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Abstract The potential of visible and near infrared (VIS/NIR)
hyperspectral imaging was investigated as a rapid and nonde-
structive technique to determine whether fish has been frozen–
thawed. A total of 108 halibut (Psetta maxima) fillets were
studied, including 48 fresh and 60 frozen–thawed (F-T) sam-
ples. Regarding the F-T samples, two speeds of freezing (fast
and slow) were tested. The hyperspectral images of fillets were
captured using a pushbroom hyperspectral imaging system in
the spectral region of 380 to 1,030 nm. All images were
calibrated for reflectance, followed by the minimum noise
fraction rotation to reduce the noise. A region-of-interest
(ROI) at the image center was selected, and the average spectral
data were generated from the ROI image. Dimension reduction
was carried out on the ROI image by principal component
analysis. The first three principal components (PCs) explained
over 98 % of variances of all spectral bands. Gray-level co-
occurrence matrix analysis was implemented on the three PC
images to extract 36 textural feature variables in total. Least
squares-support vector machine classification models were
developed to differentiate between fresh and F-T fish based
on (1) spectral variables; (2) textural variables; (3) combined

spectral and textural variables, respectively. Satisfactory aver-
age correct classification rate of 97.22 % for the prediction
samples based on (3) was achieved, which was superior to the
results based on (1) or (2). The results turned worse when
different freezing rates were taken into consideration to classify
three groups of fish. The overall results indicate that VIS/NIR
hyperspectral imaging technique is promising for the reliable
differentiation between fresh and F-T fish.

Keywords Fresh fish . Frozen–thawed fish .

Differentiation . Hyperspectral imaging . Least
squares-support vector machine

Introduction

Given the perishable nature of fish, extension of its shelf life is
necessary and freezing is an excellent and commonly used
way. During freezing, storage, and thawing, fish muscles go
through a progressive deterioration in nutritive value, texture,
and other functional properties (Karoui et al. 2006). When
optimum freezing and thawing procedures are adopted, it is
not easy to distinguish fresh from frozen–thawed (F-T) fish
using sensory evaluation because of the similarity of their
physicochemical properties (Duflos et al. 2002). F-T usually
has a lower market price than fresh fish due to its inferior
quality. Thereby the substitution of F-T for fresh fish is a
potential fraudulent practice, and the differentiation of fresh
from F-T fish is a significant issue to prevent unfair competi-
tion by false labeling.

Numerous methods have been investigated to differentiate
between fresh and F-T fish. Although enzymatic and physio-
logical (Duflos et al. 2002), chemical, microbiological, and
sensory (Baixas-Nogueras et al. 2007) methods are valid and
useful, they are destructive, time-consuming, expensive, and
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requiring trained personnel. Among physical methods, the
texture analyzers, color instruments, and dielectric testers only
describe the change in a single parameter, which is not suffi-
cient to represent for fish freshness change during the whole
storage (Nilsen et al. 2002). Satisfactory results were achieved
using fluorescence spectroscopy (Karoui et al. 2006), but the
sample sizes were not large enough to stand for sample
variations.

In recent decades, visible and near infrared (VIS/NIR)
spectroscopy has gained great importance in fish quality eval-
uation due to the advantages of rapid and nondestructive
analysis, minimal sample preparation, simultaneous determi-
nation of several parameters, and the potential for online
usage. It is based on the broad and repetitive absorption of
C–H, O–H, and N–H bonds between 400 and 2,500 nm (Li
et al. 2008). It was applied to determine chemical composition
in fish (Xiccato et al. 2004; Folkestad et al. 2008), differentiate
fish quality cultured under different conditions (Costa et al.
2011), and predict fish freshness as storage time on ice (Nilsen
et al. 2002). Several studies classified fresh and F-T fish using
spectroscopic method. Dry extract spectroscopy by infrared
reflection of fresh and F-T fish was performed on the extracted
meat juices and differentiated (Uddin and Okazaki 2004).
Though correct classification rate (CCR) of 100 % was
achieved, extractions were needed and wastes were produced.
The best CCR was 87.5 % in the investigation using mid-
infrared spectroscopy (Karoui et al. 2007), but the small
number of 24 fish samples in total was insufficient to represent
for various sample variations in practical applications. Satis-
fying CCR was obtained using VIS/NIR spectroscopy (Uddin
et al. 2005); fish were measured at a location just behind the
dorsal fin, but the fixed spatial area was not large enough to
stand for information from other part of the fish.

Hyperspectral imaging is a rapid, nondestructive, and non-
contact technique which integrates spectroscopy and digital
imaging to simultaneously obtain spectral and spatial infor-
mation.With hyperspectral imaging, a spectrum for each pixel
can be obtained and a gray scale image for each narrow band
can be acquired, enabling this system to reflect componential
and constructional characteristics of an object and their spatial
distributions. With respect to fish quality analysis, hyperspec-
tral imaging has been successfully applied in determination of
fat and water distribution in fillets (ElMasry and Wold 2008),
ridge detection of fillets (Sivertsen et al. 2009), and fish
freshness assessment (Chau et al. 2009; Menesatti et al.
2010; Sivertsen et al. 2011). The study on differentiation of
fresh and F-T fillets with VIS/NIR hyperspectral imaging
analyzed the spectral variables on each grid element on fillets
and displayed the CCR as a function of standard spatial
position on fillets, without considering the textural informa-
tion (Sivertsen et al. 2011).

The basic component of hyperspectral images is pixel,
which contains two features of brightness value and locations

in coordinates. Texture is another significant image feature,
corresponding to both brightness value and pixel locations.
Image texture reflects changes of intensity values of pixels,
and generally a great change in intensity values may denote a
change in geometric structure of samples, thus image
texture may contain information of geometric structure
of samples (Zheng et al. 2006). In fish hyperspectral
images, texture reflects cellular structure of fish to some extent
and hence can be used as an indicator of fish quality (Gao and
Tan 1996).

This work investigated the feasibility of VIS/NIR hyper-
spectral imaging combined with least squares-support vector
machine (LS-SVM) classifiers to differentiate fresh from F-T
fish (D1). To investigate the effect of different freezing speeds
and temperature on fish quality changes, LS-SVM was also
applied to distinguish among fresh, fast frozen–thawed (FF-T),
and slow frozen–thawed (SF-T) fish (D2). This study was
focus on (a) detecting the spectral differences among fresh,
FF-T, and SF-T fish and (b) comparing the performances of
LS-SVM models between D1 and D2 based on (1) spectral
variables, (2) textural variables, (3) combined spectral and
textural variables, respectively.

Materials and Methods

Fish Samples

Fifty-four live halibut (Psetta maxima) were purchased from
a local market (Hangzhou, China), and transported with sea
water to the laboratory. The fish weight ranged between 372
and 580 g (average 512 g) and full length varied from 27.5
to 32 cm (average 30.5 cm). They were immediately slaugh-
tered, bled, de-headed, gutted, cleaned, and iced. Subse-
quently the fish were filleted and two fillets from the right
and left side respectively on the dorsal site were used,
resulting in 108 samples altogether. The fillets were trimmed
manually for bones, parasites, blood stains, and randomly
divided into three groups for further evaluation. The first
group of 48 fillets was used as fresh or unfrozen samples
soon after slaughtering. The second and third groups of 30
fillets each were stored at the constant temperature of −70
and −20 °C for fast and slow freezing, respectively. During
frozen storage, the samples were put in plastic bags to
prevent drying of the surface. After 9 days, fillets were
thawed overnight at 4 °C as FF-T and SF-T samples, respec-
tively. All samples were allowed to equilibrate to room
temperature (20 °C) before scanning by VIS/NIR hyper-
spectral imaging system. Seventy-two samples of 32 fresh
and 40 F-T (20 FF-T and 20 SF-T) were randomly selected
to create the calibration set; the remaining 36 samples of
16 fresh and 20 F-T (10 FF-T and 10 SF-T) formed the
prediction set.
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Hyperspectral Imaging System and Image Acquisition

The VIS/NIR hyperspectral imaging system was employed
to capture hyperspectral images of fillets in reflectance
mode. The system consists of a spectrograph (ImSpector
V10E, Specim, Finland), a 12-bit CCD camera (Hama-
matsu, Japan), two 150 W tungsten halogen lamps (Fiber-
Lite DC950 Illuminator, Dolan Jenner Industries Inc, USA)
for illumination, a conveyer belt (Isuzu Optics Corp, Tai-
wan, China) driven by a stepping motor, and a computer
with data acquisition and preprocessing software (Spectral
Image-V10E, Isuzu Optics Corp, Taiwan, China). The spec-
tral resolution is 2.8 nm in 380–1,030 nm. The camera,
fitting with a C-mount 23-mm lens, has 672×512 (spatial ×
pectral) pixels. The system scans a single spatial line of the
sample, and the reflected light was dispersed by the spectro-
graph in spatial–spectral (672×512) axis. To obtain a three-
dimensional hypercube, the sample has to be moved along
another spatial axis. The speed of the conveyer belt was
adjusted as 35 mm/s to synchronize with the camera scanning
and achieve a square pixel. With this pushbroom configura-
tion, each fillet was individually transported by the conveyor
belt to be scanned line by line with 7 ms exposure time, and
upon entering the field of view, the acquisition of a hyper-
spectral image began. Each image consisted of 512 congruent
images at 512 contiguous spectral bands. The hyperspectral
images were stored in raw format and exported to the Envi-
ronment for Visualizing Images V4.6 software (ITT Visual
Information Solutions, Boulder, USA) for subsequent
processing.

Image Calibration and Denoising

All raw hyperspectral images (I0) were calibrated for reflec-
tance to minimize differences among samples due to sensor
response and illumination. The dark reference image (B) of
approximately 0 % reflectance was acquired for removing the
influence of dark current in the camera by turning off the light
source together with covering the camera lens completelywith
its opaque cap. The image of a white Teflon tile with about
100 % reflectance was used as the white reference image (W).
The calibrated hyperspectral image (I) in the unit of relative
reflectance (%) was calculated as:

I ¼ I0 � B

W � B
� 100 ð1Þ

Due to the insufficient light intensity of halogen lamps at
the starting spectral region, obvious noise was observed at
the first 62 bands of calibrated images. Thus, these bands
were eliminated, and spectral region from band 63 to 512,
corresponding to the wavelength range of 456–1,030 nm,
was employed. Minimum noise fraction (MNF) rotation
was implemented on the 450 bands of calibrated images to

reduce spectral noise and maximize signal-to-noise ratio. MNF
is a linear transformation, consisting of two cascaded principal
component analysis (PCA) rotations. Noise was effectively
removed from the hyperspectral image data by forward trans-
forming to the MNF space, rejecting the noise-dominated
components, then inverse MNF transforming into the original
data space (Green et al. 1988). All denoised images were used
as the basis for further analysis.

Spectral and Textural Variables Extraction

A region-of-interest (ROI) of size 300×100 pixels around the
center of the image was selected. All spectral reflectance
curves of all pixels identified by the ROI image were averaged
to generate only one mean spectrum standing for the sample.
The same procedure was repeated for all ROI images, and a
spectral matrix 108 samples × 450 bands was constructed.

To reduce spectral dimension, PCAwas carried out for all
ROI images. PCA applies a linear transformation to decom-
pose the spectral data into several principal components
(PCs), which are uncorrelated and account for the most com-
mon spectral variations. The first three PC images were saved
and exported to the MATLAB V7.8 software (The Math
Works, Natick, USA) (Li et al. 2008).

Gray-level co-occurrence matrix (GLCM) is a texture anal-
ysis technique which is based on the usage of second-order
statistics of co-occurrence matrix. In this study, GLCM were
executed on the PC images to extract textural variables. GLCM
was created by calculating how often a pixel with a particular
gray level value occurs at a specified distance and angle from
its adjacent pixels. The parameters in creating the GLCMwere
the default values in MATLAB. The distance equals to 1
because many pixels would be out of counting in the process
of generating GLCM in case of large distance. As the image
texture was less affected by different angles, the angle was 0°
to simplify computation. The gray level was 8 to reduce
calculation time and avoid too many zeros in the GLCM. For
each PC image, 12 second-order statistical textural variables
were computed based on GLCM, which were: contrast, corre-
lation, angular second moment, homogeneity, variance, entro-
py, sum average, sum variance, sum entropy, difference
average, difference variance, and difference entropy (Haralick
et al. 1973). In total, 36 textural variables were derived from
three PC images for each ROI image. The calculation of
textural variables for all PC images of all samples produced a
textural matrix of 108 samples × 36 variables.

Least Squares-Support Vector Machine

Support vector machine (SVM) is a powerful methodology
for solving problems in nonlinear classification, function es-
timation, and pattern recognition. SVM uses kernel function
to map the data input space to a high-dimensional feature
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space where an optimal hyperplane can be constructed to
perform separation. LS-SVM (Suykens et al. 2002) is a refor-
mulation of standard SVM, which works with least squares
linear cost function. It not only owns the advantage of good
generalization performance as SVM but also possesses sim-
pler structure and shorter optimization time. When using LS-
SVM, three crucial problems needed to be resolved, namely
the selection of optimal input subset, appropriate kernel func-
tion, and optimum kernel parameters. The inputs of LS-SVM
classifiers were the extracted (1), (2), and (3), respectively.
The kernel function was the radial basis function (RBF) kernel
because it is a compactly supported kernel and capable of
reducing the computational complexity of training procedure
while giving good performance under general smoothness
assumptions. The two-step grid search and leave-one-out
cross-validation was employed for the optimization of regu-
larization parameter gam (γ) and RBF kernel bandwidth pa-
rameter sig2 (σ2).

Results and Discussion

Overview of the Spectra

The mean VIS/NIR absorbance (log 1/R) curves for fresh, FF-
T, and SF-T fish are displayed in Fig. 1a. The general trends of
the spectral curves for three categories of fish were similar.
However, the overall absorbance level was found to decrease in
F-T samples, which was in accordance with the results in other
investigations (Uddin and Okazaki 2004; Uddin et al. 2005).
The spectral differences between fresh and F-T samples in-
volved the baseline shift, which might have been induced by
light scattering due to variation in fillets thickness. Besides the
effects of baseline shift, the differences between spectra were
related to fish quality changes, which mainly referring to the
alterations in physical structure of at least the surface layer of

fish as well as the biochemical and textural changes in fish in
freezing, frozen storage, and thawing, which will be discussed
in detail in the following passage. The storage time also had
some influences on fish quality changes. However, under the
condition of low temperatures (−70 or −20 °C), fish quality
changed slowly with the passage of frozen storage time because
of the low activity of catabolic enzymes and microorganisms.
Therefore, compared with storage time, freezing preservation
and thawing had more effects on fish quality changes.

More specifically, during freezing, storage, and thawing of
fish, ice crystals growth caused tissue damage and texture
deterioration, as well as the disruption and leakage of various
cellular organelles (Benjakul et al. 2003). Formaldehyde,
resulting from decomposition of trimethylamine oxide, reacted
with fish proteins, not only resulting in the acceleration of
protein denaturation, but also leading to the toughening and
texture deterioration of fish muscle (Baixas-Nogueras et al.
2007). Successive protein denaturation gave rise to the lower
water holding capacity of protein (Benjakul et al. 2003). For the
above reasons, water was more easily released from F-T fish
muscle. The less absorbance of F-T samples was partly attrib-
uted to the reduced water contents. Also, smaller fractions in
F-T fish, arising from degradation of protein, lipid, glycogen,
and trimethylamine oxide, gave increased light scattering in
general, causing lower absorbance of F-T than fresh fish. The
lipid oxidation and loss of vitamins were other important
factors leading to quality deterioration of F-T fish. Moreover,
some inconspicuous changes in the color of F-T fish existed
because, in frozen storage, more heme pigments were oxidated
into oxidized heme pigments which had darker color. Mean-
while, as mentioned above, fish texture also underwent some
changes in this process. The existence of these differences
suggested that it might be possible to detect F-T treatment by
spectroscopic and textural analysis for hyperspectral images.

The quality of F-T fish was closely correlated with freezing
and thawing processes. The rate of freezing and formation of

Fig. 1 The mean VIS/NIR absorbance curves (a) and second derivative spectra (b) for fresh, FF-T, and SF-T fish. Ranges of standard deviation (±)
for each mean spectral curve: 0.02102~0.05063 for fresh, 0.02083~0.04449 for FF-T, and 0.02231~0.05093 for SF-T fish
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small ice crystals during freezing was critical to minimize
tissue damage and drip loss in thawing (Li and Sun 2002).
Compared with slow freezing, more ice crystals formed in fast
freezing; they were smaller and distributed more evenly,
resulting in less tissue damage due to their smaller expansive
force. In the subsequent thawing process of fast frozen fish,
the thawedwater permeated into fish tissuemore easily, which
was more beneficial to the preserving of fish quality and
nutritional value. Consequently, compared with SF-T, the
quality and spectral characteristics of FF-Twere more similar
with fresh fish, and the total absorbance level of FF-T was
higher than SF-T fish.

Distinct separation of fresh, FF-T, and SF-T fish occurred at
several absorption bands throughout the spectra. To present the
characteristic peaks and troughs more clearly, the Savitzky–
Golay second order derivative of absorbance data for fresh,
FF-T, and SF-T fish is shown in Fig. 1b, with smoothing points
of 11. Besides the function of reducing the effects of baseline
offsets, the second derivative spectra sharpened spectral fea-
tures so that broad and overlapping absorption bands could be
better distinguished. Peaks in original spectra usually changed
sign and turned to negative troughs in second derivative spec-
tra. Water absorbed strongly in some specific wavelengths,
which usually exhibited a broad band because of H bonding
interactions with itself and with other components in fish.
According to Fig. 1b, the prominent band at around 970 nm
for water arose from the second overtone band of O–H stretch
and bending mode. The weaker absorptions near 729 nm,
originating from the O–H stretch third overtone band in water,
could be assigned. The weaker absorptions at about 836 nm
related to O–H bond in water could also be distinguished. In
addition, a minor peak located at 928 nm was present, which
corresponded to the third overtone C–H stretch in lipid and
protein (Osborne and Fearn 1986). Furthermore, the wave-
length around 552 nm corresponding to the absorption of heme
pigments such as hemoglobin and myoglobin was negatively
correlated with the bands at approximately 512 and 620 nm
which were due to the absorptions by oxidized heme pigments
such as methemoglobin and metmyoglobin (Sivertsen et al.
2011). This was because the amount of heme pigments was
negatively associated with oxidized heme pigments in both
fresh and F-T fish. The spectral changes at 970, 729, 836, 928,
552, 512, and 620 nm among fresh, FF-T, and SF-T fish made
the differentiation more well-founded.

Differentiation Between Fresh and F-T Fish

The main steps in the whole procedure of hyperspectral image
analysis are illustrated in Fig. 2. The first three PC images
were selected for each ROI image in respect that they had
Eigen values significantly greater than zero (Johnson 1998)
and accounted for over 98 % of the cumulative spectral
variances. Thus, the 36 textural variables extracted from the

three PC images could stand for the textural information in
ROI image.

The performances of LS-SVM classifiers were evaluated
by CCR. Table 1 presents the CCR for prediction set in D1
and D2 based on (1), (2), and (3), respectively. The (1)
represented the componential and structural characteristics of
molecules in fish; (2) reflected the spatial information and
cellular structure of fish; and (3) made full advantages of
hyperspectral imaging in integrating spectroscopy and digital
imaging in one system. The average CCR and the CCR for

Fig. 2 Flowchart of main steps in the whole procedure of hyperspectral
image analysis. [a] Raw image, [b] calibrated and denoised image, [c]
ROI image, [d–f] PC images 1 through 3

Table 1 CCR (in percent) for prediction set in D1 and D2 based on (1)
spectral variables, (2) textural variables, and (3) combined spectral and
textural variables, respectively

Category D1 D2

Fresh F-T Average Fresh FF-T SF-T Average

(1) 93.75 90 91.67 93.75 70 70 80.56

(2) 87.5 95 91.67 81.25 50 50 63.89

(3) 93.75 100 97.22 93.75 70 70 80.56
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each category of all three models in D1 were satisfactory. The
average CCR of both 91.67 % was observed for models based
on (1) and (2). Improved performance was obtained for model
based on (3) with average CCR of 97.22 % that was better
than the CCR of 87.8 % for all regions on cod fillets using
VIS/NIR hyperspectral imaging (Sivertsen et al. 2011). It was
obvious that both spectral and textural information contributed
significantly to D1, indicating that both physicochemical and
textural characteristics in fish changed greatly in freezing,
storage, and thawing.

The results for all three models in D2 were worse than
those for the corresponding models in D1. Using only (1), in
D2, the average CCR reduced to 80.56 %, the CCR for fresh
maintained the same (93.75 %) as that in D1, and both of the
CCR for FF-T and SF-T was not high (70 %). This implied
that fresh samples were well separated from others based on
(1), but the spectra of FF-T and SF-T were similar to some
degree. Using only (2), compared with D1, the average CCR
in D2 dropped from 91.67 to 63.89 %, the CCR for fresh
reduced from 87.5 to 81.25 %, and both of the CCR for
FF-T and SF-T only reached 50 %. This indicated that fresh
samples were distinguished from others based on (2),
whereas the textures of FF-T and SF-T were too similar to
be classified. In D2, the acceptable CCR for models based
on (3) and (1) was similar although (2) was added to (3) in
comparison with (1), indicating the major contribution of (1)
and minor contribution of (2) to D2. Furthermore, different
freezing speeds and temperature had little effects on the
changes of fish texture while causing great changes in physi-
cochemical characteristics in fish.

Earlier spectroscopic researches on fish (Uddin and
Okazaki 2004; Uddin et al. 2005; Karoui et al. 2007) only
made advantages of spectral information since no spatial
and textural information was included in the data. Previous
studies on fish using hyperspectral imaging exploited spec-
tral and spatial information without fully capitalizing on the
spatial arrangement of brightness values of pixels (ElMasry
and Wold 2008; Chau et al. 2009; Menesatti et al. 2010;
Sivertsen et al. 2011). Thereby, the utilization and combina-
tion of both spectral and textural information of hyperspec-
tral images was a more meaningful exploration. However, as
a preliminary and mechanism study, the spectra extraction
was based on ROI identification. More work should be
carried out with some objective and automated approaches.
Furthermore, to be more close to practical situation, the
quality changes of fresh or F-T fish during storage after
slaughtering or thawing will be considered in the following
investigations. In addition, further researches should be
done to extend to a larger number of samples for validation;
study the effect of sample handling, halibut size, season, and
fishing ground; investigate more sophisticated pretreatments
for spectral data, as well as improve the robustness and rigor-
ousness of LS-SVM models before VIS/NIR hyperspectral

imaging can be applied as an online and practical method for
detecting F-T fish.

Conclusion

The overall results indicate that VIS/NIR hyperspectral imag-
ing combined with LS-SVM has the potential to be used as an
online technique for rapid and nondestructive differentiation of
fresh from F-T fish. The overall absorbance level was lower in
F-T than fresh fish. High average CCR of 97.22 % was
obtained based on (3), which was better than the average
CCR of 91.67 % based on (1) or (2). The CCR in D2 was
worse than D1 mainly because of the similarity in the textures
of FF-T and SF-T fish.
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