
ORIGINAL PAPER

Ripeness Classification of Astringent Persimmon Using
Hyperspectral Imaging Technique

Xuan Wei & Fei Liu & Zhengjun Qiu & Yongni Shao &

Yong He

Received: 19 February 2013 /Accepted: 22 July 2013 /Published online: 6 August 2013
# Springer Science+Business Media New York 2013

Abstract Nondestructive detection of fruit ripeness is crucial
for improving fruits’ shelf life and industry production. This
work illustrates the use of hyperspectral images at the wave-
lengths between 400 and 1,000 nm to classify the ripeness of
persimmon fruit. Spectra and images of 192 samples were
investigated, which were selected from four ripeness stages
(unripe, mid-ripe, ripe, and over-ripe). Three classification
models—linear discriminant analysis (LDA), soft indepen-
dence modeling of class analogy, and least squares support
vector machines were compared. The best model was LDA, of
which the correct classification rate was 95.3 % with the input
consisted of the spectra and texture feature of images at three
feature wavelengths (518, 711, and 980 nm). Feature wave-
lengths selection and texture feature extraction were based on
successive projection algorithm and gray level co-occurrence
matrix, respectively. In addition, using the same input of
ripeness detection to make an investigation on firmness pre-
diction by partial least square analysis showed a potential for
further study, with correlate coefficient of prediction set rpre of
0.913 and root mean square error of prediction of 4.349. The
results in this work indicated that there is potential in the use of
hyperspectral imaging technique on non-destructive ripeness
classification of persimmon. The experimental results could
provide the theory support for studying online quality control
of persimmon.
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Abbreviations

CCR Correct classification rate
GLCM Gray level co-occurrence matrix
LDA Linear discriminant analysis
LS-SVM Least squares support vector machines
PC Principal component
PCA Principal component analysis
PLS Partial least squares
rpre Correlation coefficient of prediction
RMSEP Root mean square error of prediction
ROI Regions of interest
SIMCA Soft independence modeling of class analogy
SPA Successive projection algorithm
SSC Soluble solids content
SVM Support vector machines

Introduction

Persimmon (Diospyros) is native to East Asia and has been
cultured in Italy, Korea, Brazil, Israel, Spain, the USA, New
Zealand, and Australia (Telis et al., 2000). The fully matured
fruits are sweet and palatable. It has been proved they contain
many medicinally bioactive compounds, such as carotenoids,
tannins, flavonoids, terpenoids, steroids, naphthoquinones,
sugars, amino acids, minerals, and lipids (Mallavadhani
et al., 1998).

Usually, persimmon fruit are classified as non-astringent
and astringent types. Mature fruit of non-astringent cultivars
can be eaten at the firm-stage when the pulp is crisp. On the
contrary, fruit of astringent cultivars need some postharvest
treatments, such as exposure to carbon dioxide in high con-
centrations, appropriate ethylene treatment or dried after peel-
ing to remove astringency. Without those treatments, the fruit
cannot be consumed until the flesh is very soft. In the past,
astringent cultivars were commonly eaten as soft or dried fruit.
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Even now, soft or dried fruit are consumed and commercially
produced in countries such as China, Italy, Japan, and Korea
(Yamada et al., 2012).

In China, the main persimmon cultivar is the astringent
type, which is harvested at the firm-stage and consumed after
becoming soft. The method adopted to distinguish the ripen-
ing stage of persimmon is still relying on the people’s experi-
ence and intuitionistic judgment. This approach is inefficient
and subjective, and, thus, is unable to cope with large-scale
production and trading, as well as modern fruits processing.
Consequently, advanced technology for nondestructive mea-
surements of postharvest quality and ripeness classification of
persimmon is necessary.

In the 1980s, researchers began paying attention to the
nondestructive technology on the ripeness evaluation of per-
simmon. Yamazaki and Suzuki (1980) developed color charts
that were used commercially to determine optimum harvest
time for different cultivars. Forbus et al. (1991) showed that
delayed light emission had a high potential for application as a
rapid, nondestructive technique for measuring persimmon
maturity. Clark and MacFall (2003) applied qualitative and
quantitative proton magnetic resonance imaging technique on
persimmon during development and postharvest ripening.
Taniwaki et al. (2009) used laser Doppler vibrometer to de-
termine the changes in the physical properties of persimmon
fruit during ripening. Zhang et al. (2011a, b) investigated the
firmness and soluble solids content (SSC) of persimmon by
visible and near-infrared spectroscopy.

Hyperspectral imaging is an emerging technique that
integrates conventional imaging and spectroscopy to ac-
quire both spatial and spectral information from a sample.
It takes the advantages of the conventional RGB, near-
infrared spectroscopy, and multispectral imaging. Each
pixel in a hyperspectral image contains an entire spectrum
also called spectral signature or spectral fingerprint, which
mainly represent the light absorption properties of the
object under investigation. The total spectral signature
may also be influenced by the scattering properties of the
tissue (Kamruzzaman et al., 2012). The three-dimensional
data can be analyzed to characterize the physical and
chemical features of the product being examined and to
characterize the product in a way more reliably than the
imaging or spectroscopy technique (Elmasry et al., 2012).
The resulting spectrum acts like a fingerprint which can be
used to characterize the composition of that particular
pixel. It allows for the visualization of biochemical con-
stituents of a sample, separated into particular areas of the
image, since regions of a sample with similar spectral
properties have similar chemical composition (Gowen
et al., 2007). In recent years, there has been a growing
interest in this technology from researchers for nondestruc-
tive analysis in fruits (Huang et al., 2012; Mendoza et al.,
2011; Qin & Lu, 2008). Detection of the ripening process

also has got some attentions; the assessment of fruits rip-
ening such as peach and banana have been investigated
based on hyperspectral imaging technique (Cen et al.,
2011; Lleo et al., 2011; Rajkumar et al., 2012), which
showed a potential use of hyperspectral imaging for the
fruits maturity/quality assessment. However, major bottle-
necks such as high costs and difficulties in high-speed data
acquisition and processing have limited the use of this
technology in a real-time assessment (Kamruzzaman
et al., 2013). The advantage of obtaining abundant infor-
mation makes it a very useful tool for selecting some
important wavelengths and what is more important is that
it can be used to know what attributes, how much, and
where they are located in the sample under study (Lorente
et al., 2012). Then the on-line grading system could be
done by using multispectral imaging technique (Rajkumar
et al., 2012).

In this study, we mainly adopted successive projection
algorithm (SPA) and level co-occurrence matrix (gray level
co-occurrence matrix (GLCM)) method to acquire the differ-
ent input of classifiers based on the spectra and images. SPA is
a popular tool for variable selection in multivariate calibration
and classification, the goal of which is finding a small, repre-
sentative set of spectral variables with an emphasis on the
minimization of collinearity (Pontes et al., 2005). In machine
visual systems, texture feature analysis plays an important role
for classification and presentation. And among them, the most
popular method is the GLCM method. It is based on the
second-order texture features, which takes into account the
specific position of a pixel relative to another. It has been
widely used for texture analysis in many applications (Gomez
et al., 2012; Tournier et al., 2012; Yang et al., 2012).

We combined the feature spectra and images to ripening
stage classification of persimmon fruit based on hyperspectral
imaging technique in the visible and short-wave near-infrared
spectral region between 380 and 1,030 nm. Using hyperspectral
images, the objectives of this work are as follows: (1) find
whether some specific locations could be used to persimmon
ripeness classification; (2) optimize the calibration models by
wavelength feature and texture feature using GLCM parame-
ters; and (3) analysis the relationship between firmness and
ripeness, provide a method to persimmon classification for
further processing such as making persimmon cakes.

Materials and Methods

Persimmon Samples

In this study, persimmons of local astringent cultivars
(Diospyros oleifera Cheng ‘Fangshi’) were used that are
widely planted in eastern China for soft consumption. During
the harvest season, fruit of uniform size were harvested from
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orchards in Hangzhou (30°16′ N and 120°3′ E) when the
entire fruit were mostly yellow with little green. After the
arrival in the laboratory, samples were kept at 25 °C for
24 h. Their physical parameters were measured before
hyperspectral image acquisition. Mass was determined by an
electronic balance (YP2001N, Shanghai Precision & Scientif-
ic Instrument Co., Ltd., Shanghai, China). The perimeter and
height of the fruit were obtained with ruler tape and vernier
caliper (Shenhan measurements tools Co., Ltd., Shanghai,
China), respectively. After the hyperspectra acquisition, the
SSCwas measured by an Abbebenchtop refractometer (WAY-
2S, Shanghai Precision and Scientific Instrument Co., Ltd.,
Shanghai, China). All the measurements of parameters were
repeated three times. Mass/height/perimeter/firmness/SSC
was used as dependent and correspondingly ripeness as factor,
respectively in one-way ANOVA by IBM SPSS (Version
20.0, Inc., Chicago, IL, USA).

Acquisition of Images

Experimental Procedure

Samples were classified into four groups: unripe, mid-ripe,
ripe, and over-ripe according to the days (d) after harvest in
this work. The fruit were harvest with a little green at the stylar
end side. They were preserved in the laboratory for 5 to 7 d
when all the green in skin was receded, and these were
considered as the unripe group. Similarly, fruits kept for 8 to
11 d, 12 to 14 d, and 15 to 16 d from the harvest time were
considered as the mid-ripe, ripe, and over-ripe group, respec-
tively. During ripening, the climacteric persimmon fruits pro-
duce large quantities of ethylene (Kader, 1999), and the flesh
becomes softer gradually. In order to remove outliers, firmness
of every sample was measured three times at their equator by a
fruit hardness tester (FHM-5, Takemura Electric Work. Ltd.,
Japan), after acquisition of the hyperspectra. Using Grubbs’s
test, calculated mean value and standard derivation were
applied to identify and eliminate samples with extreme firm-
ness for each group.

Hyperspectral Images Acquisition

For hyperspectral imaging of persimmon, a laboratory-type
spectrum measurement device was designed (Fig. 1). The
system mainly consisted of a high-performance back-
illuminated CCD camera (C8484-05, Hamamatstu City, Ja-
pan), an imaging spectrograph (ImSpectorV10, Spectral Im-
aging Ltd., Oulu, Finland) covering the spectral range of 380–
1,030 nm, and an assembled light unit containing two 150-w
quartz tungsten halogen lamps (Oriel Instruments, USA). A
mobile platform (ST-1212-300, Tanlian Co., Taiwan, China),
with its speed controlled by a computer equipped with spectral
image system V10E software (ISUZU OPTICS COPR,

Taiwan, China), was used for sample movement. While the
samples were moved on the X-axis, the detector linearly
scanned along the Y-axis. The acquired images were corrected
with white and dark reference using Eq. 1 as:

R ¼ I sample−Idark
Iwhite−Idark

ð1Þ

Calibration of the images was done by the hyperspectral
imaging analyzer software. Considering the difference be-
tween the stylar end side and the stem-calyx end side of
persimmon, we acquired the hyperspectral images of two
sides one after another.

Data Analysis

Feature Wavelengths Selection

Spectral data were collected from the images preprocessed by
the ENVI (Version 4.7, ITT Visual Information Solutions,
Boulder, USA) software. Four square-shaped regions of inter-
est (ROI) in the same plane at 90° interval with about 6,000
pixels in total were acquired (Fig. 2).

Feature wavelengths were selected by the SPA method,
which starts with one wavelength, then incorporates a new
one at each iteration, until a specified number (N) of wave-
lengths is reached (Araújo et al., 2001). SPA was coded in
Matlab 7.10 R2010b (The MathWorks, Natick, USA).

Texture Feature Acquisition

Texture is one of the essential characteristics used in identify-
ing objects or regions of interest of an image. GLCM, a
popular texture analysis method, estimates image properties
related to the second-order statistics. The image in its digital
form is usually stored Ly in the computer as a two-dimensional
array. If Lx=(1, 2,⋯, Nx) and Ly=(1, 2,⋯, Ny) are the hori-
zontal and vertical spatial domains, then Lx×Ly is the set of
resolution cells and the image I is a function which assigns
some gray-tone value G =(1, 2,⋯, N) to each cell; I:Lx×-
Ly→G. Texture information contained in image I is defined as
specified by the statistical distribution of the spatial relation-
ships of gray level properties. This information can be sum-
marized in GLCM that are matrices of relative frequencies P
(i; j; d;θ ) with which two neighboring pixels separated by
distance d at orientation θ occur in the image, one with gray
level i and the other with gray level j. In this research, the
textural features were calculated from GLCMwhen the direc-
tion equals to 0° and the distance equals to 1, respectively. In
order to estimate the similarity among different GLCM,
Haralick et al. (1973) proposed a set of statistical features
extracted from them. To reduce the computational
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complexity, only four features were used for analysis. They
were widely (ElMasry et al., 2007; Li et al., 2011; Tournier
et al., 2012) used to select the optimal feature and indicated
in Table 1.

Correlation feature is a measure of gray-tone linear depen-
dencies in an image. Contrast is a difference moment of the P
and it measures the amount of local variations in an image.
Energy, also called angular second moment, is a measure of
textural uniformity of an image. Energy reaches its highest
value when gray level distribution has either a constant or a
periodic form. Homogeneity, also called inverse difference
moment, usually measures the closeness of the distribution
of elements in GLCM to its diagonal (Gadelmawla, 2004).

Classification Models

The classification models were developed by the linear dis-
criminant analysis (LDA), soft independence modeling of

class analogy (SIMCA), and least squares support vector
machines (LS-SVM) methods.

LDA (also known as Fisher discriminant analysis) is a
common supervised recognition method used in statistics,
pattern recognition, and machine learning to find a linear
combination of features that characterizes or separates two
or more classes of objects or events (Wu et al., 1996).

In the SIMCA method, each class is regarded as an inde-
pendent group and the characteristics of each class are
extracted by principal component analysis (PCA). The dis-
tance of orthogonal projection between the principal compo-
nent (PC) model of each class and the unknown data is
calculated to determine class of the unknown (Maesschalck
et al., 1999).

Fig. 2 Four square-shaped ROIs got from a stem-calyx end side, b stylar
end side, respectively

Table 1 Expressions of textural features from GLCM

Texture features Equation

Correlation

∑
i
∑
j
ijð ÞP i; jð Þ−μxμy

" #
=σxσy

Contrast
∑
i
∑
j
i− jð Þ2P i; jð Þ

Energy
∑
i
∑
j
P i; jð Þ2

Homogeneity ∑ ∑ P(i,j)/(1 + (i − j)2)

Where P(i, j) is (i, j)th entry of the co-occurrence probability matrix, μx

¼ ∑i∑ ji⋅P i; jð Þ;μy ¼ ∑i∑ j j⋅P i; jð Þ;σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i∑ j i;μxð Þ2P i; jð Þ

q
;σy ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i∑ j j;μy

� �2
P i; jð Þ

r

Fig. 1 Schematic diagram of
hyperspectral imaging system
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LS-SVM is the least squares versions of support vector
machines (SVM) (Suykens & Vandewalle, 1999), which has
been proved to be an effective and robust method for both
classification and regression based on the structural risk min-
imization principle. With equality constraints in the formula-
tion, LS-SVM obtains the solution by solving a set of linear
equations, instead of quadratic programming for traditional
SVM algorithms. More details about this algorithm can be
found in other literatures (Borin et al., 2006; Chauchard et al.,
2004; Liu et al., 2009).

Regression Model

The firmness prediction were conducted by the partial least
squares (PLS) regression method, which generalizes and com-
bines features from PCA and multiple regressions and has
been widely applied in many areas (Haaland & Thomas,
1988).

Results and Discussions

Samples Selection

The changes in fruit firmness and SSC are closely associated
with ripeness (Semmelmeyer & Ernst, 2006). It has been
shown that the SSC changes during ripening were cultivar
specific in persimmons (Glew et al., 2005). However, in fruits
of non-astringent cultivars, firmness always declines during
ripening, so samples with extreme firmness were eliminated
for each group. Finally, 192 samples (48 for each stage) were
adopted for further calculation. Mass and size of the samples
did not change with maturation, but firmness decreased sig-
nificantly as fruit gradually ripened. Mean SSC tended to
increase with development but peaked at the over-ripe stage
(Table 2).

The result of the ANOVA analysis (Table 3) of physical
parameters and SSC in different ripening stage showed that
there was no apparent discrepancy between the mass/height/
perimeter of samples at different ripeness. Firmness presented
significant differences among the groups and had a descend-
ing tendency along with the development of ripeness. The
difference of SSC among unripe, mid-ripe, and ripe groups

was not significant but both of them were significantly differ-
ent with those of the over-ripe group.

Spectra Consideration

After removing the noise in the data, only wavelengths in the
range from 400 to 1,000 nm were used for further analysis. In
the average spectra of each group (Fig. 3a), it was observed
that reflectance of fruit of both ripe and over-ripe fruits were
lower than in that of unripe and mid-ripe ones. Some studies
showed that with the change of ripeness, the contents and
compositions of sugars, amino acids, carotenoids, and lipids
were different. For example, the total carotenoid decreased
until color break, then steadily gradually and drastically at the
final ripening stage (Ebert & Gross, 1985). But there was no
change in carotenoid absorption area (400 to 500 nm) of the
spectra, and the presence of water could be observed clearly
around 960 nm (Golic et al., 2003). So the change of spectra
(600–900 nm) could not be the pigment but probably due to
water and carbohydrate changes or scattering changes caused
by tissue structure changes. Comparison of the spectra of all
investigated fruit (Fig. 3b), however, showed that the different
ripening stages could not be easily discriminated through the
origin spectra. There were some overlaps especially between
the neighboring groups.

Classification Models Based on Original Spectra

Firstly, the entire original spectra data were used for classifi-
cation. Considering the discrepancy between stylar end side

Table 2 The physical parame-
ters, firmness, and SSC of per-
simmons for each class

Mean values in the same rowwith
different letters are significantly
different (p≤0.05)

Classes No. Mass Height Perimeter Firmness SSC
(N) (mm) (mm) (N) (Brix)

Unripe 48 14.22±0.34 45.3±4.57 223.9±1.78 25.0±4.37a 16.0±0.65b

Mid-ripe 48 14.84±0.28 45.0±6.02 227.4±1.62 12.2±2.15b 16.4±2.20b

Ripe 48 14.66±0.32 44.9±5.00 226.8±1.82 3.16±1.39c 16.8±3.38b

Over-ripe 48 14.04±0.27 44.6±4.60 225.1±1.39 1.32±0.36d 22.1±1.62a

Table 3 One-way ANOVA of quality parameters of persimmons

Parameters Test of homogeneity ANOVA

Levene statistic Sig Combine Linear term

F Sig. F Sig.

Mass 1.639 0.186 1.453 0.232 0.255 0.615

Height 0.654 0.582 1.125 0.169 0.232 0.633

Perimeter 0.335 0.800 0.772 0.513 0.202 0.654

Firmness 45.01 0.000 699.3 0.000 1,917.2 0.000

SSC 24.48 0.000 82.04 0.000 177.1 0.000
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and stem-calyx end side, we generated three different spectral
subsets: (1) spectra of stylar end side, (2) spectra of stem-calyx
end side, and (3) average spectra of the two sides. For each
group, 2/3 of the fruits were randomly chosen (128 samples)
as the calibration set and the rest 1/3 (64 samples) were
adopted as the predicted set. As LDA would be difficult to
calculate when the number of samples was far less than
variables, only the SIMCA and LS-SVM classification
models were developed to make a comparison. Their perfor-
mances were presented in Table 4.

It can be seen that both of the two classifiers using spectra
of the stem-calyx end side had better performance than those
using spectra of stylar end side. The correct classification rate
(CCR) of the later was higher with 9.4 and 6.2 % for the
SIMCA and LS-SVM classifier, respectively. A possible ex-
planation for this result was that in the visible and short-wave
near-infrared spectral regions, the wavelengths might repre-
sent the water, carbohydrate, and texture differences of the
fruits. The postharvest maturation of this cultivar often begins
from the stylar end of persimmon, so the changes come first at
this end. In this part, the characteristics of fruit at a given

period were close to the status at the next ripening stage;
hence, similar chemical constituents would result in some
interference. In comparison of the power of classifiers with
the third type input and with the first type input, the accuracies
were close between the two. As in production, reducing the
calculations can certainly improve the detective speed, the
spectra and images of stem-calyx end side were used for
further analysis.

Optimal Wavelengths Selection

Generally, it is important to select the wavelengths that con-
tribute to the quality attribute of the product. The hyperspectral
images contain abundant information, which is time con-
suming for data processing and unsuitable for on-line
detection. In order to reduce the dimensional and redun-
dant information, SPA was applied to select the feature
wavelengths. This processing was conducted in Matlab.

Fig. 3 Average spectra (a) and spectra (b) of all samples of four different ripen classes (the stylar end side)

Table 4 The classification results of the ripeness by SIMCA and LS-
SVM with the original spectra

Input Classifier Calibration Prediction

No. Missed CCR (%) No. Missed CCR (%)

1 SIMCA 128 33 74.2 64 18 71.9

LS-SVM 128 8 93.8 64 6 90.6

2 SIMCA 128 40 68.8 64 24 62.5

LS-SVM 128 12 90.6 64 10 84.4

3 SIMCA 128 34 73.4 64 17 73.4

LS-SVM 128 9 93.0 64 7 89.1

CCR correct classification rate, 1 spectra of stem-calyx end side, 2 spectra
of stylar end side, 3 average spectra of two sides

Fig. 4 Scores scatter plot of PC1 and PC2 of PCA conducted on feature
wavelengths
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After calculating, three wavelengths (518, 711, and
980 nm) were chosen.

PCA conducted on the spectra of selected optimal wave-
lengths of the calibration set displayed that the first two
components explained 99.9 % (PC1—97.4 % and PC2—
2.5 %) of the differences of persimmon fruit at different
ripening stages (Fig. 4). Most of the observed values were
distinguished into different groups. It indicated that the

selected wavelengths could be used for discriminating the
ripeness of persimmon.

Classification models were developed using only the select-
ed wavelengths (Table 5). Compared to the models based on
original spectra, the performance of both feature wavelengths-
based SIMCA and LS-SVM models was worse. CCR of
SIMCA and LS-SVM decreased from 71.9 to 68.8 % and
from 90.6 to 81.2 %, respectively. The LDA classifier with
CCR of 89.1 % acquired the best result. The misclassification
mostly occurred between the unripe and mid-ripe groups, and
between the ripe and over-ripe groups. As the circles in Fig. 5
showed, the samples could be clearly classified into two sets
(unripe and mid-ripe vs. ripe and over-ripe). This may imply
that the chemical composition of fruit of the unripe and mid-
ripe group and the ripe and over-ripe group, respectively, were
rather similar. Results in Table 5 also revealed that in both the
LDA and LS-SVM classifier, the highest CCR of 93.8 %
appeared in the over-ripe group. In the analysis of SSC, the
over-ripe group also showed significant difference with other
three groups, so maybe both the outer and internal character
appeared significant changes compared with the other groups.
To sum up, except the SIMCA model, the other models
achieved good predictive accuracy and the feature wavelengths
could be considered valid.

Texture Features at the Images of Feature Wavelengths

One of the objectives for this work was to determine the
calibration by feature wavelengths at texture feature using
GLCM. In order to improve the accuracy of the classification

Fig. 5 Texture parameters of
persimmon at different ripening
stage using gray level co-
occurrence matrix GLCM

Table 5 Classification details of the prediction set by different models
using the feature wavelengths selected by SPA

Models Groups Classification Total CCR%

LDA 1 15 1 – – 16 93.8

2 2 13 1 – 16 81.2

3 – – 12 4 16 85.7

4 – – 1 15 16 93.8

Total 17 14 14 19 64 85.9

SIMCA 1 9 5 – – 16 56.2

2 2 13 – – 16 81.2

3 – – 10 2 16 62.5

4 – – 4 12 16 75.0

Total 11 18 5 14 64 68.8

LS-SVM 1 11 5 – – 16 68.8

2 3 12 1 – 16 75.0

3 – – 14 2 16 87.5

4 – – 1 15 16 93.8

Total 14 17 16 17 64 81.2

1 unripe stage, 2 mid-ripe stage, 3 ripe stage, 4 over-ripe stage
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models, texture information was extracted from the images at
feature wavelengths. Images were obtained from a part of
ROIs which were used to extract spectra before through
software ENVI at the stem-calyx end side; there were 576
images each with 50×50 pixels. Part of the images at the
feature wavelengths is shown in Table 6. They exhibited some
differences: images at 980 nm appeared brighter for the unripe
and mid-ripe groups than the ripe and over-ripe groups clearly,
which is the same for images at 711 nm but more obvious.
This difference was not apparent at 518 nm.

The texture features correlation, contrast, energy, and ho-
mogeneity were calculated in Matlab. Figure 5 shows the
means of the four texture parameters of persimmon at different
ripening stages. It can be seen that contrast and correlation of
the unripe group was the highest compared with the other
three groups at different wavelengths. This means that unripe
fruit contain higher local variations and more smooth texture
(ElMasry et al., 2007). The similar conclusion also could be
obtained by analyzing the mean value of homogeneity, which
was the lowest for the unripe group with the highest contrast.
The energy of fruits of the unripe group was lower than in
those of the other groups, which meant that the unripe per-
simmons were less homogeneous (Baraldi & Parmiggiani,
1995). The texture parameters of 980 nm showed smaller
variations. In general, as shown in Fig. 5, there were no
intersections of all the parameters; therefore, it is possible
for ripeness classification based on these statistics.

With these obtained statistical texture features, three differ-
ent subsets were adopted as different inputs to the classifiers.
The subsets were spectra of feature wavelengths, texture fea-
tures at feature wavelengths, and spectra of feature wave-
lengths combined the texture features, respectively. Predictive
results were illustrated in Fig. 6. From all of the models, the
LDA model with the input of spectra combined the texture
features had the highest CCR of 95.3 %, which increased by
9.4 % compared with the LDAmodel with the input of spectra
of feature wavelengths. When only using the subset of texture
features as the input, the LS-SVM classifier showed best result

with the CCR of 84.4 %. SIMCA always had the lowest CCR
and when based on subsets of texture feature, it was entirely
ineffective. Figure 7 showed the scatter plots of the prediction
set by using the first two discriminant factors obtained from
the LDAmodeling with the spectra combined texture features.
It revealed that there also were some difficulties to recognize
some unripe samples from mid-ripe and to recognize some
ripe from over-ripe by the LDA classifier. The distinction
between the neighboring stages still was not very clear. Gen-
erally, almost all of the models in this work have made
misclassifications in some samples, indicating the difficulties
in distinguishing samples with similar physiological status.

Prediction of Firmness

Because of the firmness had obvious linear correlations with
the maturity periods in ANOVA analysis, the input of classi-
fiers also could act as the input of firmness prediction if the
data processing strategy used to ripeness classification was

Fig. 6 Predictive results of different models using three types of subsets

Table 6 The texture feature images at 518, 711, 980nm of persimmons of four different ripen classes

 518nm 711nm 980nm 

Unripe 

Mid-ripe 

Ripe 

Over-ripe 
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reasonable. So, we conducted firmness prediction using the
PLS regression analysis with the spectra of feature wave-
lengths and the texture features. The model was evaluated
by root mean square error of validation (RMSECV), root
mean square error of prediction (RMSEP), and correlation
coefficient (r) as shown in Fig. 8. The results with rpre of
0.913 and RMSEP of 4.349 indicated that the selected wave-
lengths and texture feature could be used for the nondestruc-
tively prediction of persimmons firmness in this research.
Kato (1990) showed that high-quality persimmon fruit should
have firmness of 1.5 to 2.5 kg (14.7 to 24.5 N; measured with
a Universal hardness meter), which could own the jelly-like
texture, and had advantage for physical handling associated
with marketing. So it is useful to determine fruit firmness
according to the needs of persimmons industry.

Conclusions

The results of this study suggested that hyperspectral imaging
together with chemometrics could be nondestructively used to
classify the ripening stage of persimmons. Out of 476 wave-
lengths, only three wavelengths (518, 711, and 980 nm) were
selected as the optimum wavelengths and found to be suitable
for ripeness classification. Based on the spectra and texture at
these three optimumwavelengths of fruits’ stem-calyx end side,
discrimination accuracy of 95.3%was achieved using the LDA
classifier. The same dataset for ripeness classification also got a
good performance of firmness prediction by PLS in the regres-
sion analysis. More research is needed to include more samples
as well as different regions and different postharvest treatments
to ascertain the discrimination power of this method.
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