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Abstract Microbial contamination during fish flesh spoilage
process can easily induce food-borne outbreaks and consumer
health problems. Hyperspectral imaging in the spectral range
of 400–1000 nm was developed to measure the Escherichia
coli (E. coli) loads in grass carp fish for evaluation and
visualization of microbial spoilage. Partial least square regres-
sion (PLSR) model was conducted to build prediction models
between the spectral data and the reference E. coli loads
estimated by classical microbiological plating method. The
PLSR model based on full wavelengths showed good perfor-
mance on predicting E. coli loads with the residual predictive
deviation (RPD) of 5.47 and determination coefficient of
R2

P=0.880. Six characteristic wavelengths were selected by
the weighted regression coefficients from PLSR analysis and
used to simplify the models. The simplified PLSR and multi-
ple linear regression (MLR) models also presented good pre-
diction capability. The better simplified MLR model (RPD=
5.22 and R2

P=0.870) was used to transfer each pixel in the
image for visualizing the spatial distribution of E. coli loads.
The results demonstrated that hyperspectral imaging tech-
nique with multivariate analysis has the potential to rapidly
and non-invasively quantify and visualize the E. coli loads in
grass carp fish flesh during the spoilage process.
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Introduction

In recent years, food quality and safety control has received
special emphasis and great social concern from the government
and the public.Many effectivemeasures and techniques such as
drying (Sun and Byrne 1998; Sun and Woods 1997; Delgado
and Sun 2002a, b), refrigeration (Sun 1997; Sun et al. 1996;
McDonald and Sun 2001; Kiani and Sun, 2011) and edible
coating (Xu et al. 2001) have been taken ensure food quality
and safety. On the other hand, with the rapid development of
camera technology and the processing power of computer
hardware, imaging techniques such as computer vision
(Jackman et al. 2008, 2009; Sun 2004; Valous et al. 2009;
Wang and Sun 2002) have particular advantages in rapid,
non-contact and non-destructive detection of food quality and
safety. Hyperspectral imaging (HSI) originated from remote
sensing, as a promising imaging technique shows its superiority
and has recently emerged as a powerful analytical tool for rapid
and non-destructive quality and safety analysis and evaluation
of food (Feng and Sun 2012; Gowen et al. 2007; Sun 2010),
fruit and vegetables (Lorente et al. 2012), meat (Barbin et al.
2012; Elmasry et al. 2011a, b, 2012a, b; Kamruzzaman et al.
2011, 2012), agriculture and agro-food product (Liu et al. 2013)
and fish and seafood (Cheng and Sun 2014; Menesatti et al.
2010). HSI integrates conventional imaging and spectroscopy
technology into one system to achieve both spatial and spectral
information from an object. The obtained hyperspectral images
normally called hypercubes (x, y and λ) characterize three-
dimensional (3-D) data cubes, which are composed of hundreds
of contiguous wavebands for each spatial position of a target
studied (Sun 2010). Accordingly, the spatial-feature enables
characterization of complex heterogeneous samples and image
texture, while the spectral-feature allows for the identification
of internal chemical information (Gowen et al. 2007).

It is well-known that fish is a kind of muscle food vulnerable
to microbial contamination. Microbial contamination can easily
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cause food-borne outbreaks and consumer health problems
(Siripatrawan et al. 2011).Escherichia coli (E. coli) is a common
bacteriumwith the characteristics of rod-shaped, Gram-negative,
facultatively anaerobic and non-spore forming (Cassin et al.
1998). E. coli O157:H7 is an enteric bacterium that has been
implicated in food- and water-borne human illnesses worldwide,
including bloody diarrhoea, hemolytic uremic syndrome and
hemorrhagic colitis (Cassin et al. 1998). The current microbial
detection methods commonly include the culture-based (Yeni
et al. 2014), immunology-based (Iqbal et al. 2000) and polymer-
ase chain reaction-based method (Nugen and Baeumner 2008).
However, these techniques are generally time-consuming, labo-
rious, destructive and invasive and require complicated sample
preprocessing, which can lead to great difficulty for real-time and
on-line monitoring in food manufacturing. HSI is capable of
solving the problems mentioned above and has been proven to
be feasible and successful for quality and safety evaluation of
fish such as grass carp (Ctenopharyngodon idella) depending on
some significant parameters mainly related to colour (Cheng
et al. 2014a), textural firmness (Cheng et al. 2014b), total volatile
basic nitrogen (TVB-N) value (Cheng et al. 2014c) and freshness
(Cheng et al. 2013). On the other hand, some studies were also
conducted on the potential of using hyperspectral imaging tech-
nique for evaluating E. coli contamination in pork meat (Tao
et al. 2012; Tao and Peng 2014) and packaged fresh spinach
(Siripatrawanet al. 2011), detectingShiga toxin-producingE. coli
serogroups on rainbow agar (Windham et al. 2013) and differ-
entiating colonies of non-O157 Shiga-toxin producing E. coli
serogroups on spread plates (Yoon et al. 2013) and on agarmedia
(Windham et al. 2012). Although the results available in the
above-mentioned studies proved that HSI has the potential for
the detection of E. coli loads, the models established cannot be
used to predict the bacterial contamination in fish due to the fact
that fish flesh has its own distinct connective tissue and chemical
components such as the special protein, fatty acids and
astaxanthin contents, which to some extent affect the absorbance
of substances and the selection of characteristic wavelengths.
Further study is thus needed for detecting and quantifying E. coli
loads in fish flesh using HSI technique.

Therefore, the major objective of this study was to inves-
tigate the potentiality and suitability of HSI in the spectral
range of 400–1000 nm for the determination and visualization
of E. coli loads in fish flesh during the spoilage process with
multivariate analysis.

Material and Methods

Fish Samples Preparation

Fifteen fresh grass carps from the same batch with similar age
of three months, approximately weight of 1.5 kg, and similar
feeding environment from the same freshwater aquaculture

ponds were purchased from a local aquatic products market in
Guangzhou, China, and directly transported to the laboratory
alive in water within 15 min. Upon arrival, the fish samples
were stunned by a sharp blow to the head with a wooden stick
and then gill cutting with a knife. The internal organs were
removed along with bloodletting from the belly location of
grass carp. Afterwards, they were instantly beheaded, filleted,
skinned and washed with cold water. Thirty fish fillets each
with similar size and weight were obtained. In order to acquire
more fish samples for further building robust and reliable
prediction models, the fresh fillets were immediately subsam-
pled into a rectangular shape with similar size of 3.0×3.0×
1.0 cm (length×width×thickness). Consequently, a total of 150
subsamples of fish fillets were obtained from different locations
of the fish fillets. For the purpose of assembling a practical
range of E. coli loads for indication of bacterial contamination
degree from freshness to spoilage (inedible or unacceptable), all
the subsamples were labelled and packaged into the sealed
plastic bags and randomly divided into four groups. Among
them, three groups named G1, G2 and G3 had 40 subsamples,
respectively, and the fourth group (G4) had 30 subsamples.
Then the four groups were sequentially subjected to postmor-
tem spoilage during cold storage at 4±1 °C for 0, 3, 6 and
9 days in a lab refrigerator (Haier Company, Qingdao, China)
for further acquisition of hyperspectral images. The measure-
ment of E. coli loads by traditional standard plate count method
was conducted according to the previous study reported by Tao
et al. (2012). Among the 150 subsamples, two thirds of the
samples (100 subsamples) including 27G1, 27G2, 26G3 and
20G4 were used as the calibration set and the remaining one
third samples (50 subsamples) consisting of 13G1, 13G2, 14G3
and 10G4 were utilized as the prediction set.

Hyperspectral Imaging System and Image Acquisition

A laboratory HSI system in a reflectance model was assem-
bled to acquire hyperspectral images of grass carp fillets. The
system consisted of an imaging spectrograph, a charge-
coupled device (CCD) camera, an illumination system and a
computer control system, and the detailed description of the
system is available in the literature (Cheng et al. 2014b).

For image acquisition, based upon the cold storage condi-
tions, at 3-day intervals, each group of subsamples were taken
from the lab refrigerator and placed on the moving platform
and then transfered to the field of the view of the camera to be
scanned line by line for acquisition of hyperspectral images.
Accordingly, a total of 150 three-dimensional (3-D)
hyperspectral images were collected, documented and stored
in a Band Interleaved by Line (BIL) format. In order to
decrease the effects of illumination and detector sensitivity
as well as the differences in camera and physical configuration
of the imaging system, the raw acquired hyperspectral images
(R0) needed to be calibrated into the reflectance mode with
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two extra images for standard white (W) and black (B) refer-
ence images. The white reference image was acquired using a
uniform Teflon white calibration tile (∼100 % reflectance).
The black reference image (∼0% reflectance) was obtained by
fully covering the camera lens with its black cap. The cali-
brated image (RC) was then calculated by the following equa-
tion:

RC ¼ R0−B
W−B

� 100% ð1Þ

After acquisition and calibration of the hyperspectral im-
ages, the regions of interests (ROIs) were isolated from the
fish subsamples, where E. coli loads were determined by the
reference plate count method. The average spectral data within
ROIs were manually extracted using the software ENVI ver-
sion 4.8 (ITT Visual Information Solutions, Boulder, CO,
USA). Then, the extracted spectral information and the corre-
sponding traditional measured E. coli loads were used to
conduct the quantitative analysis.

Multivariate Data Analysis

PLSR Analysis

The large spectral data extracted from the hyperspectral
images normally include amounts of effective and valuable
information and unavoidably some redundant and interfer-
ential information that affects the prediction performance.
In order to improve the predictive robustness and reliabil-
ity of models and reduce the variability between samples
due to scattering and optical interference possibly caused
by water movement during cold storage, in this study, the
common spectral preprocessing method of multiplicative
scatter correction (MSC) was used to remove the undesir-
able scatter effect from the data matrix prior to data model-
ling (Jin et al. 2011). After spectral preprocessing, PLSR as
one of the most widely used algorithms was employed to
establish the quantitive analysis for spectral data model-
ling. This regression analysis is useful to solve the colin-
earity problem and difficulty due to the number of vari-
ables being more than the number of samples, and the
detailed description of PLSR was reported in the previous
study (Mehmood et al. 2012). In this study, PLSR found a
set of independent variables (wavelengths), called the X-
matrix (100×381 and 50×381) in calibration and predic-
tion model, and the dependent variable (E. coli loads),
named the corresponding Y-matrix (100×1 and 50×1).

MLR Analysis

MLR is another method to establish the quantitative relation-
ship between two or more explanatory independent variables

and one dependent variable by fitting a linear equation to the
observed data (Wu et al. 2012). The approach is competent
when the number of samples is more than the number of
variables. In this study, the number of variables was much
greater than the number of samples (381 vs. 100 or 50).
Therefore, after selection of the most important wavelengths,
the application ofMLR algorithm would be useful to establish
a better model. The analyses of PLSR and MLR were carried
out by the Unscrambler chemometric software (Unscrambler
version 9.7, CAMO, Trondheim, Norway).

Characteristic Wavelengths Selection

Based on the above multivariate data analysis using the full
spectral range of 400–1000nm,multicolinearity among con-
tiguouswavebands andhighdimensionality of hyperspectral
images can easily make data processing time-consuming
with low computation speed. Variable selection can improve
model performance and characteristics and facilitate the es-
tablishment of consistent hyperspectral imaging systems
with simple structure, short acquisition time and low cost
for real-time applications (Liu et al. 2014). Thus, it is inter-
esting to allocate a set of optimal wavelengths that carry the
most valuable information and may be equally or more effi-
cient than the full wavelength range for providing satisfacto-
ryprediction results. Somefrequentlyusedvariable selection
methods such as genetic algorithm (Arakawa et al. 2011),
PLS regression coefficients and stepwise regression
(Mehmood et al. 2012), successive projections algorithm
(Ghasemi-Varnamkhasti et al. 2012) and uninformative var-
iable elimination (Balabin and Smirnov 2011) have been
developed. In this study, the most sensitive wavelengths
indicatingE. coli contaminationwere identified and selected
by calculating the weighted regression coefficients (WRC)
method also called β-coefficients (BW) from PLSR analysis
with the full range of spectra. The wavelengths located at the
highest and the lowest values of weighted regression coeffi-
cients were affirmed as the optimal wavelengths for further
prediction ofE. coli loads (Kamruzzaman et al. 2012).On the
basis of the selected characteristic wavelengths, the simpli-
fied PLSR and MLR models also named WRC-PLSR and
WRC-MLR models were generated and compared. The im-
plementationprocedure for variable selectionwascarriedout
in theUnscrambler chemometric software (Unscrambler ver-
sion 9.7, CAMO, Trondheim, Norway).

Model Validation and Evaluation

Model validation is important for weighing the calibration
models in multivariate data analysis. Validation refers to com-
paring the model predictions with a real-world dataset, for
evaluation of its prediction accuracy. In this study, full cross-
validation also called leave-one-out cross-validation was used
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to validate the established calibration models. The process of
this technique was conducted by removing one sample or a
subset of samples from the calibration data set and a new
PLSRmodel was then built based on the remaining calibration
samples (ElMasry and Wold 2008). In addition, the optimal
number of latent variables (LV) from PLSR analysis was
determined by the minimum value of predicted residual error
sum of squares. The performance of the established models
was commonly evaluated by calculating the residual predic-
tive deviation (RPD), the coefficients of determination (R2)
and root mean square errors in calibration (R2C, RMSEC),
cross-validation (R2

CV, RMSECV) and prediction (R2
P,

RMSEP), respectively. Generally, an admirable and compara-
ble model should have higher values of RPD, R2C, R

2
CV and

R2
P and lower values of RMSEC, RMSECV and RMSEP as

well as a small difference between them. It is always expected
to acquire RMSEs as close as zero and R2 as close as one.
According to Williams (2001), specifically, the value of R2 of
more than 0.90 shows excellent performance and lower than
0.82 means poor performance. As to RPD, RPD lower than
1.5 indicates the model established is not acceptable and larger
than 3 means the model is satisfactory.

Visualization of Bacterial Distribution

In order to clearly observe the degree of bacterial contamina-
tion in the fish flesh from sample to sample at different
spoilage stages, visualization of E. coli loads distribution
map is required instead of the measurement of the E. coli
loads for the whole fish fillet. In the visualization process,
each pixel in the images has a spectral profile with its spatial
position. This was carried out by calculating the dot product
between spectrum of each pixel in the image and the regres-
sion coefficients achieved from the simplified model, which
was used to transfer and visualize every pixel of the
hyperspectral images into the chemical images for the exhibi-
tion of E. coli loads distribution of the tested fish fillets. The

visualization procedure was programmed in the software
Matlab version 2010a (The Mathworks Inc., MA, USA).
Figure 1 shows the main steps of quantification analysis of
E. coli loads and visualization of bacterial contamination in
grass carp fish fillets by hyperspectral imaging technique.

Results and Discussion

Spectra of Fish Fillets

The average reflectance spectral information of the tested
grass carp fillets with three differentE. coli loads was obtained
and is shown in Fig. 2. In this study, the measuredE. coli loads
of grass carp fillet varied from 4.11 to 10.02 log10 CFU/g,
providing a reasonable contamination range of fish flesh from
freshness to spoilage. As can be seen in Fig. 2, the spectral
information obtained with the bacterial loads of 4.24 log10
CFU/g and 6.08 log10 CFU/g showed similar trends andminor
fluctuations in the spectral range of 400–1000 nm. Compared
with the former spectral information, the spectra obtained with
the bacterial loads of 8.48 log10 CFU/g showed great differ-
ence on the spectral longitudinal shift. It has been demonstrat-
ed that the increase of E. coli loads to some extent affected the
spectral information of fish flesh. This phenomenon was
probably ascribed to variations of chemical components of
fish flesh induced by bacterial activities during cold storage.

From another perspective, the overtone and combination
vibrations of the molecular chemical bonds related to O–H,
C–H, C–O, N–H and others are commonly used to elucidate
the variations of the spectra. As shown in Fig. 2, a conspicu-
ous and significant absorption peak was located at about
550 nm, possibly associated with the absorption of pigments
such as astaxanthin and canthaxanthin in fish muscle (Kimiya
et al. 2013). Another absorption peak located near to 970 nm
was mainly related to the second overtone stretching of O–H
by water (Cheng et al. 2014a).

Fig. 1 Main steps of
determination of E. coli loads in
grass carp fillet by hyperspectral
imaging
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PLSR Analysis Based on Full Wavelengths

The performance of PLSR models established in the calibra-
tion, cross-validation and prediction processes based on the
full spectral range of 400–1000 nm was obtained as shown in
Table 1. As can be seen in Table 1, regardless of the spectral
data being preprocessed, the PLSR models showed a good
performance with R2>0.87 and RPD>5.00. In addition, the
PLSR model established using the spectral data preprocessed
byMSCmethod presented a little better performance than that
obtained using the raw spectra with an increase by 1.7, 0.6 and
0.9 % in R2

C, R
2
CV and R2P and a decrease by 7.1, 2.6 and

1.5 % in RMSEs, respectively. Also, the value of RPD was
increased from 5.38 to 5.47, which meant that using the
preprocessing method of MSC to some extent improved the
model performance. Figure 3 shows the prediction capability
(R2

P=0.880, RMSEP=0.262 log10 CFU/g and RPD=5.47) of
MSC-PLSR model between the actual measured and

predicted values of E. coli loads, which demonstrated that
the PLSR model was satisfactory for predicting E. coli loads.
Also, it was confirmed that the HSI using full spectral range
(400–1000 nm) was suitable for use in determining and quan-
tifying the E. coli contamination of grass carp fillet during
cold storage in a rapid and non-invasive way. Similarly, Tao
et al. (2012) used the hyperspectral scattering technique in the
spectral range of 400–1100 nm with Lorentzian distribution
function for predicting E. coli contamination of pork meat, but
poor validation result (R2

CV=0.707) was acquired. After-
wards, in order to improve the prediction capability, Tao and
Peng (2014) used the same technique with Gompertz function
for determining pork meat E. coli contamination, and an
increase of R2

CV by 0.174 was obtained. Another study was
reported by Siripatrawan et al. (2011) who utilized the
hyperspectral reflectance technique in the spectral range of
400–1000 nmwith principal component analysis and artificial
neural network analysis for rapid detection of E. coli

Fig. 2 Average spectral
reflectance features of the tested
grass carp fillets during cold
storage

Table 1 Performances of models for quantification of Escherichia coli loads in grass carp fillet by hyperspectral imaging

Model Variable number LVs Calibration Cross-validation Prediction RPD

R2C RMSEC R2CV RMSECV R2
P RMSEP

PLSR 381 7 0.883 0.255 0.880 0.261 0.872 0.266 5.38

MSC-PLSR 381 7 0.899 0.237 0.874 0.268 0.880 0.262 5.47

WRC-PLSR 6 4 0.875 0.263 0.856 0.286 0.844 0.297 4.81

WRC-MLR 6 / 0.887 0.246 0.868 0.270 0.870 0.274 5.22

/ MLR algorithm cannot provide the latent variables

RMSEC root-mean-square errors estimated by calibration, RMSECV root-mean-square errors estimated by cross-validation, RMSEP root-mean-square
errors estimated by prediction, RPD residual predictive deviation, PLSR partial least squares regression, MSC multiplicative scatter correction, MLR
multiple linear regression, WRC weighted regression coefficients
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contamination in packaged fresh spinach, and excellent
performance was obtained with R2

P=0.97. Likewise, HSI
technique with multivariate analysis has been successfully
developed to evaluate microbial contaminations. For
example, Feng and Sun (2013a) used the near-infrared HSI
(910–1700 nm) for the determination of total viable count
(TVC) in chicken breast fillets. The PLSR model established
using the absorbance spectral data yielded a good perfor-
mance with RPD of 2.60, R2CV of 0.865 and RMSECV of
0.57 log10 CFU/g. Later, Feng and Sun (2013b) used the same
technique with PLSR analysis for the determination of
Pseudomonas loads in chicken fillets, but a relatively poor
prediction result was obtained with R2

P of 0.656 and RMSEP
of 0.80 log10 CFU/g, respectively. In another study, the po-
tential of time series-hyperspectral imaging in visible and near
infrared region (400–1700 nm) was used for the determination
of surface total viable count (TVC) of salmon flesh during
spoilage process. The least-squares support vector machines
(LS-SVM)model showed an excellent performance with RPD

of 5.09, R2P of 0.961 and RMSEP of 0.290 log10 CFU/g (Wu
and Sun 2013). Compared with the current study, although all
of these investigations have proved the potentiality of
hyperspectral imaging technique for determining bacterial
loads, the prediction capabilities are different mainly due to
the used spectral range and multivariable analysis methods
used. Therefore, in order to acquire a better prediction perfor-
mance, more efforts should be made on applying different
spectral region and developing effective analysis algorithms.

PLSR and MLR Analysis Based on Selected Wavelengths

On the basis of the full wavelengths in the spectral range of
400–1000 nm, although it has been proven the feasibility of
the HSI system for potential determination of E. coli loads in
fish flesh, it is a little difficult to develop the real-time and on-
line detection system for such an application in the industry
due to the huge data analysis required and computer hardware
limitations. In order to solve the problems and increase the
computing speed for optimizing the structure of imaging
detection system and satisfy the real-time inspection, the
WRC from PLSR model analysis in this study was used to
select the optimal wavelengths for simplifying the original
obtained models. As a result, six optimal wavelengths includ-
ing 424, 451, 545, 567, 585, and 610 nm were obtained as
shown in Fig. 4. These wavelengths recognized as the effec-
tive wavelengths were used to replace the full wavelengths for
further predicting E. coli loads in fish flesh. It is interesting to
find that these optimal wavelengths fell in the visible range,
possibly due to the fact that the astaxanthin content and the
special protein showed some influence on microbial activity.
The performances of simplified models named WRC-PLSR
and WRC-MLR for prediction of E. coli loads in grass carp
fillet are shown in Table 1. It can be noticed that the WRC-
PLSR model with four latent variables showed comparable
and equivalent performance with the models developed using

Fig. 3 Predicted and measured E. coli loads for PLSR model using full
spectral range

Fig. 4 Selection of six optimal
wavelengths by the weighted
regression coefficients method
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the full wavelengths. The number of variables was reduced
from 381 to six variables, which helped to develop a simple
PLSR model and saved the computing time of 98.4 %. It can
thus be concluded that the HSI technique using the only
selected six most informative wavelengths is also suitable
for prediction and quantification of E. coli loads in grass carp
flesh. Meanwhile, it was interesting to discover that the most
sensitive and valuable wavelengths for indicating the E. coli
contamination were concentrated in the visible region, which
also facilitated the original HSI system into a new one in the
spectral range of 400–700 nm. In addition, as illustrated in
Table 1, compared with theWRC-PLSRmodel, the simplified
WRC-MLR model demonstrated better effectiveness and ro-
bustness in predicting E. coli loads with the value of R2

P of
0.870, RPD of 5.22 and RMSEP of 0.274 log10 CFU/g, which
confirmed that MLR is more advantageous than PLSR when
the number of variables was much less than the number of
samples (6 vs. 100 or 50). On the basis of the better WRC-
MLRmodel for prediction of E. coli loads in grass carp fillets,
the quantitative regression equation for the detection of E. coli
contamination was obtained and is presented below:

Y ¼ 9:122 þ 17:854X 424nm−5:391X 451nm−76:274X 545nm

þ 75:083X 567nm−20:660X 585nm þ 7:026X 610nm

ð2Þ

where Xi nm is the reflectance spectral value at the wavelength
of i nm and Y is the predicted E. coli loads. Although it has
been proven that using six optimal wavelengths replacing the
full wavelengths for developing a multispectral imaging sys-
tem in industrial on-line application is potential and suitable,
the reliability and applicability is still a little lower. Thus, more
samples should be required in the calibration process to reduce
the variability of E. coli measurement.

Visualization of E. coli Contamination

The great advantage of HSI against the conventional spec-
troscopy is its capability of visualizing the distribution map of

the prediction values in a pixel-wise manner. Therefore, the
final MLR model obtained from the effective wavelengths
was used to transfer each pixel of the image to predict E. coli
loads in all spots of the sample. After multiplying the regres-
sion coefficients of the MLR model by the spectrum of each
pixel in the image, a prediction image was generated for
showing the distribution of E. coli within the fish flesh. A
linear colour scale was created with the different E. coli loads
from small to large presented by different colours from blue
to red. It means that pixels having similar spectral features
offered the same predicted values of E. coli, which were then
visualized in a similar colour in the image. Different colours
in the final distribution map represented different values of
E. coli in the image in proportion to the spectral differences
of the corresponding pixels (ElMasry et al. 2012a). Figure 5
shows examples of distribution maps of E. coli contamination
in some tested grass carp fillets with different E. coli loads.
As can be seen in Fig. 5, the distribution maps indicated how
the level of E. coli contamination varied from sample to
sample and even from pixel to pixel within the same sample.
Moreover, there was a general trend of increase of colour
intensity from blue to red. As the E. coli loads increased, the
colours of the images were gradually shifting from blue to
reddish, which obviously reflected the growth of bacteria and
the presentation of E. coli contamination status during the
spoilage process. For example, Fig. 5a shows mostly the blue
colour distribution with the low E. coli value (N=4.115 log10
CFU/g) of fresh fish flesh, which indicated that the fish
sample was at the early stage of spoilage process. The distri-
butions of E. coli loads illustrated in Fig. 5b (N=6.209 log10
CFU/g) and Fig. 5c (N=8.185 log10 CFU/g) were fairly non-
uniform along with different locations of fish fillet samples.
This phenomenon was mainly associated with the uneven
distribution of nutrients in fish flesh that promoted the growth
of bacteria. Figure 5d (N=9.788 log10 CFU/g) indicates the
homogenous distribution of E. coli loads with the same red
colour, implying that a great level of fish spoilage occurred
and finally induced severe freshness loss in fish flesh. These
phenomena are impossible to be observed by the naked eyes,
thus, it is very useful and meaningful for the better

Fig. 5 Examples of distribution
maps of E. coli loads (N) in fish
fillets. a N=4.115 log10 CFU/g, b
N=6.209 log10 CFU/g, c N=
8.185 log10 CFU/g, d N=9.788
log10 CFU/g
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understanding of the dynamic changes of E. coli loads in fish
flesh during storage and is also helpful and important for the
fishery industry to directly judge and evaluate the fish quality
and safety and for further improving fish safety assurance.

Conclusions

This study was conducted to investigate the potentiality
and suitability of visible and near infrared HSI technique
(400–1000 nm) for quantifying and visualizing E. coli
contamination in grass carp flesh during spoilage process
at 4 °C. The results demonstrated that this emerging
technique was feasible for rapid and non-invasive predic-
tion and detection of E. coli loads. On the basis of the full
wavelengths, the quantitative PLSR model established
between the traditional measured E. coli loads and the
spectral data preprocessed by MSC method showed a
good performance with the value of RPD of 5.47, R2

P of
0.880 and RMSEP of 0.262 log10 CFU/g. Six character-
istic wavelengths including 424, 451, 545, 567, 585, and
610 nm were selected via the weighted regression coeffi-
cients from PLSR analysis. The simplified PLSR and
MLR models established using the six selected wave-
lengths also presented an equivalent performance to the
original models using the full wavelengths. Compared
with the new PLSR model, the simplified MLR model
yielded a better predictability with the value of RPD of
5.22, R2

P of 0.870 and RMSEP of 0.274 log10 CFU/g,
which was thus used to transfer each pixel of the image
into its corresponding E. coli loads for visualizing E. coli
contamination distribution using image processing algo-
rithms. The distribution maps of bacterial loads were of
great importance to provide more detailed information of
postmortem spoilage development in grass carp flesh. In
view of fish safety evaluation, these results verified this
technique to be an admirable alternative to the time-
consuming and conventional methods. As the first re-
search on rapid and non-destructive prediction and quan-
tification of E. coli loads in grass carp fish flesh, the
whole results are potential and promising and will be
helpful to make more efforts on the HSI technique for
on-line applications and evaluation of bacterial contami-
nation of grass carp fillet and other aquatic products
during cold storage.
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