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Abstract This study investigated the potential of using four
spectroscopic techniques including visible–short-wave near in-
frared, long-wave near infrared (LNIR), mid-infrared, and nu-
clear magnetic resonance (NMR) spectroscopy in tandem with
multivariable selection and calibration for rapid determination
of three important ω-3 polyunsaturated fatty acids (PUFA),
namely eicosapentaenoic acid (EPA), docosahexaenoic acid
(DHA), and docosapentaenoic acid (DPA) in fish oil. Quanti-
tative models were established between the spectral data and
reference PUFA contents of samples based on partial least
squares regression (PLSR) algorithm. Successive projections
algorithm (SPA) and uninformative variable elimination (UVE)
were used to select the most important variables for prediction.
The average decrements of 23.20 % for root mean square error

of cross-validation (RMSECV) and 64.90 % for the absolute
value between root mean square error of calibration and
RMSECV (AV_RMSE) in all 12 cases achieved after over
90 % variables were eliminated. UVE was also found to be
helpful to improve the efficiency of SPA’s variable selection in
8/12 cases. The best predictions for EPA, DHA, and DPAwere
all achieved by NMR spectroscopy (determination coefficients
of cross-validation (rCV

2 ) of 0.970, 0.982, and 0.983 and the
RMSECV of 11.48, 4.73, and 0.77 mg/g for the EPA, DHA,
and DPA predictions, respectively). LNIR spectra also did good
predictions similar to NMR. The results demonstrated that the
laborious and time-consuming gas chromatography method
could be replaced by spectroscopic techniques in tandem with
PLSR modeling and variable selection in order to provide a
rapid and reliable inspection of PUFA in fish oil.

Keywords Fish oil . Polyunsaturated fatty acids . Nuclear
magnetic resonance .Visible and near infrared spectroscopy .

Mid-infrared spectroscopy . Variable selection

Introduction

As derived from the fish tissues, fish oil contains a large
amount of long-chain ω-3 (n-3) polyunsaturated fatty acids
(PUFA). It was reported that about 20% of the total fatty acids
in fish oil are PUFA (Cozzolino et al. 2005). PUFA have been
proved to have protective properties against cancer (Berquin
et al. 2007), cardiovascular disease (Wang et al. 2006),
Parkinson’s disease (Bousquet et al. 2008), cognitive decline
(Morris et al. 2005), rheumatoid arthritis (Rennie et al. 2003),
lupus (Wright et al. 2008), depression (Nemets et al. 2006),
and psoriasis (Wolters 2005). PUFA also have beneficial
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effects on the development of infant’s nervous system (Jensen
et al. 2010), visual system (Institute of Medicine 2005), and
immune system (Calder et al. 2010). Due to low dietary in-
takes of PUFA in daily diet, fish oil has become one of the
popular dietary supplements of PUFA for consumers. The
market of fish oil for providing rich PUFA has rapidly ex-
panded in recent years.

The quality of PUFA in fish oil should be strictly controlled.
Currently, inaccurate listing of PUFA levels is a core quality
problem for fish oil supplements. For some fish oil products,
the amounts of PUFA shown on the packages do not match the
actual contents in the fish oil. This mislabeling seriously in-
fringe on the rights and interests of consumers. However, it is
very difficult for consumers to tell the factual contents of PUFA
in fish oil barely by using their naked eyes to observe the fish
oil. Traditionally, fatty acids in foods and biological samples are
customarily analyzed by gas chromatography (GC) of their
methyl ester derivatives or directly as the ethyl esters (Curtis
2007). However, GC methods always take a very long time to
analyze and need a lot of sample preparation. There are con-
siderable managing steps involved inGC processes, whichmay
cause oxidation of lipids, give variable results depending on the
columns used, and pose difficulty in correctly identifying each
fatty acid in the chromatograms (Igarashi et al. 2000). In
addition, besides the inspection of PUFA in final products, it
is needed for the determination of fatty acids in fish oil during
the process in an industrial operation, preferably in real time to
monitor the progress of the enrichment and to determine the
optimal end point (Azizian et al. 2010); however, GC methods
are not suitable for rapid determination of fish oil’s quality. The
lack of rapid tools for determining PUFA content in fish oil has
been a main obstacle for the development of quality control for
fish oil and promoting the development of better sensing tech-
niques for such objectives.

Nowadays, some spectroscopic techniques, such as visi-
ble and near infrared (Vis–NIR) spectroscopy, mid-infrared
(MIR) spectroscopy, and nuclear magnetic resonance
(NMR) spectroscopy, have been successfully proved to be
efficient and advanced tools for rapid and nondestructive
determination of food quality. Visible spectra mainly contain
the pigment information, and near infrared spectra arise from
overtones and combination bands of C–H, O–H, N–H, and
S–H stretching and bending vibrations. Mid-infrared spectra
provide more information of frequencies and intensities,
which are richer and stronger than near infrared spectra as
bands in the mid-infrared spectra are fundamental bands of
near infrared spectral bands (Wu et al. 2008). NMR spectros-
copy measures the resonant frequencies of certain atomic
nuclei present in different chemical surroundings, which pro-
vide physical and chemical properties of molecules where the
atoms are contained. Different from the time-consuming GC
measurement, spectroscopic techniques have the advantages
of simplicity, rapid, and minimal sample preparation, so that

they agree with the green chemistry principle. PUFA have
been rapidly determined using near infrared (Azizian et al.
2010), mid-infrared (Flåtten et al. 2005), Raman (Olsen et al.
2007), or NMR (Sacchi et al. 1993; Miyake et al. 1998; Tyl
et al. 2008) spectroscopic techniques. Besides, endeavors of
using near infrared spectroscopy (NIR) have been reported for
the quality evaluation of fish oil, such as iodine value and
saponification value (Endo et al. 2005), and moisture
(Cozzolino et al. 2005). NMR spectroscopy also has many
successful applications in the quality assessment of oil prod-
ucts (Guillén and Ruiz 2003; Masoum et al. 2007).

The main components of PUFA in fish oil include
eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA),
and docosapentaenoic acid (DPA). All of these acids are
omega-3 fatty acids, in which the first double bond is located
at the third carbon from the methyl end. Clinical investigations
show that EPA can treat several psychiatric and neurodegener-
ative diseases due to its anti-inflammatory and neuroprotective
effects (Song and Zhao 2007). Studies have also suggested that
EPAmay be of benefit in depression (Huan et al. 2004; Martins
2009). DHA is the predominant fatty acid of membrane phos-
pholipids in the brain grey matter and in the retina of mammals
(Guesnet and Alessandri 2011). Early DHA intervention has
beneficial effects on cognition in age-related cognitive decline
(Yurko-Mauro et al. 2010). In addition, DHAwas found to have
the ability of inhibiting growth of human colon cancer cells
(Schønberg et al. 2006) and was shown to enhance the efficacy
of chemotherapy in prostate cancer cells (Shaikh et al. 2008).
On the other hand, available data suggest that DPA has bene-
ficial health effects (Kaur et al. 2011). Therefore, it is our
interest to investigate the feasibility of using spectroscopic
techniques for determining specific contents of EPA, DHA,
and DPA in fish oil. To the best of our knowledge, this is the
first study on measuring these important PUFA contents in fish
oil using visible–short-wave near infrared spectroscopy (Vis–
SNIR), long-wave near infrared spectroscopy (LNIR), MIR,
and NMR spectroscopy in tandem with multivariate selection
and calibration and comparing the performances of these spec-
troscopic techniques.

The overall objective of this study was to compare Vis–
SNIR, LNIR, MIR, and NMR spectroscopy in tandem with
multivariate selection for the rapid and reliable assessment of
EPA, DHA, and DPA in fish oil. The specific objectives of
the current work were to (1) acquire spectral data of tested
fish oil samples in Vis–SNIR (346–1,050 nm), LNIR (870–
2,534 nm), MIR (4,000–400 cm−1), and NMR (0–7.4 ppm)
regions; (2) select important variables that were most corre-
lated to the assessments of EPA, DHA, and DPA in fish oil
by using successive projections algorithm (SPA) and
uninformative variable elimination (UVE) algorithm; (3)
establish multivariate calibration models using partial least
squares regression (PLSR) based on the whole range spectra
or spectra at the selected variables; (4) compare the
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prediction abilities of four spectroscopic techniques Vis–
SNIR, LNIR, MIR, and NMR spectra; and (5) evaluate the
improvement ability of considering UVE before the SPA
calculation for the variable selection.

Materials and Methods

Sample Preparation and Spectral Measurements

Fish oil from Amway Nutrilite®, By-Health®, and General
Nutrition Centers (GNC)® were purchased from the local
markets, resulting in 28 sets of fish oil samples obtained.
Four samples were obtained from four batches with differ-
ent production time for each set in the NMR analysis, and
five samples were obtained from five batches with different
production time for each set in other spectroscopic analysis.
Therefore, there were 140 (5 samples per set×28 sample
sets), 140 (5 samples per set×28 sample sets), 140 (5
samples per set×28 sample sets), and 112 (4 samples per
set×28 sample sets) samples obtained for Vis–SNIR, LNIR,
MIR, and NMR spectral measurements, respectively. A
USB4000 miniature fiber optic spectrometer (Ocean Optics,
Inc., USA) was used for the spectral scanning in the wave-
length range of 346–1050 nm that covers the Vis–SNIR
spectral wavelengths. The measurement of LNIR, which
covers the wavelength range of 870–2,534 nm, was
achieved by using an NIR 256–2.5 spectrometer (Ocean
Optics, Inc., USA). Both spectrometers were equipped with
a light source, SMA-terminated optical fibers, and a cuvette
holder (DH2000, P400-2-VIS/NIR, and CUV-UV Holder
for 1-cm cuvettes, respectively, Ocean Optics, Inc., USA).
Optical fibers were used for connecting both source and
detector to the cuvette holder. The quartz cell with a 1-cm
path length was filled with oil sample and was inserted into
the cuvette holder for the transmittance spectral measure-
ment. An FTIR spectrometer Nicolet iS10 (Thermo Fisher
Scientific Inc., Waltham, MA, USA) attached with a ZnSe
attenuated total reflection accessory was used for the MIR
acquisition in the wave number range of 4,000–400 cm−1.
The NMR spectra of samples in the chemical shift from 0 to
7.4 ppm were collected by a Bruker Avance 500 MHz
NMR spectrometer (Bruker, Karlsruhe, Germany) operating
at 500.17 MHz for the proton nucleus at 298 K. A full
spectrum of each sample was recorded with reference to
tetramethylsilane. An exponential window function with a
line-broadening factor of 1 Hz was applied to the free
induction decay before the Fourier transformation. The
1H-NMR spectra were phased and baseline corrected using
TopSpin 2.1 (Bruker, Karlsruhe, Germany) and were auto-
matically reduced by using the AMIX (version 2.5, Bruker
GmbH, Karlsruhe, Germany).

GC Analysis

GC was used to detect the reference contents of EPA, DHA,
and DPA in fish oil samples. The fish oils were saponified
and the fatty acids were esterified (with a 30 % solution of
BF3 in methanol) in accordance with the AOAC method
(AOAC Method 963.22 2000). The methyl esters were ana-
lyzed in a gas chromatography (Agilent 6890 N; Agilent
Technologies Inc., USA) with a flame ionization detector and
an Agilent DB-1701 capillary column (30 m×0.32 mm×0.25-
μm; Agilent Technologies Inc., USA). A 1-μL aliquot of
treated sample was injected with nitrogen (99.995 % purity)
as a carrier gas at a flow rate of 3.0 mL/min. The column
temperature was maintained at 180 °C for 2 min after injec-
tion then programmed at a heating rate of 10 °C/min to
240 °C (hold 10 min). The injector port and the detector
temperatures were set at 250 °C. The flow rates of air and
hydrogen were 450 and 45 mL/min, respectively. Identifica-
tion of the fatty acids was carried out using the retention times
relative to commercial methyl esters standards (EPA, DHA,
DPA) (Sigma, USA). Calculations were based on previous
analysis of standard mixtures and individual correction
coefficients.

Spectral Preprocessing

Spectral preprocessing is an integral part of chemometric
analysis, which is usually performed prior to model calibra-
tion. The goal of the preprocessing is to reduce the effects of
length variation of light path and light scattering and to
enlarge the hidden information in the original spectral data.
It should be noticed that spectral preprocessing is not oblig-
atory and should be considered only when it can really
improve the model’s predicting ability. In this work, seven
widely used preprocessing algorithms were considered,
which were Savitzky–Golay smoothing (SGS), standard nor-
mal variate (SNV), multiplicative scatter correction (MSC),
Savitzky–Golay first derivative (1st Der), Savitzky–Golay
second derivative (2nd Der), SGS combined with 1st Der,
and SGS combined with 2nd Der. Savitzky–Golay smooth-
ing is an averaging algorithm that fits a polynomial equation
to the data points to reduce noise from the spectral data
without reducing the number of spectral variables. As a
row-oriented transformation, SNV centers and scales each
individual spectrum to remove the spectral scatter. MSC is
designed to correct scatter effects in spectral data and also
has functions for treating other similar effects, such as path
length, offset shifts, and interference. Derivatives are accom-
plished to correct baseline effects in spectra and resolve
nearby peaks. The prediction abilities of these preprocessing
algorithms were compared based on the PLSR calibration
with the full range of spectra.
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Multivariate Calibration

One of the advantages in using spectroscopic techniques is
the wealth of information that reside in the spectra, which
requests the use of intriguing chemometric tools. Such mas-
sive amounts of data contain many uninformative signals
and need a strategy of multivariate chemometrics to calibrate
a quantitative/qualitative model by extracting meaningful
information efficiently. In this study, such strategy was
implemented by using PLSR algorithm to extract meaningful
information from the massive amounts of spectral data,
which were then used to establish a quantitative relationship
with the concentrations of EPA, DHA, and DPA in corre-
sponding fish oil. Before the calculation of PLSR, the spec-
trum of each sample was arranged together to form a matrix
consisting of a spectral matrix (X) as response variables and a
column vector (Y) as the dependent variable. PLSR was then
aimed to establish a quantitative relationship between the
spectral matrix (X) and the column vector (Y). The column
vector in this work was the reference values of one of the
PUFAs (EPA, DHA, or DPA) obtained from the traditional
GC measurement.

PLSR has been widely used as a classical multivariate
calibration technique for spectral analysis with predictive pur-
pose. Known as a bilinear factor method, PLSR attempts to
find multidimensional direction in the spectral matrix (X) that
explains the maximum multidimensional variance direction in
the column vector (Y). In PLSR calculation, both the spectra
(response variables) and concentration (dependent variables)
information are decomposed simultaneously, ending in a set of
orthogonal factors (latent variables, LVs) projected. Different
from principal component regression, dependent variables are
actively considered in the decomposition process of PLSR,
which ensures that the first few LVs are most related to predict
dependent variables. Typically, the optimal LV set should be
used in the models to obtain efficient and robust models and
avoid overfitting. Predicted residual error sum of squares
(PRESS) is commonly used as a standard to determine the
optimal LV set, in which the PRESS values of the first few LVs
are calculated and the LVs with the lowest value of PRESS are
defined as the optimal LV set. The PRESS is determined using
the following equation in full cross-validation:

PRESS ¼
X

YVal−YRefð Þ2 ð1Þ

where YVal is the calculated values of EPA, DHA, or DPA in
fish oil samples estimated by full cross-validation, and YRef are
the reference values of samples.

Variable Elimination

Variable selection is a critical step in the spectra analysis
(Balabin and Safieva 2011; Balabin and Smirnov 2011).

Because of possessing hundreds or thousands of spectral vari-
ables, spectral data are characterized as high dimensionality,
which can lead to convergence instability. On the other hand,
congruent spectral variables often exhibit similar spectral
information, which is a well-known problem of multi-
collinearity. The correlated variables are considered as redun-
dancy. In addition, as useless or irrelevant information for the
model calibration might be contained in some spectral vari-
ables, these variables should be eliminated to avoid worsening
the predictive ability of the model. Therefore, the selection of
informative variables is preferable for reducing the spectral
high dimensionality and multicollinearity, thus simplifying
the structure of the calibration model and improving the
model’s predictive capability. In the variable reduction
scheme, only those variables that are informative for the
model calibration and have less multicollinearity are selected,
and redundant, uninformative, and multicollinear variables are
not considered in the model calibration and thus eliminated.

In this paper, two novel variable selection algorithms were
investigated, namely SPA and UVE. SPA is a variable selec-
tion algorithm proposed by Araujo et al. (2001). It was
designed to solve the collinearity problems of spectral vari-
ables by selecting variables with minimal redundancy. There
are two steps in SPA. The first step consists of a sequence of
projection operations carried out in the columns of the spec-
tral matrix, which constructs candidate subsets of variables.
The second step consists of evaluating candidate subsets of
variables according to the prediction performance of the
calibrated model. Details of SPA description are shown in
the literature (Wu et al. 2012). Although SPA could select a
subset of variables with a minimum of collinearity, some of
these variables might be uninformative and could worsen the
model’s performance in some cases. On the other hand, UVE
is a PLSR-based variable selection algorithm proposed by
Centner et al. (1996), which tries to eliminate the variables
that have no more information for modeling than noise. In
UVE process, the stability of each variable is calculated by
dividing the mean of the PLSR regression coefficients by the
standard deviation of the regression coefficients of the vari-
able. With the help of using an artificial random variable
matrix as a reference, these spectral variables that are less
important in the model than the random variables are elim-
inated. However, there would be still dozens or hundreds of
variables selected by UVE and these variables might have a
problem of multicollinearity. In order to complement advan-
tages of both methods and overcome their shortcomings, it is
suggested to conduct SPA on informative variables selected
by UVE, which is called UVE-SPA variable selection strat-
egy. It is dedicated that the variables selected in this work
were wavelength (Vis–SNIR and LNR spectroscopy), wave
number (MIR spectroscopy), or chemical shift (NMR spec-
troscopy) variables, rather than latent variables in PLSR
models.
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Model Evaluation

In the spectral analysis for quantitative regression, the cali-
brated spectral model must be evaluated for its validity by the
validation process. According to some other works (Marini
et al. 2003; Cozzolino et al. 2007), cross-validation is pre-
ferred as the validation method when the number of samples is
limited (Martens and Dardenne 1998). Many works working
on spectral analysis used cross-validation instead of splitting
samples into a calibration set and a prediction set (ElMasry
et al. 2011; Papadopoulou et al. 2011; Rivero et al. 2012;
Kimiya et al. 2013), which show that the cross-validation is a
commonly used and accepted validation method. Since the
samples from the same sample set that had similar properties
should not be validated in the leave-one-out way, segmented
cross-validation was applied instead of leave-one-out cross-
validation for the validation purpose. In segmented cross-
validation, one segment is kept out of the calibration at a time.
By choosing different segments, the predictions can be made
on all segments for the validation procedure. Although leave-
one-out cross-validation could be too optimistic sometimes,
the cross-validation with several samples kept out for valida-
tion at a time was proved to be able to give a more realistic
idea of the predictive power of the model than leave-one-out
cross-validation (Sileoni et al. 2013). In this study, there were
28 segments generated to represent the 28 sample sets of fish
oil for the segment cross-validation in the PLSR process. After
the PLSR models were calibrated, their accuracy and predic-
tive ability were evaluated in terms of determination coeffi-
cient of calibration (rC

2) and root mean square error of calibra-
tion (RMSEC) for the calibration procedure and determination
coefficient of cross-validation (rCV

2 ), root mean square error of
cross-validation (RMSECV), and residual predictive devia-
tion (RPD) for the validation procedure. Generally, a good
model should have high determination coefficients (rC

2 ) and
(rCV

2 ) and RPD as well as low root mean square error (RMSEC
and RMSECV). Besides, a robust model with less overfitting
should have a small absolute value between RMSEC and
RMSECV (AV_RMSE). The achievements of preprocessing
algorithms and multivariate calibration were conducted using
Unscrambler V9.7 (CAMO Process AS, Oslo, Norway), while
the calculation of SPA and UVE was performed based on
MATLAB 7.12.0 (MathWorks, Natick, USA).

Results and Discussion

Spectra of Fish oil

Typical spectral profiles of the tested fish oil samples in Vis–
SNIR, LNIR, MIR, and NMR ranges are shown in Fig. 1.
Generally, the shapes of the original spectra were quite
homogeneous for different samples in all four sub-images.

Due to spectra’s overtone and combination absorptions of
molecules, the spectral transmittance of fish oil shows quite
even profiles in visible and near infrared spectral regions
(Fig. 1a, b) with only some broadband peaks. In the visible
spectral region (429–700 nm, Fig. 1a), the spectral pattern
had high transmittance in red regions (about 550–650 nm)
and low transmittance in blue region (about 430–500 nm),
which explained why fish oil gets its golden color. There
were some transmittance peaks over the entire near infrared
spectral region (700–2337 nm, Fig. 1a, b). According to the
literatures of Osborne and Fearn (1986), two weak peaks
found at around 900 and 1020 nm in Fig. 1a were assigned,
respectively, to C–H stretching third overtone of CH3 and a
combination of C–H stretching first overtone and C–H de-
formation second overtone of CH3. Medium peak between
1,100 and 1,300 nm was due to C–H stretching second
overtone of CH, CH2, CH3, and HC=CH. Another medium
peak between 1,300 and 1,550 nm was caused by a combi-
nation of C–H stretching first overtone and C–H deformation
first overtone in CH, CH2, and CH3. The high transmittance
peak at 1,760 nm was assigned to C–H stretching first
overtone of CH2 and CH3. There were two high transmit-
tance peaks after 2,000 nm. In specific, the one at around
2,200 nm was caused by a combination of CH2 stretching
and C= stretching of HC=CH, and the one at around
2,300 nm was due to a combination of C–H stretching and
C–H deformation in CH3 and CH2.

In the MIR region as shown in Fig. 1c, the transmittance
peak at around 700 cm−1 was assigned to the rocking and
bending out vibration of –(CH2)n– and –HC=CH– (cis). Two
medium peaks were found at around 1,100 and 1,030 cm−1,
which were due to –C–O stretching. The one at around
1,150 cm−1 was assigned to stretching and bending vibration
of –C–O and –CH2, and –C–H (CH3) bending (sym) vibra-
tion was found at around 1,370 cm−1. The transmittance
peaks at around 1,460, 1,650, and 1,740 cm−1 were assigned
to –C–H (CH2, CH3) bending (scissoring), –C=C– (cis)
stretching, and –C=O (ester) stretching vibrations, respec-
tively. There were also some peaks between 2,800 and
3,100 cm−1, in which the one at around 3,010 cm−1 was
assigned to =C–H (cis) stretching, the one at around
2,920 cm−1 was assigned to –C–H (CH2) asym stretching,
and the one at around 2,855 cm−1 was assigned to –C–H
(CH2) sym stretching. In the NMR spectra as shown in
Fig. 1d, the peak between 5.20 and 5.50 ppm was assigned
to –CHOCOR of glyceryl group and –HC=CH– of acyl
group; the peak between 4.10 and 4.30 ppm was assigned
to –CH2OCOR of glyceryl group; the peak between 2.75 and
2.90 ppm was assigned to =HC–CH2–CH= of acyl group;
the peak between 2.25 and 2.40 ppmwas assigned to –OCO–
CH2– of acyl group; the peak between 1.95 and 2.15 ppm
was assigned to –CH2–CH=CH– of acyl group (except for –
CH2– of DHA acyl group in β position); the peak between
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1.67 and 1.74 ppm was assigned to –OCO–CH2–CH2– of
EPA acyl group; the peak between 1.55 and 1.65 ppm was
assigned to –OCO–CH2–CH2– of acyl group (except for
DHA and EPA acyl groups); the peak between 1.20 and
1.40 ppm was assigned to –(CH2)n– of acyl group; the peak
between 0.94 and 1.00 ppm was assigned to –CH3 of poly-
unsaturated ω-3 acyl group; and the peak between 0.86 and
0.93 ppm was assigned to –CH3 of saturated, monounsatu-
rated ω-9 and ω-7, and diunsaturated ω-6 acyl groups. The
assignments of wave number for MIR and chemical shift for
NMR were carried out according to the literature of Guillen
et al. (2008).

As a conclusion from analyzing Fig. 1, many chemical
molecules and functional groups of constituents in fish oil
had their spectral information that was important to deter-
mine PUFA contents of fish oil in a quantitative manner.
However, when the spectra of more samples were consid-
ered, their profiles had a similar pattern. It is difficult to
directly observe spectra for the PUFA determination when
more samples were considered, as their spectral curves
would be overlapped and there were no feature peak-
related PUFA contents directly. Thus, chemometrics were
employed for the data mining and analysis purpose, resulting
in calibrated quantitative models. In addition, because the
noise-to-signal ratios of the spectral detectors in the spectro-
scopic systems were rather low in some parts of spectral data,
the spectral matrix with only the spectral range of 429–
1,048 nm for Vis–SNIR spectral matrix (3,250
variables×140 samples), the range of 1,031–2,337 nm for
LNIR spectral matrix (201 variables×140 samples), and the
ranges of 650–1,494, 1,687–1,782, and 2,820–3,036 cm−1

for MIR spectral matrix (2,400 variables×140 samples) were
used for further developing the calibration models. For NMR
spectra, the chemical shifts with values less than 40 were
eliminated as there was no useful information but only noise,
resulting in the NMR spectral matrix with the size of 3,636
variables×112 samples. In addition, the reference values of
PUFAs obtained using GC analysis are shown in Table 1.
The correlation coefficients of EPA and DHA, EPA and
DPA, and DHA and DPAwere 0.66, 0.71, and 0.83.

EPA Analysis

Calibration of multivariate models was first executed using
the full range spectra of samples. A classic linear calibration
method named PLSR was applied for the purpose of model
calibration based on the spectral information of samples and
their corresponding reference PUFA contents determined by
GC method. After the model was established, the segment
cross-validation was carried out in order to estimate the
predictive capability of the established model and to evaluate
the model’s overfitting level.

Calibration Based on Full Range Spectra and Analysis
of Spectral Preprocessing

At the calibration stage of using full range spectra, besides
the use of original spectral data, the preprocessed spectra of
different preprocessing algorithms (SGS, SNV, MSC, 1st
Der, 2nd Der, SGS-1st Der, and SGS-2nd Der) were also
considered in order to determine the best input spectral data
for the PLSR calibration and variable selection. When Vis–

Fig. 1 Typical spectral profiles of the tested fish oil samples. a Visible and short-wave near infrared spectra. b Long-wave near infrared spectra. c
Mid-infrared spectra. d NMR spectra
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SNIR spectra were considered, the PLSR model established
using original spectral data had a good result with rCV

2 of
0.852 and RMSECVof 25.69 mg/g. When the seven spectral
preprocessing algorithms (SGS, SNV, MSC, 1st Der, and
2nd Der) were considered respectively, the best performance
was obtained by the MSC-PLSR model with r CV

2 of 0.884
and RMSECV of 22.79 mg/g. Since there was no much
improvement by considering the preprocessing, the original
Vis–SNIR spectra were used in further calculation. When
LNIR spectra were considered, although the original spectra
only obtained the PLSR model with r CV

2 of 0.773 and
RMSECV of 31.83 mg/g, the performances of seven PLSR
models with spectral preprocessing were all better than that
of the PLSR model with the original spectra. The best pre-
diction result with rCV

2 of 0.920 and RMSECVof 18.89 mg/g

was obtained when 2nd Der was applied. For both the MIR
and NMR spectra, the best results (shown in Table 2) were
achieved when the original spectra were used as the inputs of
PLSR model. The prediction became worse when the spec-
tral preprocessing was considered for both MIR and NMR
spectra.

SPA Calculation Based on the Full Range Spectra

The selection of the most important variables is critical to
analyze the spectral data, which leads to reducing the high
dimensionality and multicollinearity of spectra and improv-
ing the model’s predictive ability in terms of accuracy and
robustness. In the “Calibration Based on Full Range Spectra
and Analysis of Spectral Preprocessing” section, the full

Table 1 Statistics of eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid concentration (in milligrams per gram) of the fish oil
samples

PUFA Maximum Minimum Mean Standard deviation Range

EPA 353.22 104.87 214.29 64.44 248.35

DHA 223.33 100.25 173.89 33.79 123.08

DPA 32.6 10.95 21.57 5.71 21.65

PUFA polyunsaturated fatty acids, EPA eicosapentaenoic acid, DHA docosahexaenoic acid, DPA docosapentaenoic acid

Table 2 Predictive results of eicosapentaenoic acid (EPA) content in fish oil using infrared spectroscopy and nuclear magnetic resonance with
chemometrics (available range of EPA is between 104.87 and 353.22 mg/g)

Sample
number

Variable selection
method

Variable number Number of latent
variables

Calibration Prediction

rC
2 RMSEC

(mg/g)
rCV
2 RMSECV

(mg/g)
RPD

Vis–SNIR 140 Full range 3,250 9 0.986 7.54 0.852 25.69 2.508

Vis–SNIR 140 SPA 8 7 0.912 19.16 0.865 24.53 2.627

Vis–SNIR 140 UVE 1,509 8 0.986 7.67 0.942 16.07 4.010

Vis–SNIR 140 UVE-SPA 12 8 0.957 13.30 0.891 22.10 2.916

LNIR 140 Full range 201 9 0.991 6.06 0.920 18.89 3.411

LNIR 140 SPA 16 10 0.982 8.66 0.932 17.43 3.697

LNIR 140 UVE 123 8 0.992 5.74 0.943 15.96 4.038

LNIR 140 UVE-SPA 10 5 0.976 9.91 0.944 15.77 4.086

MIR 140 Full range 2,400 8 0.987 0.73 0.918 19.15 3.365

MIR 140 SPA 8 6 0.926 17.55 0.894 21.76 2.961

MIR 140 UVE 551 7 0.990 6.44 0.974 10.84 5.945

MIR 140 UVE-SPA 7 6 0.930 17.06 0.903 20.82 3.095

NMR 114 Full range 3,636 8 0.985 7.90 0.959 13.56 4.752

NMR 114 SPA 10 5 0.969 11.41 0.954 14.29 4.509

NMR 114 UVE 1,826 4 0.977 9.80 0.967 12.19 5.286

NMR 114 UVE-SPA 8 5 0.976 9.86 0.970 11.48 5.613

Vis–SNIR visible–short-wave near infrared spectroscopy, LNIR long-wave near infrared spectroscopy,MIRmid-infrared spectroscopy, NMR nuclear
magnetic resonance, SPA successive projections algorithm, UVE uninformative variable elimination, UVE-SPA SPA calculation on informative
variables selected by UVE, rC

2 determination coefficient of calibration, RMSEC root mean square error of calibration, rCV
2 determination coefficient

of cross-validation, RMSECV root mean square error of cross-validation, RPD residual predictive deviation
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range spectra were delivered to the model calibration and no
consideration was given to select the important variables
contributed for the EPA prediction. In the current section
and Sections 3.2.3 and 3.2.4, three variable selection strate-
gies of SPA, UVE, and UVE-SPAwere considered to select
the important variables.

In the SPA calculation, after comparing the root mean
square error (RMSE) values of different candidate subsets
of variables that were obtained by a sequence of projection
operations, eight variables which had the lowest RMSE were
selected from the full Vis–SNIR spectra for the EPA analysis.
The selected variables then formed new reduced spectral
matrix by selecting the spectral data only at the selected
variables, which were then set as the inputs of PLSR model
instead of the full range spectra (Table 2). For the Vis–SNIR
spectral analysis, the SPA-PLSR model with only eight input
variables (0.25 % of variables in the full range) had a similar
result with rCV

2 of 0.865 and RMSECVof 24.53 mg/g com-
pared with the result of the PLSR model with the full range
spectra (F-PLSR). For the LNIR, MIR, and NMR spectral
analysis, 16, 8, and 10 variables were selected by SPA. The
input variables of corresponding SPA-PLSR models de-
creased by 92.04, 99.67, and 99.72 %, respectively, and the
corresponding RMSECV decreased by 7.73 %, increased by
13.63 %, and increased by 5.38 %. In addition, the
AV_RMSE of SPA-PLSR models was only 29.59, 68.36,
22.86, and 50.88 % of those of F-PLSR models for Vis–
SNIR, LNIR, MIR, and NMR spectral analysis, respectively,
showing that the consideration of SPA could reduce the
multicollinearity of inputs of the PLSR models and improve
the models’ robustness. This is agreed with the conclusion of
Wu et al. (2013).

UVE Calculation Based on the Full Range Spectra

In the process of UVE calculation, the importance of both
spectral variables and random variables was quantitatively
measured according to their stability, which is shown in
Fig. 2 (take Vis–SNIR spectra as an example). Spectra vari-
ables were at the left part of the sub-image, while random
variables were at the right part. Two horizontal lines were the
lower and upper cutoffs used for the variable elimination.
Variables that had stability within the cutoff lines were
treated as uninformative ones and were eliminated. The
remaining variables were then used as the inputs of PLSR
models, whose results are shown in Table 2. In general,
consideration of UVE significantly improved the predictive
ability of PLSR models for the Vis–SNIR and MIR spectral
analysis. Their RMSECV decreased by 37.45 and 43.39 %
compared with the corresponding F-PLSR models. Mean-
while, the RMSECV decreased by 15.51 and 10.10 % for
LNIR and NMR spectral analysis. The results indicated that
variables with no more information for EPA prediction than

noise were eliminated by the UVE analysis. Compared with
the results of SPA-PLSR models, UVE-PLSR models had
better prediction capabilities. However, it was noticed that
although uninformative variables were eliminated by UVE
analysis, there were still hundreds of variables remained
because UVE can only select informative variables that
might have a problem of multicollinearity. In order to obtain
the most important variables that were informative and had
no multicollinearity shortcoming, SPAwas further applied to
select the important variables based on the informative vari-
ables selected by UVE.

SPA Calculation Based on the UVE-Selected Spectra

Similar to the SPA calculation based on the full range spec-
tra, the best candidate subset of variables was determined by
RMSE screen plot in the SPA calculation based on the UVE-
selected spectra, resulting in 18, 14, 13, and 13 variables
selected from Vis–SNIR, LNIR, MIR, and NMR spectra,
respectively. Table 2 presents the main statistics achieved
in the calibration and validation of the PLSR models devel-
oped by using the important variables selected by UVE-SPA.
The variables selected by UVE-SPA decreased by 99.20,
91.87, 98.73, and 99.56 % compared with the variables
selected by UVE for Vis–SNIR, LNIR, MIR, and NMR
spectra, respectively, showing that the calculation of SPA
after UVE could significantly reduce the input variables of
UVE-PLSR models. Meanwhile, the UVE-SPA-PLSR
models could maintain the accuracy of the UVE-PLSR
models for LNIR and NMR spectra, but the RMSECV of
UVE-SPA-PLSR models for Vis–SNIR and MIR spectra
increased by 37.52 and 92.07 % compared with those of
the UVE-PLSRmodels. On the other hand, the consideration
of UVE before SPA improved the efficiency of the SPA
calculation for all the spectroscopic techniques analyzed in
this study except for Vis–SNIR spectra. The improvement of
SPA calculation by conducting SPA after UVE analysis is
agreed with the results of other works (Chen et al. 2010; Wu

Fig. 2 Stability of each variable calculated in UVE process (take Vis–
SNIR spectra as an example). Two horizontal lines indicate the lower
and upper cutoff
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et al. 2010; Wu et al. 2011). The numbers of the variables
selected by UVE-SPA decreased by six, one, and two than
those selected by only SPA for LNIR, MIR, and NMR
spectra, respectively, meanwhile their RMSECV decreased
by 9.52, 4.32, and 19.66 %. The AV_RMSE also decreased
by 33.18, 10.69, and 43.75 % for these three kinds of spec-
troscopy techniques, showing that their UVE-SPA-PLSR
models were more robust than their SPA-PLSR models.
For the Vis–SNIR spectra, although its UVE-SPA-PLSR
model had a lower RMSECV and higher rCV

2 , there were 12
variables used, while its SPA model only had eight variables.
Considering the UVE-SPA model had a larger AV_RMSE,
the important variables for Vis–SNIR spectra in EPA analy-
sis were determined as those selected by SPA. In addition, by
comparing the results of the F-PLSR models and the corre-
sponding best PLSR models with variable selection (BV-
PLSR model), namely the SPA-PLSR model for Vis–SNIR
spectra and the UVE-SPA-PLSR models for LNIR, MIR,
and NMR spectra, it was found that the RMSECV values of
the BV-PLSR models decreased by 4.52, 16.52, and 15.34 %
for Vis–SNIR, LNIR, and NMR spectra, respectively, while
that of the MIR model increased by 8.72 %. On the other
hand, the AV_RMSE values of the BV-PLSR model de-
creased by 70.41, 54.33, 79.59, and 71.38 %. In general,
the BV-PLSR models had similar performances of the F-
PLSR models, but had lower AV_RMSE than the F-PLSR
models in the EPA analysis. The selected important variables
of the BV-PLSR models for Vis–SNIR, LNIR, MIR, and
NMR spectroscopy in EPA prediction are shown in Table 3.
In Vis–SNIR analysis, 935 nm was assigned to C–H
stretching third overtone of CH2, 1,028 nm was assigned to
a combination of C–H stretching first overtone and C–H
deformation second overtone of CH3, and 1,045 nm was

assigned to a combination of C–H stretching first overtone
and C–H deformation first overtone of CH2. In LNIR anal-
ysis, 1,178 nm was assigned to C–H stretching second over-
tone of HC=CH, 1,204 nm was assigned to C–H stretching
second overtone of CH2, 1,376 nm was assigned to a com-
bination of C–H stretching first overtone and C–H deforma-
tion of CH3, 1,880 nm was assigned to C=O stretching
second overtone of –COOH, 1,932 nm was assigned to a
combination of O–H stretching and O–H of H2O, and
2,100 nm was assigned to a combination of O–H stretching
and O–H of –OH. InMIR analysis, 658 cm–1 was assigned to
the rocking and bending out vibration of –(CH2)n– and –
HC=CH– (cis), 1,737 and 1,750 cm–1 were assigned to –
C=O (ester) stretching vibrations, 2,929 cm−1 was assigned
to –C–H (CH2) asym stretching, and 2,997 cm−1 was
assigned to =C–H (cis) stretching. In NMR analysis, the
variables were mainly assigned to –CH3, –(CH2)n–, –CH2–
CH=CH–, and –OCO–CH2 of acyl group.

DHA Analysis

Similar to the EPA analysis, the investigation of four spec-
troscopic techniques for the DHA prediction started at the
calibration based on the full range spectra with the analysis
of different preprocessing algorithms. The original spectra
were the most suitable data for the analysis of Vis–SNIR,
MIR, and NMR spectra, and the spectra preprocessed by
SNV had the best prediction result for LNIR spectra. It was
noticed that when full range spectra were considered, the
DHA content in fish oil could not be well determined by
using Vis–SNIR or MIR spectra (Table 4). Variable selection
was then conducted to see if the performances of four kinds
of spectra could be further improved. At the first step, SPA

Table 3 Selected important variables of the BV-PLSR models for Vis–SNIR, LNIR, MIR, and NMR spectroscopy in EPA, DHA, and DPA
prediction

Spectroscopy Important variables of the BV-PLSR model

EPA Vis–SNIR (nm) 434; 470; 587; 667; 807; 935; 1,028; and 1,045

EPA LNIR (nm) 1,111; 1,178; 1,204; 1,376; 1,475; 1,626; 1,815; 1,880; 1,932; and 2,100

EPA MIR (cm–1) 658; 841; 1,312; 1,737; 1,750; 2,929; and 2,997

EPA NMR (ppm) 0.906, 0.992, 1.356, 2.115, 2.352, 2.377, 2.394, and 4.137

DHA Vis–SNIR (nm) 489, 520, 587, 667, 893, 935, and 1,025

DHA LNIR (nm) 1,031; 1,151; 1,290; 1,310; 1,396; 1,416; 1,495; 1,587; 1,757; 1,899; 2,093; 2,266; and 2,317

DHA MIR (cm–1) 662; 697; 721; 761; 836; 855; 867; 1,026; 1,057; 1,147; 1,370; 1,717; 1,741; and 2,970

DHA NMR (ppm) 0.873, 0.912, 0.921, 1.641, 1.963, 2.272, 2.396, 2.764, 4.134, and 4.138

DPA Vis–SNIR (nm) 444; 470; 513; 587; 892; 935; 1,005; and 1,037

DPA LNIR (nm) 1,078; 1,184; 1,310; 1,370; 1,403; 1,482; 1,514; 1,534; 1,880; 2,228; 2,254; and 2,279

DPA MIR (cm–1) 658; 661; 703; 763; 835; 1,320; 1,735; 1,741; and 3,035

DPA NMR (ppm) 0.921, 0.926, 1.295, 1.962, 2.054, 2.386, 2.769, 2.863, 4.137, and 4.146

For full spellings of the abbreviations, see Table 2

BV-PLSR best PLSR model with variable selection
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was carried out for selecting important variables based on the
full range spectra. There were 7, 13, 15, and 16 variables
selected by SPA for Vis–SNIR, LNIR, MIR, and NMR
spectra, respectively. New reduced spectral matrixes were
then formed based on these variables to establish PLSR
models (Table 4). Compared with the F-PLSR models, the
application of SPA improved the corresponding PLSR
models with the decrements of RMSECV by 16.18, 16.32,
10.59, and 18.92 % for Vis–SNIR, LNIR, MIR, and NMR
spectra, respectively. The AV_RMSE was also decreased by
about 60 % when SPA was considered. All of these were
achieved when over 90 % variables were deleted.

When UVE was used to eliminate uninformative vari-
ables, the RMSECV of Vis–SNIR, MIR, and NMR models
decreased by 37.93, 49.08, and 21.69 % and the AV_RMSE
decreased by 51.51, 63.29, and 49.49 % of those of the
corresponding F-PLSR models. Although the RMSECV of
LNIR spectral model only decreased by 1.03 %, its
AV_RMSE decreased by 30.30 %, and 37.81 % variables
were eliminated at the same time. In general, UVE selected
informative variables from the full range spectra for DHA
prediction, which were then used for further SPA calculation.
As a result, there were 7, 13, 14, and 10 variables selected by
UVE-SPA for Vis–SNIR, LNIR, MIR, and NMR spectra,
respectively. The prediction results of the UVE-SPA-PLSR
models for the DHA prediction are shown in Table 4. Com-
pared with the results of UVE-PLSR models, the RMSECV

of UVE-SPA-PLSR models decreased by 14.34 and 16.58 %
for LNIR and NMR spectra, respectively, and increased by
22.60 and 31.07 % for Vis–SNIR and MIR spectra, respec-
tively. Therefore, further calculation of SPA on UVE could
maintain the models’ prediction ability while dramatically
reducing the numbers of input variables. On the other hand,
the calculation of UVE before SPA was proved to be an
effective way to improve the selection of SPA for all the
spectroscopic techniques except for LNIR spectra. Especial-
ly for the NMR spectra, when only ten variables were select-
ed by UVE-SPA compared with 16 variables selected by
SPA, the RMSECV of UVE-SPA-PLSR model decreased
by 19.42 % of that of the SPA-PLSR model. The UVE-
SPA model for MIR spectra also had a decrement of
25.35 % of that of the corresponding SPA-PLSR model. In
addition, the AV_RMSE of the UVE-SPA models for NMR
and MIR spectra decreased respectively by 28.05 and
54.05 % of those of SPA models. In the comparison between
the BV-PLSR models (SPA-PLSR model for LNIR spectra
and UVE-SPA-PLSRmodels for Vis–SNIR, MIR, and NMR
spectra) and the F-PLSR models, it was found that the BV-
PLSR models had better performances with the RMSECV
decrements of 23.91, 16.32, 33.25, and 34.67 % for Vis–
SNIR, LNIR, MIR, and NMR spectra, respectively. On the
other hand, the AV_RMSE values of the BV-PLSR models
decreased by 72.42, 42.26, 73.52, and 78.54 %. The above
results demonstrated that the variable selection improved the

Table 4 Predictive results of docosahexaenoic acid (DHA) of fish oil using infrared spectroscopy and nuclear magnetic resonance with
chemometrics (available range of DHA is between 100.25 and 223.33 mg)

Sample
number

Variable selection
method

Variable number Number of latent
variables

Calibration Prediction

rC
2 RMSEC

(mg/g)
rCV
2 RMSECV

(mg/g)
RPD

Vis–SNIR 140 Full range 3,250 8 0.964 6.37 0.748 17.61 1.919

Vis–SNIR 140 SPA 7 5 0.886 11.42 0.823 14.76 2.289

Vis–SNIR 140 UVE 1,335 7 0.974 5.48 0.903 10.93 3.091

Vis–SNIR 140 UVE-SPA 7 5 0.907 10.30 0.854 13.40 2.522

LNIR 140 Full range 201 11 0.975 5.32 0.869 12.68 2.665

LNIR 140 SPA 13 12 0.965 6.36 0.908 10.61 3.185

LNIR 140 UVE 125 7 0.952 7.42 0.872 12.55 2.692

LNIR 140 UVE-SPA 13 11 0.969 5.97 0.906 10.75 3.143

MIR 140 Full range 2,400 8 0.965 6.35 0.770 16.81 2.010

MIR 140 SPA 15 6 0.89 11.18 0.816 15.03 2.248

MIR 140 UVE 501 8 0.980 4.72 0.940 8.56 3.947

MIR 140 UVE-SPA 14 7 0.937 8.45 0.898 11.22 3.012

NMR 114 Full range 3,636 12 0.991 3.28 0.957 7.24 4.667

NMR 114 SPA 16 14 0.986 4.02 0.972 5.87 5.756

NMR 114 UVE 1,968 9 0.988 3.67 0.974 5.67 5.959

NMR 114 UVE-SPA 10 7 0.987 3.88 0.982 4.73 7.144

For full spellings of the abbreviations, see Table 2
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prediction accuracy and robustness of the PLSR model in the
DHA analysis. The selected important variables of the BV-
PLSR models for Vis–SNIR, LNIR, MIR, and NMR spec-
troscopy in DHA prediction are shown in Table 3. In Vis–
SNIR analysis, 893 and 935 nm were assigned to C–H
stretching third overtone of CH3 and CH2, respectively, and
1,025 nm was assigned to a combination of C–H stretching
first overtone and C–H deformation second overtone of CH3.
In LNIR analysis, 1,031 nm was assigned to a combination
of C–H stretching first overtone and C–H deformation sec-
ond overtone of CH3, 1,051 nm was assigned to a combina-
tion of C–H stretching first overtone and C–H deformation
first overtone of CH2, 1,396 and 1,416 nm were assigned to a
combination of C–H stretching first overtone and C–H de-
formation of CH2, 1,495 nm was assigned to O–H stretching
first overtone of –OH, 1,757 nm was assigned to C–H
stretching first overtone of CH2, 1,899 nm was assigned to
C=O stretching second overtone of –COOH, 2,093 nm was
assigned to a combination of O–H stretching and O–H de-
formation of –OH, and 2,266 and 2,317 nm were assigned to
a combination of C–H stretching and C–H deformation of
CH3 and CH2, respectively. In MIR analysis, 662, 697, 721,
and 761 cm−1 were assigned to the rocking and bending out
vibration of –(CH2)n– and –HC=CH– (cis), 1,026 and
1,057 cm−1 were assigned to –C–O stretching, 1,147 cm−1

was assigned to stretching and bending vibration of –C–O
and –CH2, 1,370 cm

−1 was assigned to –C–H (CH3) bending
(sym) vibration, and 1,717 and 1,741 cm−1 were assigned
to –C=O (ester) stretching vibration. In NMR analysis, the
variables were mainly assigned to –CH3, –OCO–CH2–
CH2–, –CH2–CH=CH–, –OCO–CH2–, and =HC–CH2–
CH= of acyl group.

DPA Analysis

Similar to the analysis of the above two PUFA, the original
full range spectra and those preprocessed by different pre-
processing algorithms of four spectroscopic techniques were
used separately to establish PLSR models for the prediction
of DPA content in fish oil. It was found that the spectra
preprocessed by 2nd Der had the best prediction result for
LNIR spectra, while the original spectra were the most
suitable data for other three kinds of spectra. When SPA
was applied to select the important variables from the full
range spectra for establishing PLSR model, the predictive
accuracy of Vis–SNIR, MIR, and NMR spectra had been
improved with the RMSECV decrements of 22.36, 28.525,
and 28.30 %, respectively, while the RMSECVof the LNIR
spectral model increased by 4.93 %. On the other hand, the
AV_RMSE values decreased from 34.62 to 61.48 % for four
spectroscopic techniques with the involvement of SPA. In
addition, there were less than 10 % variables selected by SPA
for the establishment of PLSR models.

The other strategy of SPA process for variable selection
was to execute it based on the informative variables selected
by UVE instead of the full range spectra. After the UVE
calculation, there were 1,334, 102, 487, and 1,647 variables
selected for Vis–SNIR, LNIR, MIR, and NMR spectra, re-
spectively. The PLSR models established based on these
variables selected by UVE had the RMSECV decrements
by 21.94, 28.17, 61.41, and 44.65 % for four spectroscopic
techniques, respectively, compared with those of F-PLSR
models. The above results indicated that the variables select-
ed by UVE were informative and could be used for the
further SPA calculation. After the calculation, there were 7,
12, 8, and 10 variables selected by UVE-SPA for Vis–SNIR,
LNIR, MIR, and NMR spectra, respectively. The prediction
results of the UVE-SPA-PLSR models are shown in Table 5.
For the Vis–SNIR spectra, the UVE-SPA-PLSR model had
similar results of the SPA-PLSR and UVE-PLSR models.
For MIR spectra, the UVE-SPA-PLSR model had a poorer
performance than the SPA-PLSR model, in which the
RMSECV decreased by 5.63 %. Therefore, the consideration
of UVE before SPA had no improvement for the variable
selection, and the SPA-PLSR model was the best choice for
both Vis–SNIR and MIR spectra in the DPA analysis. On the
other hand, the UVE-SPA-PLSR models had better predic-
tion results than the SPA-PLSR models for LNIR and NMR
spectra. The RMSECV decreased by 42.95 and 32.46 % and
the AV_RMSE decreased by 41.03 and 18.18 % for LNIR
and NMR spectra, respectively. Compared with the results of
the F-PLSR models, it was found that the BV-PLSR models
had better performances with most variables eliminated. The
RMSECV values decreased by 22.36, 40.14, 28.52, and
51.57 % and the AV_RMSE values decreased by 61.48,
73.56, 34.62, and 66.67 % for Vis–SNIR, LNIR, MIR, and
NMR spectra, respectively, showing that the prediction ac-
curacy and robustness of the PLSR model could also be
improved by the variable selection in the DPA analysis.
The selected important variables of the BV-PLSR models
for Vis–SNIR, LNIR, MIR, and NMR spectroscopy in DPA
prediction are shown in Table 3. In Vis–SNIR analysis, 892
and 935 nm were assigned to C–H stretching third overtone
of CH3 and CH2, respectively, 892 nm was assigned to C–H
stretching third overtone of CH3, 1,005 nm was assigned to a
combination of C–H stretching first overtone and C–H de-
formation second overtone of CH3, and 1,037 nm was
assigned to a combination of C–H stretching first overtone
and C–H deformation first overtone of CH2. In LNIR anal-
ysis, 1,078 and 1,184 nm were assigned to C–H stretching
second overtone of CH, CH2, CH3, and HC=CH, 1,310,
1,370, 1,403, 1,482, 1,514, and 1,534 nm were assigned to
a combination of C–H stretching first overtone and C–H
deformation first overtone in CH, CH2, and CH3, 1,880 nm
was assigned to C=O stretching second overtone of COOH,
2,228 and 2,254 nm were assigned to a combination of CH2
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stretching and C= stretching of HC=CH and CH3, respec-
tively, and 2,279 nm was assigned to a combination of C–H
stretching and C–H deformation in CH3. In MIR analysis,
658, 661, 703, and 763 cm−1 were assigned to the rocking
and bending out vibration of –(CH2)n– and –HC=CH– (cis),
1,735 and 1,740 cm−1 were assigned to –C=O (ester)
stretching vibration, and 3,035 cm−1 was assigned to =C–H
(cis) stretching. In NMR analysis, the variables were mainly
assigned to –CH3, –(CH2)n–, –CH2–CH=CH–, –OCO–
CH2–, and =HC–CH2–CH= of acyl group.

Discussion

The potential of four spectroscopic techniques of Vis–SNIR,
LNIR, MIR, and NMR was investigated for the rapid and
reliable assessment of EPA, DHA, and DPA in fish oil.
Specifically, in the EPA analysis, the F-PLSR model for
NMR spectra had a high rCV

2 of 0.959, which was further
improved to 0.970 based on the BV-PLSR model with eight
important variables selected by UVE-SPA. The results of
LNIR spectra were also acceptable, in which rCV

2 of 0.920
was obtained by the F-PLSR model and rCV

2 of 0.944 by the
BV-PLSR model with ten important variables. Although the
UVE calculation helped the MIR spectra to obtain a good
prediction of EPA with rCV

2 of 0.974, the SPA calculation
either based on full range spectra or variables selected by

UVE could only cause the PLSR models having the rCV
2 of

around 0.9. Similar situation happened for Vis–SNIR spec-
tra. Although the UVE-PLSR model had rCV

2 of 0.942, either
the SPA-PLSR model or the UVE-SPA-PLSR model had
rCV
2 lower than 0.9. In the aspect of the robustness of the
established BV-PLSRmodels, NMR spectra had the smallest
AV_RMSE value of 0.162, followed byMIR spectra that had
the value of 0.376. The AV_RMSE values of other two
spectra were larger than 0.5.

In the DHA analysis, the BV-PLSR model of Vis–SNIR
spectra had the poorest prediction with the RMSECV of
13.40 mg/g. The RMSECV decreased to around 10 mg/g
for both the BV-PLSR models of LNIR and MIR spectra.
The best prediction with rCV

2 of 0.982 and the RMSECV of
4.73 mg/g was obtained by the BV-PLSR model for NMR
spectra. The prediction of DHA using NMR spectra in tan-
dem with multivariable selection and calibration had better
prediction than internal standard method and DHA calibra-
tion curve method used by Igarashi et al. (2000), in which
RMSE values were 14.92 and 17.26 mg/g for above two
methods, respectively (calculated from data in Table 3 in the
work of Igarashi et al. (2000). Therefore, the use of multi-
variable analysis was an efficient way to process NMR data
instead of internal standard method and calibration curve
method for DHA determination in fish oil. In addition, the
BV-PLSR model for NMR spectra also had the smallest
AV_RMSE value of 0.085 showing its good robustness,

Table 5 Predictive results of docosapentaenoic acid (DPA) of fish oil using infrared spectroscopy and nuclear magnetic resonance with
chemometrics (available range of DPA is between 10.95 and 32.60 mg/g)

Sample
number

Variable selection
method

Variable number Number of latent
variables

Calibration Prediction

rC
2 RMSEC

(mg/g)
rCV
2 RMSECV

(mg/g)
RPD

Vis–SNIR 140 Full range 3,250 7 0.968 1.02 0.841 2.37 2.409

Vis–SNIR 140 SPA 8 7 0.947 1.32 0.905 1.84 3.103

Vis–SNIR 140 UVE 1,334 6 0.960 1.14 0.903 1.85 3.086

Vis–SNIR 140 UVE-SPA 7 6 0.944 1.36 0.901 1.87 3.053

LNIR 140 Full range 201 8 0.991 0.55 0.943 1.42 4.021

LNIR 140 SPA 16 5 0.964 1.10 0.937 1.49 3.832

LNIR 140 UVE 102 7 0.991 0.55 0.971 1.02 5.598

LNIR 140 UVE-SPA 12 7 0.988 0.62 0.979 0.85 6.718

MIR 140 Full range 2,400 4 0.852 2.20 0.750 2.98 1.916

MIR 140 SPA 9 6 0.920 1.62 0.872 2.13 2.681

MIR 140 UVE 487 10 0.991 0.54 0.962 1.15 4.965

MIR 140 UVE-SPA 8 5 0.899 1.82 0.857 2.25 2.538

NMR 114 Full range 3,636 7 0.967 1.05 0.929 1.59 3.591

NMR 114 SPA 12 7 0.974 0.92 0.964 1.14 5.009

NMR 114 UVE 1,647 8 0.988 0.96 0.978 0.88 6.489

NMR 114 UVE-SPA 10 9 0.989 0.59 0.983 0.77 7.416

For full spellings of the abbreviations, see Table 2
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while the BV-PLSR models for other three spectra had the
AV_RMSE values all higher than 0.25. In the DPA analysis,
the BV-PLSR models of both LNIR and NMR spectra
achieved good prediction with rCV

2 of 0.983 and 0.979 and
small AV_RMSE values of 0.018 and 0.022, respectively.
On the other hand, the prediction of the BV-PLSR model
using either Vis–SNIR or MIR spectra was not very good
(the rCV

2 values were 0.905 and 0.872).
The above results indicated that the important PUFA

(EPA, DHA, and DPA) contents in fish oil could be deter-
mined by spectroscopic techniques in a rapid and reliable
way. The NMR spectroscopy was the most suitable one
among the four spectroscopic techniques investigated for
the determination of EPA, DHA, and DPA contents in fish
oil. The RPD values of the BV-PLSR models were 5.613,
7.144, and 7.416, showing that the BV-PLSR models were
adequate for quality control and even process control (Wil-
liams 2001). The LNIR spectroscopy was also a good choice
(RPD=4.086 for EPA, 3.185 for DHA, and 6.718 for DPA).
Especially considering that its measurement of using a small
spectrometer (dimensions of 153.4×105.2×76.2 mm) was
nondestructive, inexpensive, and very convenient to imple-
ment. It should be noticed that spectroscopy techniques
analyzed with chemometrics are indirect methods that need
reference values of target attribute for model calibration.
Therefore, the accuracy of spectral models depends on and
could not be better than the accuracy of the reference meth-
od. The reference method should be conducted carefully to
minimize its test error, so that the corresponding established
spectral models would be meaningful. In this work, the
reference EPA, DHA, and DPA values were measured care-
fully using GC method. As GC is a standard method to
determine fatty acids in foods and biological samples
(AOAC Method 963.22 2000), its measured PUFA values
could be used as the reference values for establishing spectral
models.

Moreover, it was found that there were 11 twelfth cases
(four spectroscopic techniques × three PUFA), in which the
BV-PLSR models had better predictions (RMSECV de-
creased by an average of 23.20 % in all 12 cases) than the
corresponding F-PLSR models. Meanwhile, the AV_RMSE
of the BV-PLSR models decreased by an average of 64.90 %
compared with the corresponding F-PLSR models in all 12
cases. Such improvement was achieved after over 90 % vari-
ables of the full range spectra were featured as redundant and
uninformative and the remaining variables were used to
establish the PLSR model. The above statistical data showed
that the variable selection with the help of UVE and SPAwas
important for improving the prediction accuracy and robust-
ness of the PLSR models for the determination of EPA,
DHA, and DPA contents in fish oil. Compared with the work
of Azizian et al. (2010) in which the PLSR models were
established using near infrared spectra without variable

selection (RMSECV of 3.23 % for EPA and 2.57 % for
DHA), the PLSR models established in this work using near
infrared spectra with variable selection by UVE-SPA had
lower RMSECVof 15.77 mg/g for EPA and 10.75 mg/g for
DHA, showing that the variable selection was efficient to
increase the prediction accuracy of PUFA in fish oil using
spectroscopy technology.

In addition, among the 12 cases researched in this study,
there were eight cases in which UVE-SPA was the best
strategy of variable selection. The SPA calculation based
on the full range spectra was considered as the best for the
rest four cases. Although it was found in other cases that the
calculation of UVE could absolutely improve the results of
SPA for spectral variable selection (Chen et al. 2010; Wu
et al. 2010; Wu et al. 2011), the results of this work indicated
that the elimination of uninformative variables was helpful
for improving the efficiency of SPA for only some spectral
data, while for other spectra, SPA could directly select the
important variables from the full range spectra. Therefore, it
is suggested that for different applications, both variable
selection strategies of SPA and UVE-SPA should be ana-
lyzed and compared to choose the best one.

Conclusions

This study was carried out to evaluate the feasibility of using
Vis–SNIR, LNIR, MIR, and NMR spectroscopic techniques
for rapid prediction of three PUFA (EPA, DHA, and DPA) in
fish oil. The results discussed in this paper indicated that the
four techniques were reasonably efficient as rapid and con-
venient tools instead of the traditional GC method for
assessing the EPA, DHA, and DPA contents in fish oil. By
means of PLSR algorithm, quantitative relationships were
correlated between the spectral data and the PUFA contents
of fish oil samples. All results showed good performances of
the established PLSR models for predicting PUFA by four
spectroscopic techniques. Among them, NMR spectra had
the best performances for all three PUFA predictions, follow-
ed by LNIR, MIR, and Vis–SNIR spectra. Since the full
range spectra were characterized as high dimensionality,
multicollinearity, and redundancy, variable selection was
conducted to locate the most important variables for the
prediction. The results indicated that the BV-PLSR models
with over 90 % variables eliminated had lower RMSECV
with an average decrement of 23.20 % and had lower
AV_RMSE with an average decrement of 64.90 % in all 12
cases compared with the corresponding F-PLSR models.
Two variable selection algorithms of UVE and SPA were
investigated in this work to see if the efficiency of SPA for
variable selection could be improved based on the informa-
tive variables selected by UVE. In 67 % cases, UVE-SPA
had better prediction results than the direct calculation of
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SPA based on the full range spectra, while the UVE calcula-
tion had no improvement for the SPA selection in other
cases. In view of the quality evaluation of fish oil, the results
of this study verified the substantial propensity of the spec-
troscopic technologies to be excellent alternatives to the
time-consuming and conventional GC methods. By
implementing spectroscopic techniques as a key component
of a rapid inspection system, it could enable the fish oil
industry to sort, label, and price fish oil products truthfully
according to their PUFA contents.
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