical evolutionary algorithm Huang and Lu (2010)

Reflectance Pushbroom 400–1000 Pork Quality categories K-means Liu et al. (2010)

Reflectance Pushbroom 430–1000 Pork Quality categories Clustering Qiao et al. (2007)

Fluorescence Pushbroom 425–711 Chicken Tumour Fuzzy hierarchy Kong (2003)

Transmittance Pushbroom 430–1750 Wheat Fusarium Fuzzy hierarchy Polder et al. (2005)
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Pooled covariance matrix of the class is given as

Σp ¼ 1
�
n

XC

c¼1

ncΣc

For classification of samples into different classes, LDA
develops linear projections of independent variables (Wu
and Sun 2013b). Although it is similar to PCA in considering
the independent variables, LDA also contains class informa-
tion of samples. Like QDA, LDA also assumes that multivar-
iate normal distribution is common in each class, but the co-
variance matrices of the classes are equal; hence, both LDA
and QDA are assumed to work well if the sample classes are
normal. The main disadvantage of LDA is that it does not hold

well with the condition where the number of samples is less
than that of number of variables, as in this condition, the
inversion of covariance matrices becomes difficult. Hence
with LDA, it is always preferred to have more samples than
the number of variables. As QDA generates covariance for
each class, it can handle or require more number of samples
than LDA. QDA and LDA are the most commonly used
classification techniques of hyperspectral imaging data from
food and agricultural products. Wang and Paliwal (2006) used
LDA, QDA, k-nearest neighbour (KNN), probabilistic neural
network (PNN) and least squares support vector machines
(LS-SVM) for the classification of hyperspectral images of
six Canadian wheat classes and confirmed that LDA gave
the highest classification accuracy. Gowen et al. (2009)

Table 3 Application of supervised learning techniques for hyperspectral data analysis in food and agro products

Mode System Wavelength (nm) Product Factor assessed Chemometric Reference

Reflectance Staring array 960–1700 Wheat Classes LDA, QDA, ANN Mahesh et al. (2008)

Reflectance Staring array 100–1600 Wheat Classes SVM Zhang et al. (2007)

Reflectance Staring array 960–1700 Wheat Fungal infection LDA, QDA, ANN Choudhary et al. (2009)

Reflectance Staring array 700–1100 Wheat Midge damage LDA, QDA Singh et al. (2010)

Reflectance Staring array 960–1700 Wheat Classes, moisture content LDA, QDA Mahesh et al. (2011)

Reflectance Staring array 1000–1600 Wheat Insect damage LDA, QDA Singh et al. (2009)

Reflectance Pushbroom 1000–2500 Wheat α-Amylase content PLSR Xing et al. (2009)

Reflectance Pushbroom 1235–2450 Wheat α-Amylase activity PLSR Xing et al. (2011)

Reflectance Pushbroom 1000–2500 Cereals Viability PLS-DA McGoverin et al. (2011)

Reflectance Staring array 1000–1600 Mung bean Insect damage LDA, QDA Kaliramesh et al. (2013)

Reflectance Staring array 650–1000 Strawberry Firmness, soluble solids MLR Nagata et al. (2005)

Reflectance Pushbroom 900–1700 Apple Bitter pits PLS-DA Nicolai et al. (2006)

Reflectance Staring array 400–1000 Strawberry Moisture, total soluble
solids (TSS), pH

ElMasry et al. (2007)

Reflectance Staring array 450–650 Strawberry Firmness, soluble solids MLR Nagata et al. (2004)

Reflectance Pushbroom 400–1000 Mushrooms Freeze damage LDA Gowen et al. (2009)

Reflectance Pushbroom 1100–2400 Beet Nematodes SVM Pierna et al. (2012)

Reflectance Staring array 400–1000 Spinach E. coli ANN Siripatrawan et al. (2011)

Reflectance Pushbroom 408–1117 Kiwi fruit Bruises SVM Lü and Tang (2012)

Reflectance Pushbroom 400–1000 Banana Moisture MLR, PLSR Rajkumar et al. (2012)

Reflectance Pushbroom 900–1700 Pork Total viable count (TVC) PLSR Barbin et al. (2013)

Reflectance Pushbroom 900–1700 Chicken fillet TVC PLSR Feng and Sun (2012)

Reflectance Pushbroom 900–1700 Turkey Colour, pH PLSR Iqbal et al. (2013)

Fluorescence Pushbroom 400–1000 Apple Firmness, SSC, TA NN Noh and Lu (2005)

Fluorescence Pushbroom 500–1040 Apple Colour, firmness, SSC,
starch, TA

MLR Noh et al. (2007)

Fluorescence Pushbroom 900–1700 Apple Starch index ANN Noh and Lu (2007)

Fluorescence Pushbroom 425–710 Chicken Skin tumour SVM Fletcher and Kong (2003)

Transmittance Staring array 750–1090 Maize Moisture, oil content PLSR, PCR Cogdill et al. (2004)

Transmittance/reflectance Pushbroom 900–1700 Potato Hollow heart detection SVM Dacal-Nieto et al. (2011)

Interactance Pushbroom 760–1040 Pork Fat PLSR O’Farrell et al. (2010)

Interactance Pushbroom 760–1040 Beef Fat PLSR Wold et al. (2011)
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developed a technique with the combination of LDA and
hyperspectral imaging method for accurately identifying
freeze-damaged mushrooms.

PLS-DA is a supervised learning technique that combines
the regression power of PLS and classification power of dis-
criminant analysis. PLS-DA based on their spectral fingerprint
assigns the unknown samples to one (and only one) of the
available categories. This technique is derived from PLS re-
gression (Wold et al. 1983) and is referred as a secondary data
analytical step involving the construction of statistical classi-
fication models (Baker and Rayens 2003). PLS was designed
for regression analysis (Wold 1975), but recently, it was com-
bined with LDA and used as a discriminant technique. PLS-
DA coincides with the inverse least square approach to LDA
and gives the same result as that of LDA but with less noise
and the advantage of variable selection (Ballabio and
Todeschini 2009). There are two kinds of PLS algorithms:
PLS1 algorithm deals with one dependent Y variable, and
PLS2 deals with more than one dependent Y variable. PLS-
DA is a PLS2 algorithm (many Y variables) that hunts for
abstract (or latent) variables that have maximum covariance
with Yvariables (qualitative in nature). The Y block represents
whether the sample is classified correctly or not. In PLS-DA
classification with two classes, Yvariable will be given 1 if the
sample is classified correctly or else given 0 if it is wrongly
classified. When dealing with multiclass classification, for
each sample, a PLS2 algorithm for multivariate qualitative
response is applied, and it will return prediction value between
0 and 1 for each class. If the value is closer to 1, then it
indicates that the sample belongs to that particular class or else
not. A threshold between 0 and 1 is used to assign a class for
the sample. The use of PLS-DA as a classification tool for
hyperspectral imaging of food and agricultural products is a
recent development. Pearson et al. (2001) used NIR spectros-
copy and PLS-DA for accurately (95 %) detecting aflatoxin-
contaminated corn kernels. Serranti et al. (2013) used PLS-
DA for accurate (100%) classification of groat and oat kernels
using hyperspectral imaging in the near-infrared range from
1006 to 1650 nm. Vermeulen et al. (2011) used PLS-DA for
the online identification of contaminants in cereals by near-
infrared hyperspectral imaging.

Categorical Regression

Regression is a statistical procedure which determines the
relation between dependent variable and independent var-
iable. Categorical regression calibrates the data by
accrediting numerical values to classes, which results in
optimal linear regression equation for the transformed var-
iables. PCR and PLSR are the best-known categorical
regression techniques used for extracting information
from hyperspectral imaging data.

Multicollinearity is a statistical procedure where several
independent variables participating in multiple regression
modelling are highly correlated to one another. Due to
multicollinearity, least square of the variables is unbiased,
but they have more variance between them. PCR is a multi-
variate regression analysis technique for analysing data with
high multicollinearity between their variables. PCR reduces
the standard error by adding bias to the regression estimates
and is hoped that more reliable estimates will be achieved due
to this overall effect. The simple matrix notation of PCR is
given as follows:

Y ¼ XBþ E

where Y is the dependent variable matrix (concentration ma-
trix), X is the independent variable matrix (hyperspectral im-
aging data), Ḇ is the coefficient of regression and E is the error
or the residual matrix. As PCR considers the variances be-
tween variables, more freedom is provided in variable selec-
tion, and hence, it avoids the problem during further mathe-
matical calculations. PCR model developed using the inde-
pendent and dependent variables sometimes gives a random
error or noise rather than giving the anticipated relationship
(model outfitting). This can be avoided by choosing optimal
number of PCs. The main problem with PCR is that the PCs
that describe the independent variable matrix (hyperspectral
imaging data) may not be the perfect PCs for predicting the
concentration of the sample. This problem can be resolved by
applying an intermediate correlation coefficient calculation
step between sample concentrations and the PC scores and
selecting those components that are significantly correlated
for subsequent regression (Romia and Bernardez 2009).
Cogdill et al. (2004) developed PCR models to accurately
predict the moisture content and oil content of single corn
kernels using hyperspectral absorbance spectra in the wave-
length region of 750–1090 nm.

PLSR is a well-known chemometric tool that is used to
estimate the biological and chemical properties of the
sample from their hyperspectral spectrum. PLSR is
extensively used for the study of massive hyperspectral data
and was introduced for the first time by Wold (1975) for the
field of econometric as an alternative to the general least
square regression to handle the data with variables showing
high collinearity. Similar to PCs of PCR, when applied to
create a relationship between concentration matrix Y and
hyperspectral matrix X, PLSR develops latent variables
known as PLSR components (PLSRCs) which are in linear
combinations with variables in matrix X. Unlike PCR, PLSR
ensures that the first few of its PLSRCs contain as much in-
formation as possible to classify the matrices X and Y. They
also manage to explain most of the X and Y variances during
calibration and compression. As PLSRCs are corrected for
maximizing the prediction capability of matrix Y, they will
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not match fully with the direction of maximum variation
(Romia and Bernardez 2009). The simple matrix notation of
PLSR is given as follows:

X ¼ XpP
TþE1

Y ¼ YpQ
TþE2

where Y is the dependent variable matrix (concentration ma-
trix), X is the independent variable matrix (hyperspectral im-
aging data), Xp and Yp are the matrices of the X scores and Y
scores, respectively, P and Q are the orthogonal loading ma-
trices and E1 and E2 are the error or residual matrices. Similar
to PLS-DA, PLSR also has two kinds of algorithms: PLS1 to
handle only one response variable and PLS2 to handle more
than two (multiple) response variables. PLS1 is generally used
to determine concentration of only one component of Y, and
PLS2 is used to determine the concentration of multiple com-
ponents of Y. In the recent past, extensive literature on the
application of PLSR for extraction of useful information from
hyperspectral images of food and agricultural materials is
available. Wu and Sun (2013b) reviewed the use of PLSR
with hyperspectral imaging system for meat and meat prod-
ucts, fish (Xu et al. 2016a,b), fruits and vegetables’ quality and
safety analysis.

Naïve Bayes Classifier

Naïve Bayes (NB) classifier is one of the most popular prob-
abilistic statistical classification methods. NB classifier is
based on application of Bayes theorem (Bayesian statistics)
with few firm assumptions. The main assumption made for
this classifier is that all the features are independent of other
features specifying the state of class variables (Langley et al.
1992; Friedman et al. 1997). Decision in NB classifier is made
by assuming that the availability or non-availability of a par-
ticular feature is always unrelated to the availability or non-
availability of any other feature of a class. NB considers that
these individual features contribute to the probabilistic theory
in order to judge whether the sample should be categorized to
a particular class or not. Under supervised learning conditions,
NB classifier can be trained very precisely as it depends on the
effective nature of probability model. Maximum likelihood
method is used for the estimation of parameters for NB
models. Due to this special character of NB, one can use it
for classification without believing in Bayesian probability or
using any Bayesian methods. NB classifier had performed
very well in solving various real-world problems using
hyperspectral imaging despite of its speculation that all the
features are independent. Main advantages of NB classifier
is that very small training set is enough to determine the pa-
rameters (e.g., mean and variance) needed for classification.
As the main assumption is to have independent variables,

variance of the variables for each class is required but not
the covariance of the entire matrix.

Support Vector Machine

Support vector machine (SVM) is a linear supervised machine
learning technique which relies on the concept of hyperplanes
that define decision boundaries. Hyperplane is a decision
plane that separates set of samples to different classes. The
concept of SVM was introduced by Cortes and Vapnik
(1995) and later used for data mining by Burges (1998) and
Duda et al. (2001). In SVM, the hyperplane separating two
classes is supported by subsets called support vectors.
Classification rule is drawn using these support vectors (sub-
sets of training set that are lying in the nearness of the bound-
ary between two classes). Due to this, the result of the SVM
classification is contingent only on the support vectors, and
this result does not vary when some of the samples other than
these support vectors are removed. SVM algorithm during
optimization searches for the hyperplane with maximum mar-
gin (distance between hyperplane and the support vectors) to
give the ideal separating plane for classification. Generally,
SVMs are the linear classifiers, if non-linear separable classes
are available; it is difficult to use the linear classifier for accu-
rate classification (Ballabio and Todeschini 2009). In order to
handle this problem, SVMs are integrated with one of the non-
linear kernel functions (polynomial, Gaussian and sigmoid
kernels). SVMs are generally applied for binary classification
problems; multiclass classification is possible by taking into
account one class at a time and developing classifier that sep-
arates this class from all the other classes. Then during testing,
a sample is assigned to the nearest class and decision function
is used to formulate the distance from each class.

The SVMs are very successful as supervised classifiers for
object recognition (Guo et al. 2000) and face detection (Osuna
et al. 1997). Growth of interest in SVMs is revealed by their
successful application in food and agricultural analysis for
classification of starch (Pierna et al. 2005), compound feeds
(Pierna et al. 2006), wheat (Wang and Paliwal 2006) and corn
(Zhang et al. 2012).

Artificial Neural Networks

An artificial neural network (ANN) is the most popular che-
mometric technique that has gained importance in the chem-
ical analysis application. ANNs are robust and can handle
unsupervised (clustering) and supervised (modelling) prob-
lems and can work with both qualitative and quantitative anal-
ysis. It is important to review the nature of a problem and then
consider the best neural network (NN) strategy to solve it,
since different NN constructions and different NN learning
programs have been suggested in the literature (Zupan
1994). ANN works like the human nervous system, where
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each neuron receives a signal from neighbouring neurons,
later executes them and finally gives out the output signal
(Eluyode and Akomolafe 2013). The function which com-
putes the output vector from the input signal consists of two
parts:

1. Evaluation of net input, and it is the linear product of input
variables and their weights.

2. Transferring the net input to output vector in a non-linear
way (Ballabio and Todeschini 2009).

The number of neurons used in ANN may vary from ten to
several thousands and are based on the analysed data (training
set) (Zupan and Gasteiger 1993). ANN has been successfully
applied for hyperspectral imaging in the field of food and
agriculture for classification of wheat classes (Mahesh et al.
2008; Choudary et al. 2009) and detection of fungal-damaged
wheat (Wang et al. 2003).

Advantages and Disadvantages of Hyperspectral
Imaging

Hyperspectral imaging has revolutionized the quality assess-
ment for food and agricultural materials by providing both the
quantity (spatial) and quality (spectral) of the product at the
same time. The advantages of using hyperspectral imaging
setup for quality assessment are as follows:

1. Hyperspectral imaging does not require any separate
sample preparation.

2. It is a non-damaging technique; hence, sample can be
saved for further analysis.

3. Once the model is developed, calibrated and validated,
analysis of unknown is simple.

4. Relatively safe to the environment, as no chemicals are
required for analysis.

5. Economical when compared to conventional chemical
analysis methods, as it reduces additional costs for re-
agents, labour and waste treatment.

6. Collection of massive spectral information for every pix-
el provides more accurate information about the sample
chemical constituents and provides a chance to refine the
data and perform critical analysis.

7. As every pixel in the hypercube has similar number of
spectral bands, selection of region of interest is flexible.

8. Both subjective and measurable study can be done using
the same images.

9. Multiple constituents can be analysed from the same
images.

10. Further processing allows us to understand the chemical
constituents of the material and generally called chemi-
cal imaging (ElMasry and Sun 2010).

11. Although samples are similar in morphology, colour, etc.
(e.g., Canadian wheat classes), very small chemical var-
iations are sufficient enough to classify them accurately
(Mahesh et al. 2010).

12. If the most prominent wavelengths for classification are
identified, data processing time can be reduced drastically.

Despite its advantages, hyperspectral imaging also has
some constraints or disadvantages:

1. Hyperspectral imaging system is expensive when com-
pared to other image processing techniques.

2. Because the hyperspectral data are massive, the process
requires large capacity drives for data storage and high-
speed computers for data processing.

3. As many images are collected all along the spectral
range, this technique requires more time than traditional
digital imaging system.

4. Requires efficient and powerful correlation models to
understand the minor chemical constituents.

5. Development of online monitoring system is difficult as
data acquisition and analysis is time-consuming.

6. Imaging is affected by external environment like illumi-
nation, scattering, etc., hence produces poor signal-to-
noise ratio.

7. Spectral pre-processing techniques are required in order
to curtail the consequences of external factors like light
scattering, noises, etc.

8. Liquid samples are difficult to handle as the imaging is
affected by heterogeneity within the sample.

9. From analyst point of view, regulated calibration and pre-
cisemodel generation are needed as hyperspectral imaging
is an indirect analysis technique (ElMasry and Sun 2010).

10. Identification and detection of different objects within
the same image using spectral data is challenging unless
different objects have different absorption features.

11. Cannot detect microcompounds as accurately as GC and
HPLC.

Hyperspectral imaging is an effective technique, but this
system is highly influenced by various external factors like
variations in illumination system, noises in instrumentation, etc.

Applications of Hyperspectral Imaging for Food
and Agro Products

Hyperspectral imaging technique can be used to obtain spec-
trum of sample over a certain wavelength range. This spec-
trum delivers the complete chemical signature of the sample at
the pixel level. The meaningful information from the spectrum
can be obtained using different chemometric techniques. In
this section, hyperspectral imaging technique applications
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for food or agro products and infield agricultural operations
were summarized.

Food and Agro Products

Hyperspectral imaging technique was successfully applied to
solve various qualitative and quantitative problems for food
and agro products.

Xing et al. (2010) compared the SWIR hyperspectral im-
aging with Fourier-transformed near-infrared (FTIR) spectro-
photometer in the 1235–2450 nm wavelength range for
predicting the alpha-amylase activity in the individual wheat
kernels. The SWIR imaging system was used to acquire the
reflectance spectra, and FTIR was used to acquire absorbance
spectra of the same wheat kernels. Both SWIR and FTIR
spectra were pre-processed using area normalization, SG sec-
ond derivative and EMSC pre-processing techniques. The un-
processed SWIR hyperspectral imaging system gave similar
r2 and root mean square error (RMSE) values as that of the
FTIR imaging system. The SWIR hyperspectral imaging
when used along with SG second derivative pre-processing
technique gave the highest r2 value of 0.88 when compared
with any other combination of imaging system and pre-
processing technique.

McGoverin et al. (2011) investigated the viability of barley,
wheat and sorghum grains using NIR hyperspectral imaging.
Hyperspectral images of cereal grains were obtained in the
1000–2498 nm wavelength range. The acquired reflectance
spectra were transformed to pseudo-absorbance before apply-
ing the SNV data pre-processing technique. The PCA was
applied to this pre-processed data to identify and remove un-
wanted data points, and partial least square discriminant anal-
ysis (PLSDA) was conducted to discriminate the non-viable
from viable cereal grain samples. It was identified that the use
of PLSDA eliminated subjective assessment of the patterns in
the PCA score plots. To overcome this, PLSR was applied to
the dataset. It was identified that the PLSR model required
larger datasets to improve the viability prediction.

Bauriegel et al. (2011) applied hyperspectral imaging tech-
nique for the early identification of the Fusarium infection in
wheat. Hyperspectral images of wheat ear infected with
Fusarium were acquired when the wheat ears were still on
the plant in 400–1000 nm range. PCA was applied to differ-
entiate the infected and healthy wheat ear tissue spectra. The
healthy and diseased samples were successfully classified
with 87 % accuracy when the Spectral Angle Mapper image
analysis technique was applied to the data.

Ariana and Lu (2010) used hyperspectral imaging tech-
nique for identifying the surface defects of whole pickles.
Hyperspectral images of the pickles were acquired in the re-
flectance and transmittance mode in the 400–675 and 675–
1000 nm, respectively. The first three principal component
(PC) scores obtained by applying PCA were used to select

the most contributing factors for the discrimination of the
good and defective pickles. These PC scores contributed for
95 % of variation between the good and defective pickles.

Kamruzzaman et al. (2013) used NIR hyperspectral imag-
ing technique in the 900–1700 nm range for the discriminating
three types of lamb muscles (semitendinosus, longissimus
dorsi and psoas major). PCA technique was applied on the
hyperspectral data, and the six most prominent wavelengths
(934, 974, 1074, 1141, 1211 and 1308 nm) that show variation
between lamb muscles were selected. Using these wave-
lengths, the NIR hyperspectral imaging accurately (100 %)
discriminated the lamb muscles.

Cho et al. (2013) investigated the feasibility of hyperspectral
fluorescence imaging applied in 400–700 nm wavelength
range to identify the cuticle crack defects on cherry tomatoes.
Defective cherry tomatoes with existing cracks were harvested
from the field and used for acquiring fluorescence emission
spectra using pushbroom imaging system. PCA was applied
on the spectra, and it was identified that PC1 through PC4
loadings had contributed to 99.21 % of variation between
good and defective areas of tomatoes. The wavelengths 503,
670 and 689 nm were determined to be the best wavelengths
for detection of defective areas on tomato surface.

Kong et al. (2004) used hyperspectral fluorescence imaging
for the detection of skin tumours on poultry carcasses. Sixty-
five spectral bands were acquired in the visible region (425–
711 nm) to construct the hypercube. PCA was applied for re-
ducing the dimensionality of the data, and later, fuzzy hierarchy
technique was applied for identifying the skin tumours on the
poultry skin. Fuzzy hierarchy technique in combination with
hyperspectral imaging system was 82 % accurate in the detec-
tion of the skin tumour regions on the carcass skin.

Cogdill et al. (2004) evaluated the quality of single corn
kernels using NIR hyperspectral imaging in the Vis-NIR re-
gion. Vis-NIR absorbance spectra were obtained in the wave-
length range of 750–1090 nm and pre-processed using SNV,
detrending (DET), MSC and wavelength selection by generic
algorithm techniques. PLSR and PCRmodels were developed
using Vis-NIR absorbance spectra to analyse the moisture and
oil content. Results showed the cross-validation standard error
of 1.20 % for moisture and 1.38 % for oil content.

Pierna et al. (2006) used hyperspectral imaging in NIR
range to develop a procedure to screen compound animal
feeds. The SVM model was used to generate discriminant
equations using hyperspectral images. Classification tree
method was used to identify the composition of the sample.
Higher classification accuracy (99–100 %) was obtained in
classifying the composition of the sample.

Zhang et al. (2007) used NIR hyperspectral imaging to
identify the wheat kernels infected with three storage fungi
(Aspergillus glaucus, Aspergillus niger van Tieghem and
Penicillium spp.). Hyperspectral images were acquired in the
NIR range of 1000–1600 nm; PCA was used to reduce data
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and extract the most useful wavelengths. Classification model
was developed using SVM, and classification accuracies of
100, 87.2, 92.9 and 99.3 % were obtained for identification
of healthy, A. glaucus, A. niger van Tieghem and Penicillium
spp.-infected samples, respectively.

Mahesh et al. (2008) used NIR hyperspectral imaging to
classify Western Canadian wheat classes. NIR reflectance
spectra were obtained in 960–1700 nm wavelength range at
10-nm intervals. Statistical and ANN models were developed
using NIR reflectance spectra, and classification accuracies
greater than 94 and 90 % were obtained for statistical and
ANN classifier, respectively.

Choudhary et al. (2009) identified wheat classes using NIR
hyperspectral imaging. NIR reflectance spectra were obtained
in the wavelength range of 960–1700 nm. Wavelet features of
the bulk sample images were extracted and used to develop
LDA, QDA and BPNNmodels. Wheat classes were classified
with accuracy of 99.1 and 92.1 % using LDA and BPNN
models, respectively.

Singh et al. (2009) used NIR hyperspectral imaging for
detection of insect infestation in wheat. Hyperspectral images
of single wheat kernels healthy and infested with Sitophilus
oryzae (L.), Rhyzopertha dominica (F.) and Cryptolestes
ferrugineus (Stephens) were acquired in the wavelength range
of 1000–1600 nm. Multivariate image analysis (MVI) was
used to reduce the dimensions of hyperspectral data.
Spectral features (statistical and histogram) were used to de-
velop LDA and QDA models. The infested and uninfested
wheat kernels were identified with the classification accura-
cies in the range of 85–100 %.

Williams et al. (2009) classified the maize kernels based
on the hardness using two IR hyperspectral imaging sys-
tems. NIR hyperspectral images were acquired in the wave-
length range of 960–1662 nm, and SWIR hyperspectral
images were acquired in the wavelength range of 1000–
2498 nm. PCA was used to remove the background, bad
pixels and shading effects from absorbance images.
PLSDA models were developed using PC2 of SWIR
hyperspectral images and PC3 of NIR hyperspectral im-
ages. The developed models gave better differences be-
tween glassy and floury endosperms of maize kernels.
PLSDA model gave a root mean square error of prediction
of 0.18, 0.18 and 0.29 for 12-kernel, 24-kernel NIR
hyperspectral image and SWIR image, respectively.

Singh et al. (2010) used NIR hyperspectral imaging and
conventional digital imaging to identify the midge-damaged
wheat kernels. LDA, QDA and Mahalanobis models were
developed using the statistical and histogram features of
hyperspectral images in the wavelength range of 700–
1100 nm. The highest classification accuracies of 95.3–
99.3 % were obtained to classify healthy and midge-
damaged wheat kernels when histogram features were com-
bined with ten colour image features.

Pierna et al. (2012) conducted two separate case studies
using NIR hyperspectral imaging system and chemometric
techniques for the detection of impurities in cereals and con-
tamination of plants by pathogens. For the identification of the
impurities in cereals, hyperspectral images of wheat, spelt,
barley and rapeseed in combination with various impurities
like the cellulose waste (wood and straw), animal contami-
nants (insects) and other contaminants (paintings, plastics
and stones) using pushbroom NIR hyperspectral camera in
the 1100–2400 nm spectral range. Quadratic SVM algorithm
successfully differentiated the contaminants from the cereal
grains with greater than 92 % accuracy. For discriminating
the plants into tolerant and susceptible base in the presence
of nematode cysts on the sugar beet plants, NIR hyperspectral
images of the plant roots with varying numbers of cysts were
acquired using whiskbroom NIR hyperspectral camera in the
900–1700 nm range. The spectra were pre-processed using
SNVand second derivative SG techniques. On an average of
40 tolerant and 69 susceptible plants whose cysts were iden-
tified under microscope, the NIR hyperspectral imaging sys-
tem with SVM discriminant technique correctly identified 21
tolerant and susceptible plants.

Hyperspectral imaging systemwas successful in qualitative
and quantitative analysis of various food and agricultural
products. Each study used different combination of imaging
mode, imaging system, imaging wavelength range and che-
mometric technique. Various applications of hyperspectral im-
aging for food and agro products were summarized in
Tables 1, 2 and 3. A separate section (Tables 4 and 5) was
given to summarize the applications of hyperspectral imaging
system for real situations where the hyperspectral imaging
system and its models can be applied to the real situations
directly or with minor modifications.

Agriculture and Agricultural Operations

Hyperspectral imaging was very successful for solving vari-
ous problems in the field of agriculture. This technique was
applied for both infield and laboratory studies. The fact that
banana skin colour changes from green to yellow based on its
maturity was used to develop a mobile phone-based two-di-
mensional spectral image analysis.

Du et al. (2013) investigated the carbonate content in soil
samples using FTIR photoacoustic spectroscopy (FTIR-PAS)
in the mid-infrared range (2500–20,000 nm). PCA, PLSR and
generalized regression NN models were developed and tested
to predict the soil carbonate content. Out of the three chemo-
metric techniques, the generalized regression NN performed
gave better prediction of the carbonate content results with
validation error percentage or the root mean square error per-
centage of 1.21%, determination coefficient of 0.899 and ratio
of standard deviation to prediction error of 3.83.
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Kemps et al. (2010) investigated the application of visible
near-infrared (Vis-NIR) reflectance spectroscopy for the as-
sessment of various chemical parameters of grapes during

the growing season. The Vis-NIR reflectance spectra of the
intact grapes of four varieties were acquired using spectropho-
tometer in the visible and near-infrared range of 320–1660 nm

Table 4 Application of hyperspectral imaging technique for the real situation problems of food and agro products

Mode System Wavelength
(nm)

Product Factor assessed Chemometrics Reference

Reflectance Pushbroom 400–1000 Cucumber Colour PCA Ariana and Lu (2010)

Reflectance Pushbroom 900–1700 Lamb Adulteration PCA Kamruzzaman
et al. (2013)

Reflectance Pushbroom 400–1000 Wheat Fusarium PCA Bauriegel et al. (2011)

Reflectance Pushbroom 1000–2498 Maize Hardness PCA Williams et al. (2009)

Reflectance Pushbroom 400–1000 packaging films
for spinach

Shelf life PCA Lara et al. (2013)

Reflectance Staring array 450–980 Apple Total soluble solids, titrable
acidity, firmness, chlorophyll,
ascorbic acid, carotenoids,
total phenols

PCA, PLSR Beghi et al. (2013)

Reflectance Staring array 1100–2500 Ground meat Fat, moisture content, protein PCA, PLSR Tøgersen et al. (2003)

Reflectance Staring array 400–1700 Ground beef Fat content PLSR Anderson and Walker
(2003)

Reflectance Staring array 308–1704 Semolina pasta Moisture content PLSR De Temmerman
et al. (2007)

Reflectance Pushbroom 500–1000 Blueberry Firmness PLSR Leiva-Valenzuela
et al. (2012)

Reflectance Pushbroom 500–1000 Apple Firmness PLSR Mendoza et al.
(2011)

Reflectance Pushbroom 914–1715 Grape seed Maturity PLSR Rodríguez-Pulido
et al. (2013)

Reflectance Pushbroom 900–1700 Beef Colour, pH, tenderness PLSR ElMasry et al. (2012b)

Reflectance Pushbroom 900–1700 Lamb Water PLSR Kamruzzaman
et al. (2012)

Reflectance Whiskbroom 1100–2500 Cereals Detecting impurities SVM Pierna et al. (2012)

Absorbance Staring array 300–1100 Goatfish Freeze damage PLSDA Ottavian et al.
(2014)

Absorbance Pushbroom 770–1070 Apple Sugar content PCA, NN Steinmetz et al.
(1999)

Absorbance Staring array 1440–1810 Ground meat Fat, water, protein MLR Tøgersen et al.
(1999)

Fluorescence Pushbroom 421–700 Various surface
materials

Biofilm on surface
materials

PCA Jun et al. (2010)

Fluorescence Pushbroom 400–700 Tomato Defects PCA Cho et al. (2013)

Fluorescence Pushbroom 425–710 Chicken Tumour Fuzzy
hierarchy

Kong et al. (2004)

Fluorescence Pushbroom 425–710 Chicken Tumour LDA Kim et al. (2010)

Transmittance Pushbroom 750–2500 Olive oils Acidity value, bitterness,
oleic fatty acid, linoleic
fatty acid

PLSR Marquez et al.
(2005)

Transmittance/reflectance Pushbroom 450–1000 Cucumber Firmness, colour, internal
defects

PLS-DA Lu and Ariana
(2013)

Interactance Pushbroom 306–1150 Stonefruit Total soluble solids PLSR Golic and Walsh
(2006)

Interactance Pushbroom 820–1040 Vacuum packed
ham

Water, fat, salt PLSR Gou et al. (2013)
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during the growing season. Predictive models were developed
using PLSR for the prediction of anthocyanin, polyphenol,
sugar and density of the intact grapes. The anthocyanin
content remained fairly unchanged, and hence, it was not
possible to estimate the anthocyanin content. The
polyphenols and density were accurately predicted using this
technique, but the prediction of sugar content was possible as
the grapes also shown variation in the colour as they mature.

Suzuki et al. (2008) presented a study to determine various
chemical properties like protein, fibre, calcium, phosphorus,
magnesium and potassium using hyperspectral imaging sys-
tem in the 360–1010 nm wavelength range. A staring array
imaging system was used to acquire the images of the grass
field in Aomori, Japan. Various samples of grass were collect-
ed from the same area of imaging for the chemical analysis.
The MLR, multilayer NN and PLSR techniques were used to
develop the prediction models to predict the chemical compo-
nents of the grass. Cross-validation results had suggested that
the PLSR model gave the higher accuracy when compared to
the MLR and multilayer NN.

Suzuki et al. (2012) used hyperspectral imaging system for
mapping the spatial distribution of plant species or species
groups and herbage mass of the grass pastures. A field-scale
and small-scale area scan imaging systems was used to con-
duct this study. Images were acquired in the reflectance mode
in the Vis-NIR range of 360–1010 nm. LDA was used to

classify in to three plant species or species groups, and
PLSR was used to estimate the herbage mass of the grass
pasture. Using LDA, the overall success rate for the discrim-
ination of plant species was 91.6%, and the herbage mass was
accurately estimated with a R2 of 0.60.

Pérez-Marín et al. (2009) investigated the ability of spec-
troscopy for the determination of major quality parameters
like soluble solid content, flesh firmness, fruit weight and fruit
diameter of nectarines using one instrument infield during
ripening of fruits on tree and other instrument during post-
harvest storage. The microelectromechanical system
(MEMS) spectrometer was used in 1600–2400 nm wave-
length range for the measurement of quality parameters in
the field study, and a diode array Vis-NIR spectrophotometer
was used in 400–1700 nm range to determine these qualities
during post-harvest storage. Both the instruments gave good
precision for the determination of soluble solid content (r2 of
0.89) and firmness (r2 of 0.84–0.86). The diode array Vis-NIR
spectrophotometer gave good prediction results of fruit weight
(r2 of 0.98) and diameter (r2 of 0.75).

Gracia and León (2011) investigated the ability of NIR
technology for the assessment of olive oil and moisture con-
tent of olive fruits both on tree infield and in laboratory con-
ditions. Prediction models were developed using PLSR sepa-
rately for each trial. The laboratory test gave better results
when compared to the infield test. The prediction model

Table 5 Application of hyperspectral imaging technique for infield agricultural and other operations

Mode System Wavelength (nm) Product Factor assessed Chemometrics Reference

Reflectance Staring array 320–1660 Intact grapes Anthocyanin, polyphenol,
sugar, density

PLSR Kemps et al. (2010)

Reflectance Staring array 2500–20,000 Soil Carbonate content PCA, NN Du et al. (2013)

Reflectance Pushbroom 360–1010 Grass Protein, fibre, calcium,
phosphorus, magnesium,
potassium

MLR, MLNN, PLSR Suzuki et al. (2008a)

Reflectance Pushbroom 360–1010 Grass Total digestible nutrients,
crude protein

MLR Suzuki et al. (2008b)

Reflectance Pushbroom 369–1042 Citrus tree Identify fruits LDA Okamoto and Lee (2009)

Reflectance Staring array 430–830 Wheat field Stress mapping PCA Lelong et al. (1998)

Reflectance Pushbroom 360–1010 Soybean field Weed detection PCA, LDA, NN Suzuki et al. (2008c)

Reflectance Pushbroom 360-1010 Grass pasture Spatial distribution of species
group, herbage mass

LDA Suzuki et al. (2012)

Reflectance Staring array 1600–2400/
400–1700

Nectarines Soluble solid content, flesh
firmness, fruit weight and
diameter

MPLSR Pérez-Marín et al. (2009)

Reflectance Staring array 400–1700 Nectarines Irrigation effect on storage PLSDA Pérez-Marín et al. (2011)

Reflectance Pushbroom 400–1100 Wheat Leaf nitrogen content PLSR Vigneau et al. (2011)

Absorbance/
reflectance

Pushbroom 400–1690 Compound feed Protein, fibre, sunflower
meal, mineral-vitamin
premix

MPLSR Fernández-Ahumada
et al. (2008)

Absorbance Staring array 1100–2300 Olive fruits Oil content, moisture content PLSR Gracia and León (2011)

Transmittance Staring array 400–1100 Apple Fruit flesh firmness and
soluble solid content

PLSDA Zude et al. (2006)
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accurately predicted the oil content with r = 0.89 and moisture
content with r = 0.88.

Pérez-Marín et al. (2011) evaluated the ability of NIR sys-
tem for the classification of nectarines by their internal quality
during storage as a function of the irrigation methods during
the growing stage and post-harvest storage period. The study
was conducted using one instrument infield during ripening of
fruits on tree and another instrument during post-harvest stor-
age. Classification models were developed using PLSDA
technique to classify the nectarines based on their internal
quality. The PLSDA classification model accurately classified
the samples with 57–84 % accuracy based on the irrigation
method during the growing period.

Vigneau et al. (2011) investigate the use of hyperspectral
imaging system for the prediction of leaf nitrogen content in
wheat both infield and greenhouse. The entire study was con-
ducted by acquiring the hyperspectral images of wheat leaves
in the 400–1000 nm range. In the first study, the PLSR model
was calibrated to estimate the nitrogen content of the flat
leaves using the reflectance spectra (R2 0.903). Later, this
model was used to predict the nitrogen content of the leaves
both infield (R2 = 0.881) and greenhouse (0.889).

Conclusions

Hyperspectral imaging has proven to be a highly accurate
technique for quality assessment of food and agricultural
products as the data acquired using this technique contain
adequate information about the properties of the sample.
Depending on the equipment availability and the type of study
it is intended for, hyperspectral data can be acquired using
different imaging modes, systems and wavelength ranges.
The hyperspectral data can be affected by various environ-
ment and equipment factors. Spectral pre-processing tech-
niques are generally used alone or in combinations to reduce
these effects. As the hyperspectral imaging provides massive
amount of data, exploratory data analysis techniques like PCA
can be used to extract the valuable data subsets that contain
most of the information. Hyperspectral data can be explored
for qualitative properties of the sample using discriminant
analysis techniques (QDA, LDA and PLS-DA) or for quanti-
tative properties using regression analysis techniques (PCR
and PLSR) or for both using advance chemometric techniques
(SVM, NB and ANN).
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