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Abstract Near infrared (NIR) and mid-infrared (MIR)
spectroscopy techniques were evaluated to determine
calcium content in powdered milk. A hybrid spectral
variable selection algorithm combined with uninformation
variable elimination (UVE) and successive projections
algorithm (SPA) selected 11 NIR and 15 MIR variables
from full 2,756 NIR and 3,727 MIR variables, respectively.
Predicted results of least-squares support vector machine
models for the samples in the prediction set show that the
15 MIR variables obtained much better results (0.930 for
coefficient of determination (r2), 3.703 for residual predic-
tive deviation (RPD), 30.162 for root mean square error of
prediction set (RMSEP) and 5.22% for relative errors of
prediction (RSEP)) than 11 NIR variables did (0.636 for r2,
1.587 for RPD, 78.815 for RMSEP, and 13.40% for RSEP).
The overall results indicate that MIR spectroscopy could be
applied as a precision and rapid method to determine
calcium content in powdered milk. The good performance
shows a potential application using UVE-SPA to select NIR
and MIR effective variables.

Keywords Near infrared (NIR) spectroscopy .Mid-infrared
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Introduction

Powdered milk is a manufactured dairy product made by
evaporating milk to dryness. Powdered milk is high in
minerals like calcium and can be used as ingredients to
fortify other manufactured food products that are poor in
calcium. The role of Ca2+ as an intracellular messenger
has been recognized since the 1970s (Berridge 1975).
Calcium plays a critical role in maintaining bone health
and preventing osteoporosis. Calcium is also crucial for
nerve conduction, muscle contraction, heartbeat, blood
coagulation, the production of energy, and maintenance of
immune function. So, a fast, non-destructive and accurate
quality control of calcium content in powdered milk is of
great importance, not only for establishing their nutritional
values but also for consumer information. Some chemistry
methods were applied for calcium content determination in
powdered milk, such as reaction cell inductively coupled
plasma mass spectrometry (Chen and Jiang 2002), energy-
dispersive X-ray fluorescence spectrometry (Alvarez et al.
2005), and ion-selective electrode (Hitti and Thomas
1985). However, these methods have some disadvantages
such as being destructive, time-consuming, laborious,
costly, and they require complex and professional labora-
tory operations.

Nowadays, near infrared (NIR) and mid-infrared
(MIR) spectroscopy technologies are employed as alter-
natives to wet chemistry procedures for quantitative
analysis in agriculture and food quality evaluation
(Wilson and Tapp 1999; Nicolai et al. 2007; Woodcock
et al. 2008; Alexandrakis et al. 2009; Hu et al. 2010). For
quality evaluation of powdered milk, we did analyses on
the content prediction of protein, fat, and carbohydrate
using short-wave NIR, NIR, and MIR spectroscopy (Wu et
al. 2007, 2008a; Wu et al. 2008b, c). Borin et al. (2006)
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studied the common adulterants in powdered milk by near
infrared spectroscopy. There are some works on calcium
study in organic and food using infrared spectroscopy.
Byler and Farrell (1989) found out about infrared
spectroscopic evidence for calcium ion interaction with
carboxylate groups of casein. In the absence of Ca2+, the
O–C–O stretching vibrations of these carboxylates give
two characteristic infrared absorption bands near 1,400
and 1,575 cm−1. When Ca2+ ions are present, this pair of
bands was observed to shift about 10 cm−1 to approximately
1,410 and 1,565 cm−1, respectively. Upreti and Metzger
(2006) found that the spectral region ∼980 cm−1 had the
highest correlation with the measured concentrations of
bound Ca in cheese. Mesubi (1982) did infrared study of
zinc, cadmium, and lead salts of some fatty acids. From the
O–C–O stretching frequencies Mesubi deduced that the
coordination of the carboxylate group to the metal ions is
unsymmetric chelating bidentate. Nara and Tanokura (2008)
found out the assignments of the O–C–O anti-symmetric
stretch have been ensured on the basis of the spectra of
calcium-binding peptide analogs. The downshift of the O–C–
O anti-symmetric stretching mode from 1,565 cm−1 to 1,555–
1,540 cm−1 upon Ca2+ binding is a commonly observed
feature of MIR spectra for EF-hand proteins. However, to the
best of our knowledge, there were few reports on the
quantification determination of calcium content in powdered
milk by using NIR or MIR spectroscopy.

Due to the characteristics of overtone and combination,
the molar absorbance of NIRS is low (low sensitivity).
However, NIRS can be operated with little sample
preparation which makes the whole operation more
convenient and online possible. The NIR instruments are
cheaper than MIR. Thus, two techniques have their
advantages and disadvantages and need to be considered
in different applications. In this study, NIR and MIR
spectroscopy techniques were compared to evaluate which
one was better to determine calcium content in powdered
milk.

As it is broad and weak due to combinations and
overtones of functional groups, NIR is largely dependent on
chemometric methods for the quantitative analysis of
multicomponent systems or mixtures (Bokobza 1998).
Chemometrics is also useful to rapid extract relevant
information from complex MIR data sets (Downey 1998).
However, with hundreds or thousands of wavenumbers as
input variables and hundreds of samples, both NIR and
MIR spectral data are too complicated to be trained directly
in the chemometric models. The training procedure is time-
consuming and not convenient. Some wavenumbers or
wavenumber bands may contain useless or irrelevant
information for calibration model-like noise and back-
ground than relevant information to models. Moreover,
these wavenumbers or wavenumber bands may contribute

more collinearity and redundancies (Ye et al. 2008). The
elimination of uninformation variables can predigest cali-
bration modeling and improve prediction results in terms of
accuracy and robustness. Moreover, the selected effective
wavenumber variables can be used to develop simple
instruments or online detection and control of powdered
milk during the produce stage.

However, selecting variables from the full spectrum to
obtain the maximum accuracy is still a challenging task,
especially when spectra display strong overlapping, include
mass and complex data, and have imperceptible distinctive
features, as is the case with NIR and MIR spectroscopy. The
commonly used variable selection methods include general-
ized simulated annealing (Kalivas et al. 1989), genetic
algorithm (GA) (Jouanrimbaud et al. 1995), x-loading
weights (Wu et al. 2008b), and regression coefficients
(Wu et al. 2008b). However, some selection methods (SA
and GA for instance) have stochastic nature, results are
realization dependent and variable selections may not be
reproducible. Other methods introduced artificial judg-
ments which are time-consuming and not precise. In this
work, a hybrid spectral variable selection algorithm,
uninformation variable elimination (UVE) by PLS with
successive projections algorithms (SPA), was applied for
both NIR and MIR spectral variable selection. Both UVE
and SPA are deterministic algorithms, which do not
employ stochastic operations. There are some papers on
using UVE–SPA to do NIR spectral variable selection (Ye
et al. 2008; Wu et al. 2009b), but there are a few studies
focused on the MIR variable selection using UVE–SPA
and comparing UVE–SPA on NIR and MIR variable
selection.

The specific aims of this study were: (1) to investigate
the feasibility of using NIR and MIR spectroscopy to
predict the calcium content in powdered milk; (2) to
compare the prediction ability of NIR and MIR spectra
based on least-square support vector machine (LS-SVM);
(3) to reduce the input variables of LS-SVM models and
obtain effective wavenumber variables by variable selection
method of UVE-SPA; and (4) to compare the prediction
abilities of LS-SVM models based on different inputs,
namely, variables selected by UVE-SPA and only selected
by UVE, and the full spectral variables.

Materials and Methods

System Setup and Data Measurement

In this study, the JASCO model FT/IR-4000 Fourier
transform infrared spectrometer (Japan) was used, with a
valid range of 7,800∼350 cm−1 and auto scan speed of
2.0 mm/s, to obtain transmittance (percent transmission)
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spectrum. In order to make the powder have different
calcium contents, seven brands of powdered milk were
provided by the Inner Mongolia Yili Industrial Group Co.,
Ltd., a well-known corporation in the Chinese powdered
milk market. They were 0–6-month infant powdered milk,
6–12-month infant powdered milk, 1–3-year toddler pow-
dered milk, 3–6-year child powdered milk, student pow-
dered milk with zincum, woman nutrition powdered milk
and whole powdered milk. The temperature was kept at
about 25°C during the whole experiment. Powdered milk
sample was mixed with KBr at the ratio of 1:49. Each brand
included 52 to 60 samples, respectively (Table 1). Each
sample was scanned 40 times and the data were averaged to
one as the spectra of this sample. Finally the spectra of 409
samples were obtained. Due to the potential system
imperfection, obvious scattering noises were observed at
the beginning and end of the spectral data, and therefore
should be eliminated. Finally the NIRS analysis was done
based on 4,000 to 6,666 cm−1 while MIRS analysis was
done between 400 and 4,000 cm−1. The smoothing
algorithm of Savitzky–Golay with three segments and zero
polynomials combined with standard normal variate were
applied as the spectral pretreatment. The pretreatment
processes were implemented by “The Unscrambler V 9.7”
(CAMO Process AS, OSLO, Norway). The reference
values of calcium were determined by atomic absorption
spectrometry using PerkinElmer AAnalyst™ 800 high-
performance atomic absorption spectrometer. The absorbed
atomic resonance line was 422.7 nm according to Official
Method 965.17 (AOAC 2000).

Successive Projections Algorithms

SPA is a forward variable selection algorithm for multivar-
iate calibration to select wavenumbers which their infor-
mation content is minimally redundant, in order to solve the
collinearity problems (Araujo et al. 2001). SPA performs
simple projection operations in a vector space to obtain
subsets of useful variables with minimum of collinearity

(Araujo et al. 2001). The principle of variable selection by
SPA is that the new variable selected is the one among all
the remaining variables, which has the maximum projection
value on the orthogonal subspace of the previous selected
variable. The detailed description of SPA can be seen in
Araujo et al. (2001). However, variables selected by SPA
may be with low signal/noise ratio (S/N) or useless for
multivariate calibration, which can affect the model’s
precision (Ye et al. 2008). Thus, in this study, UVE was
firstly employed to select informative variables, and SPA
was followed to select variables. The process of SPA was
executed in MATLAB 7.6 (The Math Works, Natick,
USA).

Uninformative Variable Elimination

In full spectral variables, there are some of the variables
that can be noisy, have high variances but small covariance
with y, and/or do not contain information relevant for
modeling Y. Eliminating these variables from the explana-
tory part of data can improve the model. Employing the
variables selected by UVE for partial least squares (PLS)
modeling can avoid a model overfitting and usually
improve its predictive ability. UVE is user independent
and does not present any configuration problems, compared
with other variable selection methods (Centner et al. 1996).
UVE evaluates the reliability of each variable in the model
through the stability of each variable, and removes the
variables of X that have no relation with the property of
interest Y (Wu et al. 2009a).

This elimination is based on the analysis of the stability
of the regression coefficient b:

Ci ¼ mean ðbiÞ
SðbiÞ ð1Þ

where cj is the stability of the regression coefficients. It is
the ratio between the mean of bj and the standard deviation
of bj, obtained by leave-one-out cross-validation for each

Data set Sample no. Range Mean Standard deviation

Brand 1 52 243.1–302.7 272.4 17.8

Brand 2 59 382.2–436.4 408.0 15.7

Brand 3 60 411.7–452.0 429.3 12.5

Brand 4 60 627.2–722.7 673.8 27.6

Brand 5 60 427.1–486.8 457.0 17.8

Brand 6 59 404.8–553.4 479.6 45.3

Brand 7 59 445.3–555.7 502.0 32.9

Calibration 209 243.1–722.8 462.7 114.8

prediction 200 243.3–722.7 458.9 114.1

All samples 409 243.1–722.8 460.0 114.3

Table 1 Statistical values of
calcium (milligrams per 100 g)
in powdered milk in calibration
and prediction sets
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variable j. To determine the uninformative variables, an
artificial random variable matrix, with a range of approx-
imately 10−10 (noise level), is added to the dataset, and their
C values are computed. If cjdataset

�
�

�
� < max cjrandom

� ��
�

�
�, the

jth experimental variable is considered to be uninformative.
This variable is considered to give more information than
the random variables, and is eliminated from the dataset.
There are some variants of UVE, like α-UVE, where the
cutoff value is the value of the alpha percent of the Cj

�
�

�
� of

the artificial random variables. In this paper the cutoff value
used was 99% of the cjrandom

�
�

�
�. The process of UVE was

executed in MATLAB 7.6 (The Math Works, Natick,
USA).

Chemometric Calibration of LS-SVM

Support vector machines is a powerful methodology for
solving problems in nonlinear classification, function
estimation, and density estimation which has also led to
many other recent developments in kernel-based methods
in general. LS-SVM are reformulations to the standard
SVMs which lead to solving linear KKT systems. LS-
SVMs are closely related to regularization networks and
Gaussian processes but additionally emphasize and exploit
primal–dual interpretations. As giving a good performance
under general smoothness assumptions on handling the
nonlinear relationships between the spectra and target
attributes, RBF kernel was used in this study. Grid search
technique was applied to find out the optimal parameter
values which include regularization parameter gam (γ) and
the RBF kernel function parameter sig2 (σ2). In this study,
these parameters were optimized with values of γ in the
range of 2−1–210 and σ2 in the range of 2–215 with adequate
increments. These ranges were chosen from previous
studies where the magnitude of parameters to be optimized
was established. For each combination of γ and σ2

parameters, the root mean square error of cross-validation
(RMSECV) was calculated and the optimum parameters
were selected when produced smaller RMSECV. The
details of LS-SVM description could be found in the
literature (Wu et al. 2008d).

Model Evaluation Standard

The evaluation indices of predictive capability for all
developed models were coefficient of determination (r2),
residual predictive deviation (RPD) and root mean square
error of prediction set (RMSEP). RPD is the standard
deviation of reference data for the validation samples
divided by the standard error of prediction (SEP) and
provides a standardization of the SEP (Williams 2001; Wu
et al. 2010). Generally, a good model should have higher
r2 and RPD value, lower RMSEP values. The process of

LS-SVM was executed in MATLAB 7.6 (The Math
Works, Natick, USA)

Results and Discussion

NIR and MIR Spectral Investigation

The original spectra transmission values of typical pow-
dered milk samples from seven different brands at MIRS
and NIRS regions are shown in Fig. 1. It could be observed
that the trend of different curves was similar in the NIR
region. They were mainly parallel and there were three
absorption peaks. Peak at 4,260 cm−1 was assigned to CH2

symmetric stretching vibration +CH2 deformation vibration
of HC=CHCH2. Peak at 4,330 cm−1 was assigned to C–H
stretching +C–H deformation vibration of CH2. H2O
absorption appeared at 5,155 cm−1. Absorption bands
observed in the MIR region were associated with funda-
mental valence vibrations of functional groups of the
molecule (Karoui et al. 2005). The broad and strong peak
from 3,200 to 3,600 cm−1 was due to O–H stretching
vibrations. CH2 symmetric stretching vibration showed
peak at 2,854 cm−1 and CH2 asymmetric stretching
vibration shows peak at 2,925 cm−1. Broad peak between
2,000 and 2,250 cm−1 as R′–C≡C–R. C=O stretching
vibration showed peak at 1,745 cm−1. C=C stretching
vibration shows peak at 1,650 cm−1. Peaks at 875 and
898 cm−1 were assigned to C–H deformation vibration.
However, we did not know which peaks were related to
calcium iron absorption and were useful for the calcium
content determination. Moreover, when there were many
samples, their spectral curves would be overlapped, and
their absorbed peaks were hard to identify and analyze.

Fig. 1 NIR and MIR transmission spectra of powdered milk samples
from seven different brands
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Therefore, it was important to perform variable selection in
multivariable analysis.

Calibration and Prediction Sets

The descriptive statistics of calcium in powdered milk
determined by standard laboratory methods are presented in
Table 1. All the samples were divided into calibration (209
samples) and prediction (200 samples) sets according to the
Kennard–Stone (KS) algorithm (Kennard and Stone 1969).
KS is a classic method to extract a representative set of
objects from a given data set. It selects a representative data
set consisting of samples separated by large Euclidean
distances. The calibration and validation samples were used
in the LS-SVM procedures. A broad range of concentration
variation was observed in the calibration and prediction sets
(Table 1). This situation would be helpful to build a stable
and robust calibration model for the calcium content
determination of powdered milk.

Full-Spectrum LS-SVM Model

LS-SVM models were developed to determine calcium
content in powdered milk. The full spectra of NIR and MIR
were inputted into LS-SVM, respectively. MIR spectra
obtained much better results (with r2=0.916, RPD=3.107
and RMSEP=35.974) than NIR (with r2=0.571, RPD=
1.323, and RMSEP=84.762). RPD values of MIR up to 3
shows a reliable ability for calcium content determination
and was considered suitable for screening (Williams 2001).
In order to evaluate the performance of using LS-SVM for
the model calibration, partial least square regression (PLS),
a classical spectral calibration algorithm, was used also for
the NIR and MIR spectral calibration model establishment.
The PLS analysis was operated on “The Unscrambler V
9.7” (CAMO Process AS, OSLO, Norway). Both four
latent variables were selected for NIR and MIR model. The
r2 decreased to 0.365 compared to 0.571 of LS-SVM for
NIR analysis, and decreased 0.785 compared to 0.916 of
LS-SVM. LS-SVM showed better prediction ability than
PLS. Therefore, based on LS-SVM, a good determination
performance could be achieved by MIRS, and NIR did not

show good prediction ability. The reason might be that
NIRS is low sensitive compared to MIR. The superposition
of many different overtones and combination bands in the
NIR region causes a very low structural selectivity. In
MIRS region, many fundamentals can usually be observed
in isolated positions (Karoui and De Baerdemaeker 2007)
which might contain metal ion information. MIRS can
monitor low levels of key analytes and functional groups
(Roychoudhury et al. 2006). From the plot of original
spectra transmission in NIRS region (Fig. 1), it could be
seen that the transmission spectral curves are flat. There
were lots of high frequency noises in the NIRS region. The
results have much noise and other unrelated information
arises from overtones and combinations of such vibrations,
rendering them more difficult to interpret (Reid et al. 2005).
Although it was hard to distinguish each curve with
different metal ion contents through the naked eye, the
LS-SVM could extract useful information from the MIR
spectra to establish the calibration model and did a precise
prediction of calcium content in powdered milk.

However, as aforementioned, there were 2,756 and 3,727
variables in the full NIR or MIR spectra, respectively.
Thousands of variables caused the LS-SVM process to be
complex and time-consuming. Moreover, variables selected
by SPA may be with low signal/noise ratio (S/N) or useless
for multivariate calibration, which can affect model
precision of prediction (Ye et al. 2008). Thus, we proposed
UVE to firstly eliminate uninformation variables.

Variable Elimination Using UVE

In the process of UVE, the useful variables in the full
spectrum of NIR and MIR were selected, and then inputted
into LS-SVM. Different latent variables (LVs) numbers of
PLS model were used to establish UVE models. The
numbers of eliminated variables were different based on
different LVs used in UVE. Numbers of LVs were
calculated from 1 to 30 and the best LV numbers was
determined based on RMSEP. When LV number was 8 and
19, best NIR and MIR results were obtained, respectively
(Table 2). Although the number of selected MIR variables
was much larger than NIR, the prediction results based on

NIR MIR

LVs Variables r2 RMSEP RPD LVs Variables r2 RMSEP RPD

5 905 0.683 73.554 1.523 18 1,261 0.937 29.011 3.872

6 562 0.685 77.512 1.438 19 1,241 0.941 27.770 4.074

7 160 0.670 72.057 1.550 20 1,242 0.938 28.695 3.893

8 159 0.685 71.678 1.558 21 1,241 0.934 29.069 3.847

9 106 0.658 72.775 1.539 22 1,225 0.931 29.679 3.751

Table 2 Prediction results of
calcium content in powdered
milk using selected NIR
and MIR wavenumbers based
on five different PC numbers
which obtained the five small
RMSEP in UVE
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selected variables of MIR were much better than NIR.
Moreover, the prediction results were improved using
selected spectral variables of both NIR and MIR, compared
with results predicted based on full spectrum.

Figure 2a and b show the stability of each variable in the
NIR and MIR for calcium content prediction by UVE of
8 and 19 LVs, respectively. Wavenumber variables were at
left of the vertical line, while random variables were at the
right side. Two horizontal lines show the lower and upper
cutoff. The wavenumbers whose stability is within the
cutoff lines should be treated as uninformative and
eliminated. Finally, 159 and 1,241 variables were selected
by UVE-PLS for NIR and MIR, respectively. The UVE
selected spectral variables were only 5.8% for NIR spectra
and 33.3% for MIR spectra. The RPD of UVE selected
variables were improved compared to the full spectra by
17.8% for NIR spectra and 31.1% for MIR spectra. The
RMSEP of UVE selected variables were reduced compared
to full spectra by 15.4% for NIR spectra and 22.8% for
MIR spectra. Figure 3 is the plots of 159 (a) and 1,241 (b)
selected variables by UVE for NIR and MIR, respectively.
Columns represent selected variables. The curve shows the
original spectrum of sample one of the calibration data set
for comparison. Some retained variable regions might
attribute to some specific chemical structure related to
calcium ion, while others which might not relate to calcium
ion might attribute to calcium prediction model.

Further Variable Selection Using SPA

After UVE analysis, the numbers of input variables were
reduced from 2,756 to 129 for NIR and from 3,727 to 1,241
MIR. SPA was carried out on the UVE selected NIR and
MIR variables, respectively. The optimal variable number
was selected according to the smallest root mean square
error (RMSE) value. The selection process was operated by
comparing the RMSE values of different variable numbers
from 1 to 30. Finally, 11 variables (RMSE=77.23) and 15
(RMSE=41.78) variables were selected as the best ones for
NIR and MIR, respectively.

Figure 3 shows the plots of 11 (c) and 15 (d) variables
selected by SPA on NIR and MIR, respectively. Columns
represent selected wavenumber variables. Curves show the

original spectrum of sample one of the calibration data set
for comparison. The 11 selected NIR wavenumber variables
by UVE-SPA were 4,089; 4,331; 4,486; 4,802; 4,984;
5,276; 5,316; 5,346; 5,728; 6,058; and 6,236 cm−1. Some
retained wavenumber regions might attribute to some
specific chemical structure related to calcium ion. Associ-
ated to an absorbance peak in Fig. 1, 4,331 cm−1, was
assigned to C–H stretching+C–H deformation vibration of
CH2. The value, 4,485 cm−1, was assigned to N–H
stretching+NH3 deformation vibration of some amino
acids. The value, 4,802 cm−1, was assigned to O–H
stretching+O–H deformation vibration of R–OH. The
value, 4,984 cm−1, was assigned to N–H symmetric
stretching+amide II of CONH2.CONHR. The value,
6,058 cm−1, was assigned to 2×C–H stretching of R–CH–
CH. Other selected wavenumber variables might not relate
to calcium ion but might attribute to calcium prediction
model. As there were many different overtone and
combination bands in the NIR region, some obtained
effective wavenumber variables were not obvious in the
NIR spectra. In addition, H2O absorption appeared at
5,155 cm−1, which has less information about calcium,
were not selected.

The 15 selected MIR wavenumber variables by UVE-
SPA were 671; 865; 1,401; 1,427; 1,475; 1,541; 1,602;
1,660; 1,731; 1,799; 1,876; 2,526; 2,902; 3,588; and
3,698 cm−1. The values, 3,588 and 3,698 cm−1, were
assigned to O–H stretching vibrations. Wavenumbers
between 2,500 and 1,900 cm−1 assigned to C≡C were not
selected. It could be deduced that C≡C has less information
about calcium ion. As many effective wavenumbers were
between 1,900 and 1,400 cm−1 which were assigned to
double bond stretching vibration, C=O and C=C vibrations
might attribute to calcium ion. The result was similar to
other previous studies (Mesubi 1982; Byler and Farrell
1989; Nara and Tanokura 2008).

The selected 11 NIR and 15 MIR variables were set as
the input variables of LS-SVM models. The 15 MIR
variables obtained much better results (with r2=0.930,
RPD=3.703, RMSEP=30.162, and relative errors of
prediction (RSEP)=5.22%) than the 11 NIR variables
(with r2=0.636, RPD=1.417, RMSEP=78.815 and RSEP=
13.40%). A good RPD of 3.703 was obtained by MIR

Fig 2 Stability in the NIR (a)
and MIR (b) for calcium content
prediction by UVE-PLS of
8 and 19 LVs, respectively. The
two blue horizontal dotted lines
indicated the lower and upper
cutoff
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spectra. It indicates the model was suitable for screening.
The predicted vs. reference values of calcium content in
powdered milk based on 11 NIR (a) and 15 MIR (b)
variables are shown in Fig. 4. MIR showed its excellent
calcium prediction ability than NIR. MIR spectroscopy had a
good prediction ability of calcium content in powdered milk.
The samples in Fig. 4b were distributed more closely to the
regression line, compared with Fig. 4a.

The results of both 11 NIR and 15 MIR variables selected
by UVE-SPA were little worse than those of 159 NIR and
1241MIR variables selected by UVE. The RPD of UVE-SPA
selected variables were decreased compared to UVE selected
variables by 9.1% for NIR spectra and 9.1% for MIR spectra.
The RMSEP of UVE-SPA selected variables were increased
compared to UVE selected variables by 10.0% for NIR
spectra and 8.6% for MIR spectra. The reason might be that

few variables were used. Only 6.9% of UVE selected NIR
spectral variables and 1.2% of UVE selected MIR spectral
variables were selected. However, the training time using LS-
SVM increased with the square of the number of training
samples and linearly with the number of variables (Chauchard
et al. 2004). Therefore, the performances of UVE-SPA were
still acceptable. Hence, the application of UVE-SPA would
be helpful for the spectral variable selection. UVE-SPA is
more parsimonious and simple to interpret the spectral
wavenumbers.

Conclusion

NIR and MIR spectroscopy techniques were evaluated to
determine calcium content in powdered milk. After UVE

Fig. 4 Predicted vs reference
values of calcium content
in powdered milk by LS-SVM
models based on 11 NIR (a)
and 15 MIR (b) wavenumbers
selected by UVE-SPA

Fig. 3 Plots of selected wave-
number variables. One hundred
fifty-nine (a) and 1,241 (b) var-
iables were selected by UVE
for NIR (a) and MIR (b), and
11 (c) and 15 (d) variables were
selected by UVE-SPA for NIR
(c) and MIR (d), respectively.
Columns represent selected
wavenumber variables. Curves
show the original spectrum of
sample one of the calibration
data set for comparison
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analysis, the variable numbers were reduced to 159 and
1,241 for NIR and MIR, respectively. Finally, 11 NIR
and 15 MIR variables were selected by SPA, respective-
ly. A good RPD of 3.703 obtained shows the ability of
the UVE-SPA-LS-SVM model based on MIR spectra.
The 15 MIR variables obtained much better results than
the 11 NIR variables (0.930 for r2, 3.703 for RPD, 30.162
for RMSEP, and 5.22% for RSEP vs. 0.636 for r2, 1.587
for RPD, 78.815 for RMSEP, and 13.40% for RSEP). The
results of both 11 NIR and 15 MIR variables selected by
UVE-SPA were a little worse than those of 159 NIR and
1241 MIR variables selected by UVE, but were improved,
compared to those of full NIR and MIR spectral variables,
respectively. The performances of UVE-SPA were still
acceptable as the variable numbers were much smaller
than those selected only by UVE. The good performance
showed a potential application using UVE-SPA to select
NIR and MIR effective variables. The overall results
indicated that MIR spectroscopy could be applied as a
precision and rapid method for the determination of
calcium content in powdered milk. The calcium content
prediction using NIR spectroscopy needs to be further
investigated.
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