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Abstract Hyperspectral systems are characterised by offer-
ing the possibility of acquiring a large number of images at
different consecutive wavebands. To ensure reliable and
repeatable results using this kind of optical sensors, the
intensity shown by the objects in the different spectral im-
ages must be independent from the differences in sensitivity
of the system for the different wavelengths. The spectral
efficiency of the acquisition devices and the spectral emis-
sion of the lighting system vary across the spectrum and the
images, and therefore the results can reproduce these varia-
tions if the system is not properly calibrated and corrected.
This is particularly complex, when several LCTF devices are
used to obtain large spectral ranges. This work presents the
development of a hyperspectral system based on two liquid
crystal tuneable filters for the acquisition of images of spher-
ical fruits. It also proposes a methodology for acquiring and
segmenting images of citrus fruits aimed at detecting decay
in citrus fruits that has been capable of correctly classifying
98 % of pixels as rotten or non-rotten and 95 % of fruit.
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Introduction

In recent years, optical devices and sensors have been intro-
duced as nondestructive tools for inspecting food in industry
(Vadivambal and Jayas 2011; Lorente et al. 2012a; Pathare
et al. 2013). Depending on how it is used, this technique can
be used for a series of purposes in fruit inspection, being the
most common is the estimation of internal properties like
sugar content or acidity (Vélez-Rivera et al. 2013). On the
other hand, the detection of external defects that are difficult
to detect by traditional computer vision systems based on
colour imaging is still a challenge (Cubero et al. 2011).
Traditionally, the systems used to estimate food quality in
the industry have been based on the visible range of the
electromagnetic spectrum, although near-infrared (NIR) has
occasionally been included (Aleixos et al. 2002; Zhu et al.
2012; Wu et al. 2012). This is mainly because such systems
are designed with the intention of imitating the human eye,
and the fact that they are relatively inexpensive. Machine
vision, however, offers a series of possibilities that go far
beyond the capabilities of the human eye. Certain organo-
leptic characteristics, some kinds of damage or the presence
of contaminating agents cannot be seen with the naked eye
(Lorente et al. 2012a), and therefore are rather difficult to
detect using traditional cameras based on RGB (red, green,
blue). Yet they can often be observed in particular regions of
the spectrum or at certain specific wavelengths. One way of
enhancing the capabilities of machine vision systems is to
capture and analyse images at specific wavelengths using
multispectral systems (Blasco et al. 2009), since they are the
most powerful and flexible methods of detecting and esti-
mating characteristics that are difficult to detect with RGB-
based systems (Sun 2010).

Until recently, one of the most used ways to acquire
chemical information of food was based on spectroscopy
(Magwaza et al. 2011; Karoui and Blecker 2011). However,
as the point detector has its size limitation, conventional
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spectroscopy system cannot cover a large area or a small area
with high spatial resolution. Therefore, the technique does
not provide the spatial information which is becoming regu-
larly required for food inspection (Sun 2009; 2010). With the
integration of the main features of imaging and spectroscopy,
hyperspectral imaging can simultaneously acquire both spa-
tial and spectral information that is critical to the detection of
food safety and evaluation of food quality attributes. The
cost of hyperspectral equipment has gradually gone down,
and this has allowed it to be incorporated as a valuable tool in
many laboratories devoted to developing hyperspectral com-
puter vision applications for agriculture (Sun 2010). Today,
three types of technology are basically used to acquire
hyperspectral images for fruit analysis: image spectropho-
tometers (Menesatti et al. 2009; ElMasry et al. 2008),
acousto-optical tunable filters (AOTF) (Bei et al. 2004;
Vila-Francés et al. 2010) and liquid crystal tunable filters
(LCTF) (Peng and Lu 2006; Kokawa et al. 2012). Image
spectrophotometers are characterised by the fact that they
acquire spectral data about a scene line by line using the
relative movement of that scene with respect to the instru-
ment. These systems offer a good spectral resolution, but
they do not allow the complete image to be acquired without
synchronising the image acquisition with the movement of
the sample by means of a step motor or by using a mirror-
scan (Lorente et al. 2012a). Systems based on AOTF are
characterised by offering good tuning times (around 50 μs)
and good frequency selectivity, but they have a limited field
of vision due to the small size of the crystal used in this type
of filters (Vila-Francés et al. 2011). On the other hand, the
main advantage of LCTF-based systems in comparison to
the previous two is that they are more compact and offer a
wider field of vision. Nonetheless, their main drawback is
that more time is needed to tune them (Hecht 2003).

The acquisition of hyperspectral images using LCTF en-
tails a series of problems (i.e. spectral response, sensitivity,
uniformity, spatial resolution etc.) that have to be minimised
before acquiring images (Wang et al. 2012). These problems
increase when more than one filter has to be used to cover a
larger spectral domain than with only one, and the image
acquisition needs to be synchronised with the tuning of all
the filters. The acquisition of the whole spectral range pro-
vided by two tuneable filters (i.e. one for the visible region
and one for the NIR) requires a setup to allow both to be used
successively on the same scene without the need to assemble
and disassemble them on each acquisition, which would
make it difficult to acquire images automatically. Further-
more, the filters need to be tuned in each of the bands of
interest to capture the corresponding monochromatic image.
Normally, the software applications provided by the manu-
facturers of the equipment do not allow the two elements to be
synchronised or the acquisition of a complete hyperspectral
image in the range covered by both filters. Therefore, a special

arrangement is needed to ensure coherent images across the
spectral range under study (Erives and Fitzgerald 2005). An
alternative is to acquire a set of images in one spectral range
using one filter and later another set of images using the other
filter, thus obtaining different views of the object for both
ranges. Another alternative is to change the filter manually
for each fruit after acquiring the first range, thereby making
the acquisition of the images a repetitive manual task with a
high risk of moving the camera or altering the scene, while the
filter is being changed.

In addition, the spectral efficiency of the acquisition de-
vices is not uniform across the spectrum, which can produce
results that depend more on the devices used than on the
intrinsic properties of the phenomena or the samples, if
proper calibration and correction are not performed (Geladi
2007; López-Álvarez et al. 2009). Hence, it is necessary to
ensure that the different components of the system (i.e. the
camera lens, the lighting source or the electric power supply
used with the lighting system) are chosen and calibrated
properly. The work carried out in this research was aimed
at describing and overcoming these problems, and included
tasks such as designing and assembling the inspection cham-
ber, setting up a mechanical system for exchanging the two
LCTF, development of specific software for controlling and
synchronising the different elements of the system, and
determining the operating parameters of the hyperspectral
vision system, such as the heat-up time of the lighting system
or the integration times (exposure) of the charge-coupled
device (CCD) in acquiring each band in order to obtain a
uniform response. All this development is used to propose a
methodology for acquiring hyperspectral images of spherical-
shaped fruits or vegetables using two LCTF. An application is
developed for acquiring and segmenting spectral images of
citrus fruits in order to detect fungal infections caused by
Penicillium italicum Wehmer, since they cause very serious
postharvest loses around the world (Palou et al. 2008), and the
external damage caused by this decay is hardly visible to the
human eye, and therefore is not detected by standard automatic
systems (Moltó et al. 2010; Vidal et al. 2012). It has been tested
in citrus fruits due to the high economic importance of this fruit
and the latest efforts to develop spectral systems to detect
diseases caused by fungus in this fruit. Gómez-Sanchis et al.
(2012) used the minimum redundancy maximal relevance
method to select a reduced number of bands in order to detect
decay lesions in citrus caused by P. Italicum and P. digitatum.
They then used a multilayer perceptron (MLP) and classi-
fication and regression trees (CART) in order to build
classification models to achieve a correct classification rate
of 98 %, MLP performing slightly better than CART. Qin
et al. (2009) detected citrus canker and other common
defects of citrus fruits by means of the spectral information
divergence classification method. This procedure was based
on quantifying the spectral similarities using a predetermined
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canker reference spectrum in the spectral region that ranged
from 450 to 930 nm. This work was extended to create a
real-time system to detect citrus canker using two wave-
lengths (730 and 830 nm), a success rate of 95 % being
achieved, but performance was not so high (five fruits per
second), and the system could be influenced by the pres-
ence of other types of defects. Lorente et al. (2013) pro-
posed the use of the area under the receiver operating
characteristic curve as a method to optimise the selection
of bands to detect decay lesions in citrus, achieving a success
from 87 %, when the problem included different types of
sound skin, common defects and two kinds of decay lesions,
to 95 %, when the problem included only sound and decaying
fruit. This work was later expanded to compare the proposed
method with eight other feature selection methods (Lorente
et al. 2012b).

Materials and Methods

Lighting System

An ideal lighting system that is suitable for acquiring
hyperspectral images should fulfil a series of requirements,
such as offering a uniform emission from the spectral point
of view. Furthermore, it should have adequate spatial homo-
geneity, and, most important, it must shine over the whole
spectral area where the images are going to be acquired.
There are many different kinds of light sources, including
incandescent, fluorescent, mercury vapour, sodium vapour,
xenon, LEDs and so on. Each of them has a different spectral
emission. For example, daylight-type fluorescent tubes sel-
dom go beyond 700 nm. In contrast, incandescent lamps
offer a high degree of efficiency in NIR. In any case, it is
important to bear in mind the emission spectrum if the
images obtained with the system are to be analysed properly.

In addition, it is important to observe the shape of the
object to be analysed. For instance, the typical technique of
illumination based on the geometry 45/0° is more appropri-
ated to illuminate flat objects. If used to illuminate spherical
objects, however, this type of illumination would produce
bright spots on the object due to the curvature being in these
cases more adequate to use a system based on a hemispher-
ical dome. The vision system used in our experiments
consisted of ten halogen spotlights that lit the scene indirect-
ly by means of reflection inside a hemispherical dome
(Fig. 1). This setup was chosen because it was to be used
to inspect citrus fruits, which are spherical. The inner surface
of the aluminium dome was painted white in order to max-
imise its reflectivity. Moreover, this coating had a rough
texture in order to minimise the directional reflections that
cause the bright spots. The semicircular chamber provides
highly homogeneous light. This lighting system prevents

unwanted bright spots from appearing, while also providing
high-quality homogenous illumination.

One key point when it comes to choosing the light source
is the spectral response. Depending on the application and
the spectral range of the work, it is better to use one type of
illumination or another. Several types of lighting that could
be expected to provide a more uniform type of light, such as
“daylight-type” fluorescent tubes, were ruled out because of
their low efficiency in the near infrared. In this system, the
lighting that was used was based on tungsten filament halo-
gen bulbs (Philips Brilliantline Pro 20W, 12 V). These lamps
provide good light efficiencies, within the NIR region of the
electromagnetic spectrum. The possibility of powering the
lighting system with conventional AC ballasts (those recom-
mended by the manufacturer) was considered, but this would
have given rise to the appearance of flickering in the acqui-
sition of hyperspectral images, modulated by the alternating
current frequency (50–60 Hz). The solution that was finally
adopted to supply power for the lighting system was to use a
350 W 12 V DC power supply because of the need for a
supply that remained steady over time.

In order to evaluate whether the lighting system that was
used provided a constant light intensity, an experiment was
conducted to study the repeatability of the radiance using a
reference white with a mean reflectance of 99 %. The exper-
iment consisted in acquiring a hyperspectral image of the
white reference at different times after turning on the lighting
system. A hyperspectral image of the reference white was
acquired 5, 10, 20, 30, 60 and 90 min after switching on the
lighting system, and the images thus obtained were com-
pared. To do so, the average reflectance of the whole refer-
ence white was calculated for each of the working bands of
the system at each of the proposed moments. Later, the
average difference between the data in each experiment
was calculated in order to estimate the time needed by the
lamps to emit stable radiation. The time needed by the lamps
to reach a stable emission was 30 min.

Fig. 1 Hemispherical illumination chamber used to illuminate spheri-
cal objects
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Hyperspectral Image Acquisition Hardware

Like the lighting system, the camera also had to fulfil certain
requirements. The most important of these specifications
was that it had to be sensitive within the working range, in
which the images were going to be acquired. A standard
CCD is sensitive up to about 900 nm, which can impose
restrictions on the system that prevent it from taking full
advantage of the possibilities of the filters. In this system, the
camera that was used was a CoolSNAP ES (Photometrics,
USA). This camera is fitted with a Sony ICX285 CCD,
which offers a 1392×1040 pixel matrix with a pixel size of
6.45×6.45 μm. This CCD uses interline-transfer technology,
which provides high quantum efficiencies in both the visible
and the NIR regions of the electromagnetic spectrum, but the
quantum efficiency of the CCD decreases in a critical way
beyond 1,030 nm, which imposes a higher bound on the
range of spectral acquisition of the hyperspectral vision
system (Fig. 2).

Another important element is the lens. A standard lens
presents a high degree of chromatic dispersion in the infrared
region of the electromagnetic spectrum because of the dif-
ferent optical paths taken by the infrared components of the
light source. This is due to the variation in the refraction
index of the lens depending on the wavelength. This means
that the focus of the image can vary considerably between
bands that are separated in the spectrum (for example, be-
tween the bands corresponding to visible and infrared), thus
giving rise to images that are focused in some bands and out
of focus in others. To avoid this problem, a Xenoplan
1.4/17 mm C-Mount lens (Schneider-Kreuznach, Germany)
was used. This model is made with low-dispersion lenses so
that images can be acquired in both the visible and the NIR

(400–1,000 nm) without any significant variations in focus.
Furthermore, the transmittance of the lens is practically
uniform over the whole of the abovementioned range.

A filter is designed by the manufacturer to fit a camera and
work individually, thus limiting the spectral range of acqui-
sition. When working with two filters, it is necessary to use
two cameras or to change the filter every time we intend to
obtain an image that covers the spectral range of both of
them. But this method has a serious drawback, consisting in
the fact that it is difficult to ensure that the acquired scene
does not vary with each of the filters. It is therefore necessary
to design a system that allows the filters to be exchanged
quickly and without altering the acquired scene.

To solve this problem, a guidance system for changing the
filters was designed. This solution consists in using a tailor-
made box that holds the filters inside and moves by means of
a set of runners (Fig. 3). Two mechanical limits fix the
position of each filter when they move under the camera,
which makes it possible to quickly change from one filter to
another. This ensures that exactly the same scene is acquired
with both filters, since the camera is not touched, and there-
fore there is no risk of changing its position.

CCD Exposure Times

Given the same radiance, lower reflectance is obtained in a
spectral band, in which the filter provides a lower degree of
absolute efficiency than in another in which its efficiency is
higher. To obtain robust and valid results, it is very important
to acquire comparable images that are not altered by the
efficiency of the sensor to different wavelengths. This can
be achieved in two ways (1) by characterising the system by
means of a white reference and correcting the images

Fig. 2 Quantum efficiency
curve of the camera
(Photometrics, USA)

1050 Food Bioprocess Technol (2014) 7:1047–1056



spectrally (thereby obtaining the reflectance relative to the
white reference) or (2) by setting different exposure times for
each band according to its spectral efficiency. In this work,
the second solution has been adopted because in addition to
obtaining a uniform system transmittance, it also avoids
having to work with exposure times in which the signal-to-
noise ratio of the sensor is inappropriate.

A CCD sensor with electronic shutter is capable of imag-
ing at variable integration times (Ando 1990), the values of
the pixels being linear to the integration time of a CCD
sensor when the images are acquired at the linear range of
the camera (Pang et al. 2012). The integration time of the
sensor for a particular wavelength band is defined as the time
that the CCD takes to acquire the image in this spectral band.
Each component of the whole hyperspectral sensor has a
different spectral efficiency. Thus, these times will be in-
versely proportional to the efficiency of the system in each
band.

To determine the integration time for each band, a series
of images of the white reference were acquired for each band
in the working spectral range using different integration
times from 1 to 5,000 ms, the time increasing by intervals
of 1 ms. Once the images had been acquired for all bands, the
average of all the pixels of the white reference was calculated
for each image. Initially, the first band is tuned in the LCTF,
and a monochromatic image of the white reference is ac-
quired using an integration time of 1 ms. This image is then
analysed to obtain the average pixel value, and this value is
stored. The integration time is increased by 1 ms, and the
process is repeated until an integration time of 5,000 ms is
reached. The curve showing the relationship between the
pixel value and the integration time to that particular band

is obtained. The integration time selected for a particular
band was the minimum needed to obtain an average pixel
value of the white reference higher than 82 % of the dynamic
range of the camera in the adjusted curve.

The correlation (R2) of least-square fittings of the curves
showed that the linear range of the image sensor was be-
tween 10 and 90 % of the dynamic range (the dynamic range
being defined as the values of pixel intensity between 0 and
255). An R2 value of 0.98 was found in this range, while, for
instance, it fell to 0.71 for the range between 5 and 95 %.
However, at the maximum of this linear range (90 %), there
were still saturated pixels in the image. Hence, to select the
threshold, we decided empirically to include a security range
of 10 % over the linear range, resulting in a total of 82 % of
the dynamic range of the camera. Using this value in citrus
fruits allows full sensitivity of the sensor while ensuring the
image remains unsaturated, which could happen if higher
values are used.

To perform this task, a specific algorithm was developed
and programmed in C language. In addition, the main capa-
bilities of the application include initialisation of the camera
and the filters, the acquisition of dark and white reference to
correct the hyperspectral images and calibration options for
determining the exposure time using different light sources.

Figure 4a shows the exposure times obtained for each
band (each curve). More specifically, it depicts the curves
obtained for each of the bands tuned in the part of the
spectrum captured by each of the filters. For the VIS-07
filter, it can be seen that the blue bands are the ones that
present a shallower slope, which increases as the wavelength
advances towards red. This finding is in agreement with the
efficiencies introduced into the system by the VIS-07 filter

Fig. 3 System created to
facilitate the swap of two LCTF
filters
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and the other parts of the system. The results obtained for the
NIR-07 filter offer a system response that is the inverse of the
one presented in the visible region. This fact can be con-
firmed by observing Fig. 4b, which shows a graph with the
exposure times per band that were determined by means of
the procedure described for the VIS-07 and NIR-07 filters.
The same figure also shows that the NIR-07 curve has a
tendency to grow, unlike the curve of the VIS-07 filter. This
is due to the fact that as we go further into the NIR zone, the
overall efficiency of the system diminishes due to the re-
duced efficiency of the CCD in this region. After studying
the spectral characteristics of the different parts of the
hyperspectral vision system, it was concluded that the opti-
mal range of spectral acquisition for this system is between
460 and 1,020 nm.

Specific Software for Controlling the Hyperspectral Vision
System

To control the acquisition of images, a software application
was developed to handle and tune the LCTF within the
desired band, as well as offering the possibility of scanning
across the whole working region of the spectrum. The soft-
ware also synchronises the filters with the image acquisition

during the preestablished exposure time for each band. All
the software was developed using the programming lan-
guage C. The main capabilities incorporated into the appli-
cation include automatic initialisation of the camera and the
filters, the acquisition of hyperspectral images or live cap-
ture, the possibility of working with one or two synchronised
filters, the acquisition of a dark and white reference to correct
the hyperspectral images and calibration options for deter-
mining the exposure time using different light sources.

Detection of Fungal Infections in Multispectral Images
of Citrus Fruits

With the aim of evaluating our LCTF-based hyperspectral
vision system, we proposed a case study involving a system
for segmenting hyperspectral images of citrus fruits damaged
by the fungal infections. The early detection of infections
due to fungi in the post-harvest processing of citrus fruits is
especially important for the industry, since a small number of
infected fruits can contaminate a whole batch, thus resulting
in considerable economic losses. Even many efforts are done
in order to avoid fungal attacks on fruits (Valencia-Chamorro
et al. 2011), the most important post-harvest damage in citrus
fruit warehouses is caused by the Penicillium family of fungi

Fig. 4 a Evolution of the
average grey level of the white
reference depending on the
exposure time and b exposure
times for each band of the
hyperspectral vision system
obtained for the VIS-07 and
NIR-07 filters
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(Eckert and Eaks 1989). At present, the detection of rotten
citrus fruits is performed by workers through the fluorescence-
induced by ultraviolet (UV) light because the damage to the
fruit is difficult to see under visible light with the naked eye.
However, this process entails a number of problems because
exposing people to this kind of lighting is potentially hazard-
ous for human health, and it is therefore very important to
develop a technology that allows the use of UV light to be
avoided. One possible solution to this problem could be the use
of hyperspectral computer vision systems (Gómez-Sanchis
et al. 2008a).

Fruit Used in the Experiments

The experiments were carried out using two groups of man-
darins (Citrus clementina Hort. ex Tanaka) cultivar
‘Clemenules’ collected at random from the packing line of
a citrus trading company. The first group was composed of a
total of 50 mandarins of excellent or good quality that in-
cluded fruit free of defects and fruit with slight surface
scarring produced by the grazing of the peel as it is rubbed
against the branches by the wind (“wind scarring”). The
second group was composed by other 50 fruits superficially
injured in the rind and inoculated with spores of P. italicum
isolate NAV-7, from the fungal culture collection of the IVIA
CTP (Palou et al. 2008). The fruit were stored for 3 days in a
controlled environment at 20 °C and 65 % relative humidity.
After this period, all the inoculated fruit presented lesions
due to decay of an average diameter of 20 mm.

The fruit presented different stages of maturity were used
(with external colour varying from green to orange). Scarring
or other common defects are easily visible, whereas in its early
stages, decay lesions have almost the same colour as the
healthy peel. Hence, as said above, visual discrimination of
the damage caused by this fungus is difficult under visible light.

Hyperspectral images with a size of 801×651 pixels were
acquired of all the fruit following the parameters and method-
ology described. The images were acquired in the 20 bands
proposed by Gómez-Sanchis et al. (2008a), which are 460,
480, 520, 560, 590, 600, 620, 630, 680, 730, 740, 760, 800,
820, 870, 880, 950, 960, 980 and 1,010 nm. However, the
effect introduced by the reflection of light on a spherical surface
results in a darkening of the edges of the object, while the
central part appears brighter, and therefore, the hyperspectral
images of the citrus fruits were pre-processed using the method
described in Gómez-Sanchis et al. (2008b), consisting in
correcting the intensity of the light reflected by the fruit
depending on the estimated curvature of the surface.

Labelled Dataset

In this work, an application specifically developed to select
pixels in the hyperspectral images belonging to the different

predefined classes in a supervised way was used, and storing
the value of the pixels and the wavelength and class they
belong to in the disc of the computer for later use. Segmen-
tation of the hyperspectral images was performed using a
method based on artificial neural networks. The dataset used
in the experiments was composed of a total of 80,015 pixels
that were manually selected from the images of the fruit, and
classified into two different classes; pixels belonging to non-
rotten skin (class “non-rotten”) and pixels belonging to decay
lesions (class “rotten”). The pixels belonging to the “non-
rotten” class were selected from the images of the fruit in the
first group (sound fruit and fruit with scars), while the pixels
belonging to the second class were selected from the decay
lesions in the images of the fruit in the second group. This
selection was performed using a specific application devel-
oped for this purpose. This application allowed particular
regions of interest in the image to be selected with the com-
puter mouse and the storage of the values of the 20 bands for
each pixel in the selected region. This process can be repeated
for different classes and different images.

This dataset was divided randomly into three subsets, i.e.
training set (20 %), validation set (20 %) and test set (60 %).
The first two were used to construct the neural model, and the
last one was employed to assess the model’s capacity to be
generalised. The proposed segmentation model is based on a
MLP with one hidden layer of 17 neurons, which was an
architecture that was effective in a previous trial-and-error ex-
periment carried out with a totally different set of fruit (data not
shown). The learning algorithm that was chosen was
backpropagation, and 100 random initialisations of the synaptic
weights of the neurons were performedwith the aim of avoiding
local minimums that did not provide the optimum solution.

Results

Segmentation of Pixels Belonging to Decay Lesions

Table 1 shows the statistics for the segmentation carried out
with the proposed method for the training and validation, and
test sets. The overall accuracy across all the tests is the same

Table 1 Statistics of the segmentation method based on ANN for the
training and test sets. The overall accuracy of the classifiers for training
samples and test samples was 98.60 % and 98.55 of pixels well classi-
fied respectively

Prediction/
Reality

Training and validation sets Test set

Non-rotten (%) Rotten (%) Non-rotten (%) Rotten (%)

Non-rotten 98.6 1.4 98.5 1.4

Rotten 1.4 98.6 1.5 98.6
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as that obtained in the training set (98.6 % right and 1.4 %
wrong). This finding reveals that the capacity for generali-
sation of the proposed model (i.e. the capacity to correctly
classify samples that the classifier has never seen) is good
and extends to all the elements in the confusion matrix. The
method of segmentation proposed obtained a success rate
that is very similar for both the “non-rotten” class (98.5 %)
and the “rotten” class (98.6 %), which shows that the classi-
fier is not biased towards either of the two classes.

Let us remember that these data correspond to the accu-
racy of the pixel segmentation method, not to the fruit
classification, which would be a next step involving a deci-
sion algorithm which is out of the scope of this work.
However, the model has been applied to segment the whole
multispectral images of the fruit obtaining good visual
results.

Fruit Classification

There is no a standard criteria to decide whether a fruit
should be considered as presenting decay lesions and there-
fore removed from the production line or not. It is supposed
that the smaller decay lesion detected must imply that the
fruit have to be discarded. But, in practise, the smaller unit to
be considered in the images is the pixel, and a fruit with a
single or very few pixels segmented as decay should obvi-
ously not be classified as decayed, since errors segmenting
pixels occur. Otherwise, most of the inspected fruit would be
erroneously classified as decayed. Therefore, an agreement
or criterion is needed to set a threshold. A fruit was consid-
ered as presenting a decay lesion if 5 % of the total pixels
(area) are classified as “rotten”. This threshold was already
used by Gómez-Sanchis et al. (2008a); while in other works,
this threshold is not stated (Qin et al. 2009 and 2012).

Table 2 shows the classification results of fruit for training
and test sets. Success rate is around 95 %, which is similar
to the results obtained in other works aimed at detecting
decay lesions or serious defects in the citrus fruits skin
(Gómez-Sanchis et al. 2008b; Qin et al. 2009 and 2012).
On the contrary, Kim et al. (2009) achieved a success rate
of 100 % in the detection of canker but not inspecting the
entire fruit but only small regions of interest in the images
containing the defect.

Figure 5 shows the segmentation performed on ten exam-
ple fruits from the database. These examples are representa-
tive for a wide range of situations, in our case fruits in
different stages of ripeness, with common damage and rot-
ting. The defects observed in the fruit were labelled manually
by an expert. The areas marked in yellow showing scars,
spots with an abnormal colour or stems. The areas marked in
blue are the areas that are affected by the early decay lesions.
The segmented images show the areas that the system classi-
fied as “non-rotten” in orange and those classified as “rotten”
in purple.

Conclusions

This work presents the main design aspects that a researcher
in an applied subject should take into account in order to set
up a hyperspectral vision system based on LCTF technology
from its fundamental components. Details are given of the
main points involved in designing this system, which is used
to acquire images of spherical fruits (in this particular case,
citrus fruits), and the design of each part of the system is

Table 2 Confusion matrix for the classification of fruit

Prediction/
reality

Training and validation sets Test set

Non-rotten (%) Rotten (%) Non-rotten (%) Rotten (%)

Non-rotten 95.0 5.0 93.3 6.7

Rotten 5.0 95.0 3.4 96.6

Fig. 5 RGB images and segmented images of mandarins with decay
lesions. In the segmented images, the orange pixels represent the
healthy areas of the fruit, while the purple areas represent zones that
the system has classified as rotten. The blue outlines are the areas that an
expert classified visually as decay lesions
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described while also offering a methodology for the correct
acquisition of images.

Several auxiliary elements were designed. These included
the dome-shaped inspection chamber and the filter guidance
and positioning system for acquiring hyperspectral images in
a systematic manner using the two LCTF filters (VIS-07 and
NIR-07), which made it possible to carry out the trials with a
large number of samples.

We have justified the need to develop a software applica-
tion that allows the different elements of the system to be
synchronised, while also performing tasks related to calibra-
tion and the systematic acquisition of hyperspectral images.
In addition, we attained the optimum working parameters of
the hyperspectral vision system (working spectral range,
resolution, heat-up time of the system and exposure times per
band) that were needed to obtain high-quality hyperspectral
images. A methodology has been put forward for unifying
the spectral response of the system using variable exposure
times and assuming a linear response with the exposure time
of the CCD. Lastly, a protocol for acquiring hyperspectral
images using the system developed in this work has also been
proposed.

The system described above was used to detect rotting in
citrus fruits by means of the hyperspectral system, since this
is a problem that has still not been solved using conventional
vision systems based on colour images. Our results show that
the proposed technique does allow a good segmentation of
decay lesions in multispectral images of citrus that lead to a
rotting to be detected in the early stages of its development in
citrus fruits.
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