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Abstract There is growing concern in recent years for
consumers about contamination of pesticides in fruits due
to increasing use of pesticides in fruits. The objective of this
study was to use surface-enhanced Raman spectroscopy
(SERS) to detect and characterize pesticides extracted from
fruit surfaces. Gold-coated SERS-active nanosubstrates
were used for SERS measurement. Three types of pesticides
(carbaryl, phosmet, and azinphos-methyl) widely used in
apples and tomatoes were selected. Significantly enhanced
Raman signals of pesticides were acquired by SERS from
the extract of fruit samples and exhibited characteristic
patterns of the analytes. Multivariate statistical methods
such as partial least squares and principal component anal-
ysis were used to develop quantitative and qualitative mod-
els. SERS was able to detect all three types of pesticides
extracted from fruit samples at the parts per million level.
The study of detection limit demonstrated that at 99.86%
confidence interval, SERS can detect carbaryl at 4.51 ppm,
phosmet at 6.51 ppm, and azinphos-methyl at 6.66 ppm
spiked on apples; and carbaryl at 5.35 ppm, phosmet at
2.91 ppm, and azinphos-methyl at 2.94 ppm on tomatoes.

Most of these detection limits meet the maximum residue
limits established by Food and Agriculture Organization of
the United Nations and World Health Organization. Satis-
factory recoveries (78–124%) were achieved for samples
with concentrations at and larger than the detection limit.
These results demonstrate that SERS coupled with novel
SERS-active nanosubstrates is a rapid, sensitive, and reli-
able method for detection and characterization of chemical
contaminants in foods.
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Introduction

Organophosphosphate (OP) and carbamate (CB) pesticides
have been used for decades to fight against pests to increase
the yields of agricultural products. Because of their ability of
inactivating acetylcholinesterase, OP and CB are considered
to have potent neurotoxicity (Costa 2006; Gupta 2004; He
2000). Several studies suggest that chronic exposure to OP
and CB, even at low to mild doses, may lead to long-term
adverse neurobehavioral effects (Costa 2006; Wesseling et
al. 2002). OP and CB are widely used in fruits and vegetable
crops (Kegley and Wise 1998). According to Residue Mon-
itoring Reports published by the US Food and Drugs
Administration (US FDA), pesticide residues exist in a large
portion of certain types of fruits and vegetables such as
apple and tomato (FDA 2006, 2007a). There is growing
concern in recent years for consumers about contamination
of pesticides in fruits because FDA found that from 2004 to
2007, more domestic fruit samples contain pesticide resi-
dues, suggesting that the use of pesticides in fruits is in-
creasing (FDA 2007b). Therefore, reliable and consistent
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detection methods for OP and CB in fruits and vegetables
are crucially needed.

Current methods adopted by AOAC for detection of OP
and CB in fruits and vegetables are various thin-layer chro-
matography and gas chromatography setups (AOAC 2005;
Ortelli et al. 2005; Rawn et al. 2006). In recent years, novel
analytical methods for detection of OP and CB pesticides in
fruits and vegetables have been developed, including liquid
chromatography–mass spectrometry (Grimalt et al. 2007;
Liu et al. 2005; Ortelli et al. 2005), fluorescence polarization
immunoassay (Kolosova et al. 2003), multienzyme inhibi-
tion assay (Walz and Schwack 2007), and biosensors
(Valdés-Ramírez et al. 2008; Zhang et al. 2005). Although
these methods can be used to detect trace amount of pesti-
cide residues, they are time-consuming, labor-intensive, and
often require complicated procedures of sample preparation.
In addition, a narrow range of application is another major
hindrance to applying these techniques for food analysis.

Vibrational spectroscopic methods such as Raman spec-
troscopy have long been considered a useful analytical
technique to evaluate food safety and quality (Lu et al.
2011). Although Raman spectrum can provide “finger-
print-like” information about various chemical and bio-
chemical components in a complex system with little or no
sample preparation, traditional Raman spectroscopy is only
suitable for measuring compounds present in high concen-
tration because only one out of one million photons under-
goes Raman scattering, thus generating only weak signals.
Surface-enhanced Raman spectroscopy (SERS), discovered
in the 1970s (Albrecht and Creighton 1977; Fleischmann
et al. 1974; Jeanmaire and Van Duyne 1977), significantly
enhances the sensitivity of traditional Raman spectroscopy.
Over the last 10 years, with rapid development of nanotech-
nology and nanomaterials, the interest in SERS was revived.
SERS is a technique in which probed molecules are
absorbed onto the roughened surface of transition metals,
resulting in significant enhancement of the Raman signals
by many orders of magnitude in highly localized optical
fields of nanostructures. Coupled with metal nanosubstrates,
SERS can increase the intensity of Raman signals by more
than one million times due to the effects of electromagnetic
field enhancement and chemical enhancement (Haynes et al.
2005; Kneipp et al. 2002). Many applications are being
explored using novel nanosized or nanostructured substrates
for SERS measurements. For example, nanosized particles
can be used as SERS-active substrates because they have a
very high surface/volume aspect ratio, which is an important
parameter to ensure that a great number of probe molecules
are captured in the close vicinity of the metal surface. To
date, gold and silver are two most frequently used materials
for fabrication of SERS-active nanosubstrates.

SERS has been used in rapid detection and characteriza-
tion of various food contaminants and adulterants, including

banned seafood drugs such as crystal violet and malachite
green (He et al. 2008a; Lai et al. 2011), melamine and its
derivatives (He et al. 2008b; Liu et al. 2010), and banned
food dye Sudan-1 (Shadi et al. 2010). The objective of this
study was to use SERS coupled with novel nanosubstrates
for rapid detection of OP and CB pesticides extracted from
fruit surfaces. Two types of fruits (i.e., apple and tomato)
were selected in this study because they are major targets of
pesticide residue monitoring and have been found to be
heavily contaminated with various pesticides (FDA 2006,
2007a). Multivariate statistical methods were used to ana-
lyze SERS spectral data and develop quantitative and qual-
itative models for data analysis.

Materials and Methods

Materials

Two OP pesticides (azinphos-methyl and phosmet) and one
CB pesticide (carbaryl) were purchased from Fisher Scien-
tific Inc. (Pittsburgh, PA, USA). Organic apples (Granny
Smith) and tomatoes were purchased from a local supermarket.
Organic fruits were selected and cleaned to ensure that no
pesticide residues existed on the samples.

Sample Preparation

Pure pesticide solutions: 100 ppm (w/v) of azinphos-methyl,
phosmet, and carbaryl stock solutions were prepared using a
mixed solvent system (acetonitrile/H2O01:1, v/v). Solutions
of 50, 10, 5, 1, 0.5, and 0.1 ppm pesticides were prepared by
serial dilutions from the 100 ppm solution. The solvent
without pesticides was used as the control.

Apples and tomatoes were weighed, and their diameters
were measured. Assuming that an apple or a tomato is of
spherical shape, the surface area of the fruit was calculated.
Using these data, given designated pesticide concentration
on a fruit (parts per million, or equivalently, micrograms per
gram), the mass of pesticide (microgram) that should be
spiked on 1 cm2 of fruit skin was obtained. Then, certain
amounts of pesticide solutions were dropped with a pipetter
onto a piece of ~4 cm2 fruit skin freshly peeled from the
fruit. Extra care was taken to ensure even distribution of the
solution on the fruit skin. The skin of the samples were then
blown dry, cut into small pieces, and placed in conical tubes
containing 4 mL of mixed solvent (acetonitrile/H2O01:1,
v/v). After vigorous vortexing for 1 min, the mixture was
sonicated using an ultrasonic processor equipped with a
6.5-mm tapered microtip (Sonics & Materials, Inc. New-
town, CT, USA) for 5 min with 30-s working and 10-s
interval at an amplitude of 30%. Finally, the supernatant
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was filtered with a 0.22-μm syringe filter, and the filtrate
was used for SERS measurement.

SERS Substrates

The SERS substrates, Q-SERS™ G1, were obtained from
Nanova Inc. (Columbia, MO, USA). Q-SERS™ substrates
are gold-based nanostructures fabricated on a silicon wafer.
A volume of ~0.3–0.5 μL of the filtrate from previous step
was dropped on the surface of a substrate using a micropi-
pette. The substrate, which was fixed on a glass slide, was
then placed on a hot plate and heated at 40°C until the
solvent completely evaporated.

SERS Measurement

A Renishaw RM1000 Raman Spectrometer System
(Gloucestershire, UK) equipped with a Leica DMLB micro-
scope (Wetzlar, Germany) was used in this study. This
system is equipped with a 785-nm near-infrared diode laser
source. During the measurement, light from the high power
(maximum at 300 mW) diode laser was directed and
focused onto the sample at a microscope stage through
a ×50 objective. Raman scattering signals were detected
by a 578×385 pixels charge-coupled device array detector.
The size of each pixel was 22×22 μm. Spectral data were
collected by WiRE 3.2 software (Gloucestershire, UK). In
this study, spectra of samples were collected using a ×50
objective with 10-s exposure time, 0% focus, and ~20 mW
laser power in the extended mode. Detection ranges for each
pesticide were 550–1,650 cm−1 for azinphos-methyl, 550–
1,800 cm−1 for phosmet, and 600–1,700 cm−1 for carbaryl.
The detection range was determined in a way that the range
was as narrow as possible, but no obvious signals were
missed.

Data Analysis

The software Delight version 3.2.1 (D-Squared Develop-
ment Inc., LaGrande, OR, USA) was used in data analysis.
SERS spectral data were analyzed following previously
developed methods with slight modification (He et al.
2008a; Liu et al. 2010). Briefly, data pre-processing algo-
rithms including polynomial subtract and Gaussian smooth-
ing were employed to subtract the baseline shift and
eliminate high frequency noises from the instrument. The
partial least squares (PLS) model, a multivariate statistical
regression model, was constructed to predict analyte con-
centrations in tested samples. The PLS model was validated
by leave-one-out cross validation, which uses all but one
sample to build a calibration curve and repeats for each
sample in the data set. The number of PLS latent variables
was optimized based on the lowest root mean square error of

prediction (RMSEP) values to avoid overfitting of spectral
data.
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In this equation, n is the number of samples, ĉi is the
predicted pesticide concentration (ppm), and ci is the actual
pesticide concentration (ppm). The correlation coefficient
(R) and RMSEP were used to evaluate the model. The
higher the R value or the lower the RMSEP value is, the
better predictability the model has.

The detection limit (DL) with 99.86% confidence interval
can be calculated from the PLS calibration curve based on
characteristic peaks in SERS spectra using the following
formula (Strickland and Batt 2009):

DL ¼ 3σ m= ð2Þ
in which σ is the standard error of predicted concentration,
and m is the slope of the calibration curve. In a PLS model,
σ equals to RMSEP.

Principal component analysis (PCA) is a statistical tech-
nique used to reduce a multidimensional data set to its most
dominant features, to remove random variations (noise), and
to retain the principal components (PCs) that explain most
variations between sample treatments (Goodacre et al.
1998). In this study, spectral data were smoothed with a
Gaussian function at 4 cm−1 followed by a second derivative
transformation with a 12 cm−1 gap before PCA was
conducted.

Concentrations of pesticide solutions extracted from fruit
samples were determined via PLS using the calibration curve.
The recovery percentage was calculated with quantified pesti-
cide concentrations divided by spiked pesticide concentrations.

100nm

10nm

100nm100nm

Fig. 1 Scanning electron microscope image of a Q-SERS™ G1 sub-
strate surfaces (inset high magnification image of an individual
nanoparticle)
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Results and Discussion

Figure 1 shows an SEM image of the surface of a gold-
coated Q-SERS™ G1 substrate, which exhibits two layers
of nanostructures. The larger nanoparticles have sizes of 20-
60 nm and their surfaces are covered by smaller nanopar-
ticles with sizes of 4-6 nm. Most of those bigger nano-
particles with sizes of 40-50 nm are connected, but some
of them have a gap of about 20 nm between each other. The
structures of nanosubstrates are not highly uniform when
observing at nanoscale. Thus, the SERS enhancement fac-
tors at different locations are expected to be different
depending on the size and spacing of nanoparticles. How-
ever, if one spot on the substrate is compared to another at
microscale, the structures of substrates are very uniform.
During SERS measurement, a laser beam with a diameter
of 5 μm was typically applied. If a spot with a diameter of
5 μm is compared with another spot of identical size on a
substrate, the numbers of active hotspots should be at the
same level, and the enhancement factors of these two spots
are almost identical. The surface coverage of the nanopar-
ticles by a thin layer of gold is uniform and complete, which
is confirmed by the fact that no silicon peak was detected in
the SERS spectra.

Figure 2 shows molecular structures of three types of
pesticides (azinphos-methyl, carbaryl, and phosmet). To

Fig. 3 Average SERS spectra
(n08) of pesticide solutions
and solid (a1 azinphos-methyl
solution, a2 azinphos-methyl
solid, b1 carbaryl solution, b2
carbaryl solid, c1 phosmet
solution, c2 phosmet solid). The
concentration of all solutions is
50 ppm. Measurements were
conducted with a 10-s exposure
time and ~20 mW laser power.
Spectra were presented with
smoothing at 4 cm−1 and base-
line adjustment by subtracting a
second order polynomial
function
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Fig. 2 Molecular structures of three types of pesticides (azinphos-
methyl, carbaryl, and phosmet)
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confirm that no interfering signals were introduced by sol-
vent or other factors, SERS spectra of the three pesticides in
both solution and solid forms were obtained and compared,
as shown in Fig. 3. For all three pesticides, signals of
solution and solid forms agree well with each other, indi-
cating that the solvent used did not produce interfering
signals in measurement. The intensity of some peaks in
spectra obtained from the solution is apparently different
from their counterparts in spectra obtained from the solid
(e.g., a peak at 730 cm−1 in carbaryl spectra and peaks in
580–740 cm−1 region in phosmet spectra). This may be due
to the interaction between solute and solvent molecules.
These peaks were not used for quantification analysis.

SERS was used to measure solutions containing different
concentrations of three pesticides. Average SERS spectra
(n08) of carbaryl are shown in Fig. 4, while similar results
were obtained for the other two pesticides (data not shown).
The carbaryl spectra are highly consistent with a previous
report using Ag nanoparticle-coated Si nanowire as SERS
substrate, in which the intensity of 1,380 and 1,440 cm−1

peaks decreased as concentration of carbaryl decreased
(Wang et al. 2010). Band assignments were summarized in
Table 1 based on other published data (Boese and Martin

2004; Fischer et al. 1997; Socrates 2004; Trotter 1977). For
example, a strong peak at 1,380 cm−1 may be due to the
symmetric vibration of the naphthalene ring. The naphthalene
ring of carbaryl is mono-substituted, and the 1,440 cm−1 peak
may be from unspecified vibrations of this ring. Another
strong peak at 1,565 cm−1 can be attributed to the stretching
of C0C double bonds in the naphthalene ring. In general, our
results agreed well with previous reports.

Second derivative transformation is a powerful tool in
analysis of spectral data. It can separate overlapping peaks,
eliminate baseline effects, and enhance spectral resolution.
Spectra of carbaryl solutions were preprocessed using sec-
ond derivative transformation. Figure 5 shows the most
prominent feature at 1,380 cm−1 in the spectra. This figure
demonstrates that SERS is able to differentiate spectral pat-
terns between different concentrations of carbaryl in a mixed
solvent. A drawback of this approach is that it may not provide

Fig. 4 Average SERS spectra (n08) of carbaryl solutions with different
concentrations. Measurements were conducted with a 10-s exposure time
and ~20mW laser power. Spectra were presentedwith smoothing at 4 cm−1

and baseline adjustment by subtracting a second order polynomial function

Table 1 Band assignments of major peak in SERS spectra acquired
from three pesticides

Band (cm−1) Assignment

Azinphos-methyl

587w δ(C0O)

674m υ(P0S)

703s Benzene ring breathing

775s, 897m 1,2,3-triazine ring breathing

1026m Asymmetric P–O–C deformation vibration

1221s γ(C–H) in P–O–CH3

1258s υ(C–N) in S–CH2–N

1283m, 1302s υ(C–N) in O0C–N

1332w 1,2,3-triazine ring breathing

1399w γ(C–H) in S–CH2–N

1450s υ(N0N)

1495w,
1576vw

1,2,3-triazine ring breathing

Carbaryl

1380vs Symmetric ring vibration

1440m Unspecified ring vibration of mono-substituted
naphthalene

1565s υ(C0C) in naphthalene ring

Phosmet

606s δ(C0O)

653m δ(P0S)

675m υ(P0S)

712m Benzene ring breathing

1014m Asymmetric P–O–C deformation vibration

1191m γ(C–H) in P–O–CH3

1260m υ(C–N) in S–CH2–N

1409w γ(C–H) in S–CH2–N

1714m υ(C0O)

w weak, m medium, s strong, v very, υ stretching, δ in-plain deforma-
tion vibration, γ out-of plane deformation vibration

714 Food Bioprocess Technol (2013) 6:710–718



a direct discrimination between samples containing relatively
high concentrations of pesticides (larger than 10 ppm). As
shown in Fig. 5, the height of the peak at 1,380 cm−1 does not
differ much between the spectral samples of 10 and 50 ppm,
which is also the case for the other two pesticides.

PLS analysis was applied on spectra of all three pesticide
samples. RMSEP values obtained from the PLS models of
carbaryl with different latent variables are shown in Fig. 6.
The spectral data were preprocessed with smoothing at 4 cm−1

in the whole spectral region. The lowest RMSEP value was
achieved when five latent variables were used, suggesting that
the optimal number of latent variables to construct a PLS
model is 5. The optimal number for building PLS models is
5 for azinphos-methyl and 6 for phosmet. PLS prediction
results for carbaryl (n054) are shown in Fig. 7 by plotting
predicted pesticide concentrations against actual pesticide
concentrations (R00.84; RMSEP01.954×10−5). For
azinphos-methyl and phosmet, R values are 0.98 and 0.85,

and RMSEP values are 7.269×10−6 and 1.823×10−5. With R
values all larger than 0.83, results of PLS analyses suggest that
PLS can serve as a reliable method to quantify pesticides.

PCA was conducted based on the spectra acquired from
all three pesticides to investigate if SERS can differentiate
different pesticides. The results of using the first two PCs to
classify samples are shown in Fig. 8, indicating that PCA
with the first two PCs could be used to discriminate the three
pesticide samples quite well. Although Fig. 8 shows clear
segregation between the three pesticide samples, a small
portion of samples overlapped with each other. Because a
SERS spectrum reflects the characteristics of chemical
structure of the analyte, it is possible that one of the PCs
can be assigned to common chemical groups. Both
azinphos-methyl and phosmet are organophosphorus com-
pounds and possess a functional group [S0P(OCH3)2], so
when using the first two PCs to classify them, overlapping
of data clusters may occur. In contrast, carbaryl does not

Fig. 5 Part of second derivative transformation of average SERS spectra
(n08) acquired from different concentrations of carbaryl solutions

Fig. 6 Root mean square error of prediction (RMSEP) values obtained
from the partial least squares (PLS) models based on carbaryl spectra
with different latent variables

R = 0.8386
RMSEP = 19.54

Fig. 7 Predicted carbaryl concentration (ppm) vs. actual carbaryl con-
centration (ppm) using the PLS models: smoothing 4 cm−1, baseline
adjustment by subtracting a second order polynomial function; five latent
variables; spectral region, 1,200–1,700 cm−1; spectral number n054

Fig. 8 Classification of pesticides using first two principal compo-
nents (PCs)
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contain such phosphorus group, but it has a naphthalene
structure, which is similar to aromatic rings that the other
two pesticides have. This would explain why some of carbaryl
samples overlapped with those of phosmet and azinphos-
methyl. SERS spectra acquired from higher concentrations
of samples exhibited more significant differences from each
other because richer information of chemical structures of the
analytes was reflected in SERS spectra.

SERS was used to detect carbaryl, phosmet, and
azinphos-methyl extracted from real food samples. Detec-
tion limits for the pesticides were calculated by Eq. 2. As an
example, calibration curve of carbaryl extracted from apple
skin is shown in Fig. 9. Results of detection limit for three
pesticides are summarized in Table 2, indicating that satis-
factory prediction results could be obtained by SERS. Max-
imum residue limits (MRLs) of the three pesticides tested in
this study have been established for apples and tomatoes by
Food and Agriculture Organization of the United Nations
(FAO) and World Health Organization (WHO), as shown in
Table 3 (FAO/WHO 1967, 1984, 2009). Comparing the

MRLs with the results in Table 2, it can be concluded that
the SERS method meets the requirement of carbaryl and
phosmet. For azinphos-methyl, more efficient extraction
procedures and better performing substrates is needed to
improve the result.

It was argued that a thicker waxy outer layer of tomato skin
favors penetration of pesticides because the layer contributes
to the stability of pesticides in it (Gunther and Blinn 1955).
This claimwas supported by the fact that after being applied to
whole tomatoes, most of dimethoate, profenofos, and
pirimiphos-methyl, all of which are organophosphorus pesti-
cides, were found to be retained in the skin of tomatoes
(Abou-Arab 1999). In addition, peeling reduces over 83% of
the three organophosphorus pesticides in tomatoes (Abou-
Arab 1999). For apples, it was shown that 24 h after applica-
tion, over 85% of azinphos-methyl and phosmet residues
locate in the skin and the outside 2 mm of the apple flesh
(Wise et al. 2009). Therefore, our method of peeling the fruit
and applying pesticide solutions onto the skin did not cause
significant sampling errors compared to common approaches
such as extracting pesticides from whole fruit homogenates.

To calculate the recovery of pesticides, we took an
approach different from common chromatographic methods
in which the calibration curves obtained from pure pesticide

Fig. 9 Calibration curve of carbaryl extracted from apple skin using
the PLS models, showing standard error: smoothing 4 cm−1, baseline
adjustment by subtracting a second order polynomial function; four
latent variables; spectral region, 1,340–1,420 cm−1; spectral number
n030

Table 2 Calculation of detection limits (DL) of SERS method for
carbaryl, phosmet, and azinphos-methyl extracted from apple and
tomato samples

R Standard error Slope DL (ppm)

Sample: apple

Carbaryl 0.94 1.41 0.94 4.51

Phosmet 0.87 1.77 0.82 6.51

Azinphos-methyl 0.88 1.89 0.85 6.66

Sample: tomato

Carbaryl 0.82 1.19 0.67 5.35

Phosmet 0.91 0.83 0.86 2.91

Azinphos-methyl 0.91 0.84 0.85 2.94

Table 4 Recovery of pesticide concentration (percentage) in apples
and tomatoes

Pesticide Spiked (ppm) Quantifieda (ppm) Recovery (%)

Sample: apple

Carbaryl 5 4.87±1.55 97.4

10 9.76±1.72 97.6

Phosmet 5 3.88±1.98 77.7

10 9.05±2.12 90.5

Azinphos-methyl 5 6.22±1.66 124.3

10 8.26±1.33 82.6

Sample: tomato

Carbaryl 5 3.89±1.11 77.7

Phosmet 5 4.45±1.37 89.0

Azinphos-methyl 5 4.50±1.07 90.1

a Quantified values are shown as mean±standard deviation (n06)

Table 3 Maximum residue limits (MRLs) of carbaryl, azinphos-
methyl, and phosmet in apples and tomatoes established by FAO/WHO

Pesticide Maximum residue limits (ppm)

Apple Tomato

Carbaryl 6–10 5

Phosmet 10 N/A

Azinphos-methyl 1 2
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solutions were used to quantify the analyte extracted from
food samples. For quantification analysis based on PLS,
some studies suggest that the standards and unknown sam-
ples should be of the same matrix composition (Sentellas
et al. 2001). Therefore, we used the calibration curve
obtained from pesticides extracted from real foods to predict
the concentrations of the samples, and calculated the recov-
ery percentage accordingly (Table 4). The recoveries are
satisfactory for samples with concentrations around or larger
than their corresponding detection limits (77.7 to 124.3%).
For comparison, several previous studies using different
methods to detect these pesticides in fruits and vegetables
show recoveries ranging from 70 to 110% (Grimalt et al.
2007; Kolosova et al. 2003; Liu et al. 2005; Walz and
Schwack 2007; Zhang et al. 2005). While these methods
do show better detection limits (ranging from 15 ppb to
3 ppm for different pesticides in various food matrices), it
must be noted that complex and time-consuming processes
should not be incorporated as part of sample preparation
procedure of SERS as the rapidness is the main advantage of
SERS methods.

We propose that when SERS methods are applied to
test for chemical samples in food, the standards should
be the chemical extracted from the foods that have been
spiked with known concentrations of the analyte, in
contrast to chromatographic methods in which standards
are pure chemical solutions. The steps of extraction
should be the same for standards and samples. Today’s
food safety situation calls for development of rapid,
sensitive, and reliable methods that are suitable for on-
site detection. Compared with other methods, SERS has
the following advantages to meet such requirements:
simplicity of sample preparation, acceptable accuracy
and reliability, and wide applications. In addition, more
effective yet simple extraction techniques and better
performing substrates will greatly improve the capability
of SERS methods.

Conclusions

Our study shows that using SERS coupled with novel gold-
coated nanosubstrates, three types of pesticides (azinphos-
methyl, phosmet, and carbaryl) can be quantitatively mea-
sured and qualitatively distinguished and characterized.
With a few steps of simple sample preparation, trace amount
of pesticides in apples and tomatoes can be rapidly extracted
and detected by SERS, and the detection limits meet the
MRLs set by FAO/WHO. Future research is needed to test
for more types of pesticides on vegetables and fruits, study
the interferences from other compounds, and compare the
SERS method with other alternative techniques such as
HPLC and GC-MS.
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