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Abstract A novel multivariate calibration method was
developed to identify the geographical origin of olive oils
using visible and near-infrared spectroscopy (Vis/NIRS) on
the wavelength between 325 and 1,075 nm. Direct
orthogonal signal correction (DOSC) preprocessing method
was performed to reduce the influence of light scattering,
background noise, and baseline shift during experiment. An
optimization method of genetic algorithms (GAs) was used
to select informative variables from the full spectrum, and
37 informative variables were selected for partial least
squares (PLS) regression analysis. The prediction results
indicated that the developed DOSC-GA-PLS model can be
successfully employed to predict geographical origin of
olive oils. Moreover, the use of GA simplified and
improved the predictive ability of the model. The prediction
statistical parameters were correlation coefficient (R2

P) of
0.987, relative deviation was 0.093, and the recognition
ratio was 97%. It was concluded that Vis/NIRS combined
with DOSC-GA-PLS method can be successfully used to
determine the geographical origin of olive oils accurately
and quickly.
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Introduction

Olive oil becomes popular and increasingly consumed for
its healthy functions. The quality of olive oil strongly
depends on its geographic origin, in which climate and soil
conditions are crucial influence factors. In Europe, the
importance of geographic origin to the quality of agricultural
products has lead to the introduction of several official
regulations, such as protected denomination of origin,
protected geographical indication, and traditional specialty
guaranteed certifications (Nooshin et al. 2008). Therefore, a
convenient and fast identification technique is needed to
identify the geographic origin of olive oil.

Some research has primarily focused on the discrimination
of geographical origin of olive oil using traditional and
chemically treated method, and most of them are time
consuming and expensive, requiring highly trained and
qualified testers. With the combination of modern chemo-
metrics and instrumentation, near-infrared (NIR) spectroscopy
is widely applied for rapid, low-cost, and non-destructive
analysis in industries. NIR spectroscopy has been used for
quality control and as an alternative method for quantitative
determination of chemical composition of olive oil. Rodney
(2004) published his results on assessment of properties of
olive oil including free fatty acids, phenolic compounds,
polyphenol content, chlorophyll, and the major fatty acids by
near-infrared reflectance spectroscopy. Bertran et al. (1999)
quantified oleic, linoleic, and linolenic acids of virgin olive
oil by NIR spectroscopy. There are literatures in determining
the geographical origin of dairy products (Karoui 2006; Shao
and He 2009), cheese (Karoui et al. 2005) and olive oils.
Several approaches have been used to determine the
geographical origin of olive oil such as visible and near-
infrared spectroscopy (Downey et al. 2003), near and
middle-infrared analysis (Galtier et al. 2007), proton transfer
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reaction mass spectrometry (Araghipour et al. 2008), and
nuclear magnetic resonance spectroscopy (Giovanna et al.
2003). In this research, we tried to use new chemometrics
method and NIR spectroscopy technique to improve the
accuracy of prediction. Multivariate calibration is often used
to develop a quantitative relation between the NIR spectra
(X) and the response (Y). Partial least squares (PLS)
regression is a popular method in analytical chemistry (Liu
et al. 2009; Ribeiro et al. 2009). It has been proven useful in
solving various calibration problems. In particular, PLS has
been shown powerful to build a regression model for
collinear and high-dimensional data (Qin 2003).

Variable selection in multivariate analysis is a very
important step, because the removal of non-informative
variables will produce better predicting and simpler models.
Empirical evidences show that variable selection is a very
important step when using methods such as PLS or PCR
(David et al. 1997; Bangalore et al. 1996; Rimbaud et al.
1995). Some techniques have been presented for feature
selection of the spectral data in PLS models, such as
uninformative variable elimination (Centner et al. 1996),
iterative variable selection (Lindgren et al. 1994), iterative
predictor weighting (Forina et al. 1999), and genetic
algorithms (GAs) (Üstün et al. 2005). Among those
variable selection methods, GAs applied to PLS have been
shown very efficient and provided better results in many
applications than the full spectrum approach (Leardi 2000).

NIR spectra are often influenced by instrumental
variation and measurement conditions, such as background
noise, light scattering, baseline shift, and temperature
variation. Therefore, the input data are often preprocessed
before multivariate calibration. Commonly used preprocess-
ing methods contain derivatives, multiplicative signal
correction (MSC), standard normal variate (SNV) transfor-
mation, fourier transform, and wavelet transform (Barnes
et al. 1989; Luypaert et al. 2007; Pizarro et al. 2004). All
these methods are based on spectral matrix (X), which is
difficult to exclude the irrelevant information related to
response (Y). A relatively new preprocessing technique,
direct orthogonal signal correction (DOSC), was introduced
by Westerhuis et al. (2001). This technique has better
ability to subtract the irrelevant information and at the same
time avoid the removal of related information for prediction
compared to the previous methods. DOSC was proved to be
more effective than the classical pretreatment methods,
such as SNV and MSC (Luypaert et al. 2002).

The objectives of this study were: (1) to determine the
feasibility of using visible and near-infrared spectroscopy
and a proposed calibration method DOSC-GA-PLS to
identify the geographical origin of olive oil and (2) to
illustrate the advantage and the importance of using a
feature selection procedure to select informative variables
to simplify and improve the calibration model.

Materials and Methods

Material and Transmission Measurement

A total of 120 bottles olive oil from three countries, Spain,
Turkey, and Italy, were purchased from the local markets. A
total of 40 samples from each country represent the
different geographical origins for the Vis/NIR analysis
(shown in Table 1). From each olive oil sample, 10 ml was
poured into the glass container with the size of 80 mm
diameter and 10 mm height.

The transmission spectral data were obtained by a
field spectroradiometer [FieldSpec® HandHeld (HH),
Vis/NIR (325–1075 nm), 25° field of view, Analytical
Spectral Devices (ASD), Inc., Boulder, CO], using RS2
V4.02 software for Windows designed with a graphical
user interface from ASD. The instrument uses a
sensitivity 512-element, photodiode array spectroradiom-
eter, with the resolution of 3.5 nm, and the integration
time is 17 ms. The scan number for each sample was set
as 30, and the scan for each sample was repeated three
times to reduce the random noise. The spectroradiometer
was placed at a distance of approximately 50 mm away
from the center of the samples. A light source of Lowell
prolam 14.5 V bulb/128690 tungsten halogen was placed
about 150 mm above the ASD’s optical sensor. To
achieve the relative transmission measurements, the
reference measurement line was calibrated before scanning
samples.

Multivariate Methods

Direct Orthogonal Signal Correction

The DOSC approach is solely based on least squares steps
(Zhu et al. 2008; Luypaert et al. 2007). It will always find
components, which are orthogonal to Y(m×k), that describe
the largest variation of X(m×n). For notational conve-
nience, PX is defined as the orthogonal projector onto
column space of X, i.e., PX=XX

−, where X − is the Moore–
Penrose generalized inverse of X, and AX is the anti-projector
with respect to X-space: AX ¼ I � PX (I represents identity
matrix). Before the application of DOSC, X and Y have been
mean-centered.

Table 1 Brands of olive oils in the experiment

Brand Producing area Type Number of samples

Mueloliva Spain Extra virgin 40

Taris Turkey Extra virgin 40

Olivoilà Italy Extra virgin 40
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The first step of DOSC is to decompose Y into two
orthogonal parts, the projection of Y onto X, bY , and the
residual part F that is orthogonal to X:

Y ¼ PXY þ AXY ¼ bY þ F ð1Þ
Next, X is decomposed into two orthogonal parts, one part

has the same range as bY and another part is orthogonal to it:

X ¼ PbYX þ AbYX ð2Þ

Note that for spectral data, commonly n≥m, in the case
XX −=I, so F=0, bY ¼ Y and then X may be orthogonalized
directly with respect to observed Y, as follows.

X ¼ PYX þ AYX ð3Þ
When having found this orthogonal subspace AbYX , PCA

is applied to find the principal component t corresponding
to the largest singular value. If more DOSC components are
necessary, more can be obtained in this step. t is a basis for
the one-dimensional subspace that accounts for maximum
variance of AbYX . Finally the directions t is expressed as
linear combinations of X:

t ¼ Xr ð4Þ
With

r ¼ X�t ð5Þ
The generalized inverse X − can be calculated using the

singular value decomposition of X. If

X ¼ U
Δ 0
0 0

� �
VT ð6Þ

then

X� ¼ V Δ�1 E
F G

� �
UT ð7Þ

is a generalized inverse of X for all choices of E, F, and G
with the correct sizes. In this application E, F, and G are set
to zero, and the singular values smaller than the tolerance
value are set to zero in Δ.

The large-variance zero-correlation part of X that we do
not use in subsequent regression modeling is removed from
the data:

XDOSC ¼ X � PtX ¼ X � t tT t
� ��1

tTX ¼ X � tpT

¼ X � XrpT ð8Þ
With

p ¼ XT t tT t
� ��1 ð9Þ

For spectra of new samples Xnew, the correction can be
performed as follows:

XDOSC
new ¼ Xnew � Xnewrp

T ð10Þ

Partial Least Squares

PLS is a multivariate calibration technique to model the
relation between predictor matrix X and response matrix Y
(Tang and Li 2003; Mehdi and Anahita 2007). It seeks a set
of latent variables that maximizes the covariance between X
and Y. In this paper, PLS analysis was performed to
establish a regression model between spectra data and
geographical origin of olive oil. Four PLS models were
established: (1) PLS regression with full original spectral
data (PLS), (2) PLS regression with DOSC preprocessed
data (DOSC-PLS), (3) PLS regression with wavelength
which were selected by GA from original spectral data
(GA-PLS), and (4) wavelength which were selected by GA
from DOSC preprocessed data (DOSC-GA-PLS).

Genetic Algorithms

GA is an optimization method based on the principles of
genetics and natural selection in the theory of evolution. To
select the most relevant descriptors with GA, the evolution
of the population was simulated (Hasegawaa and Funatsub
1998; Siavash et al. 2008). The algorithm starts with a
randomly selected population. Each individual of the popula-
tion, represented by a chromosome of binary values, repre-
sented a subset of descriptors. The number of the genes at each
chromosome was equal to the number of the descriptors. A
gene was given the value of one, if its corresponding
descriptor was included in the subset; otherwise, it was given
the value of zero. Each chromosome is evaluated by its
performance of an objective function called fitness function. A
high fitness value of a chromosome corresponds to a higher
chance to be selected for the next generation. Then the genetic
information is exchanged between chromosomes by crossover
and perturbed by mutation. The result is a new generation with
better survival abilities. This process is repeated until the
stopping criterion is reached.

The procedure of GA can be summarized in the
following steps:

1. Create the initial population
2. Fitness evaluation
3. Selection, crossover, and mutation to create offspring.
4. Check the termination condition.

If the stopping criterion is not reached, repeat steps 2 to 4,
using the generated offspring as a new starting population.

All the aforementioned calculations were performed
using MATLAB R2009a (The Math Works, Natick, USA).

Criteria for Performance Evaluation

In the process of constructing a model, the relative
deviation of cross-validation (RDCV) is used to optimize
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its optimal number of latent variables in PLS model. The
RDCV is defined as:

RDCV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nt

Xn
i¼1

yi �byið Þ2
s

ð11Þ

where nt is the number of samples in the training subset, yi
is the actual (reference) value for sample i, and byi is the
predicted value obtained from the model constructed
without sample i.

The prediction performance of calibration model is
assessed, on the basis of the test subset, by the relative
deviation of prediction (RDP) given by

RDP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

yi � byið Þ2
s

ð12Þ

where n is the number of samples in the test subset, yi andbyi are the actual (reference) and the predicted value for
sample i, respectively.

Another measurement of the model is the correlation
coefficient (R2), defined as

R2 ¼ 1� SSR

SSY
ð13Þ

where SSR is the sum of squares of the residual, and SSY is the
sum of squares of the response variable corrected for the mean.
Avalue of R2=1 denotes that the model fits the data perfectly.

Results and Discussion

Spectral Characters

The average transmission spectra from 325 to 1,075 nm are
shown in Fig. 1 for 90 calibration samples of three
geographical origins of olive oils. There are consistent

baseline shifts and bias in spectra due to the light scattering
or concentration variation of samples. The spectral profiles
were finely distinguished from each other, which indicate
that it is possible to discriminate them. The differences may
correspond to the different attributes of olive oil samples,
such as the compositions of fatty acids, triacylglycerols,
glycerol, sterols, tocopherols and phenols, etc. The peaks
and valleys appearing on the spectral figure are related to
some special elements in olive oil. For instance, the bands
at 928 nm can be assigned to the characteristic absorption
peak of C–H functional group of oil. The absorption
intensity at the characteristic peak is different, which can
be directly observed from Vis/NIR spectra. This is because
the content of components in each sample is different.

Figure 2 shows the spectra preprocessed by DOSC
approach. After preprocessing, the peak and valley in spectra
was more obvious, and the characteristic peaks correlated to
Y in relation to the geographical origin of olive oil mainly
appeared on the wavelength of 400–500 and 610–710 nm.

Before applying DOSC two key parameters, the optimal
number of DOSC components and tolerance need to be
determined. Selection of the optimal number of DOSC com-
ponents is done by finding the number of largest magnitude
eigenvectors of inner product space of the orthogonal
subspace AyX·(AyX)

T corresponding to the largest eigenvalues.
The tolerance is used to determine the number of singular
values when calculating the generalized Moore–Penrose
pseudoinverse of spectra X −. In this study, the DOSC
components and the tolerance are set to be 5 and 0.0001,
respectively. Because there is no systematic methodology
for such optimal parameter selection of DOSC components
and the tolerance, so the optimal values were determined
after several values were tried.

PLS Analysis

The samples were randomly separated into training and
prediction sets. The training set consisted of 90 samples (30
for each origin), and the remaining 30 samples were used in
prediction set (10 for each origin). The calibration model
was established with the training set, while the performance
of the model was tested with the prediction set.

In the application of PLS, the response Y (geographical
origin of olive oil) is assigned a dummy variable as a
reference value according to their origins (set Spain=1,
Turkey=2, and Italy=3). The confidence interval of
discrimination of olive oil according to different geograph-
ical origin was set to be ±0.2. In the development of PLS
models, the quality of the calibration model was quantified
by the correlation coefficient of calibration (R2

C) and
relative deviation of calibration (RDC). The prediction
accuracy of the calibration model was tested using leave-
one-out (LOO) cross-validation and evaluated by the

Fig. 1 The visible and near-infrared spectra of 90 calibration samples
of three geographical origins of olive oils
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RDCV and the correlation coefficient of cross-validation
R2
CV. The LOO cross-validation procedure (Labbé et al.

2008) involves using a single observation from the original
sample as the validation data and the remaining observations
as the training data. This is repeated such that each observation
in the sample is used once as the validation data. The
minimum RDCV was used to determine the optimal number
of principal components and the optimal model without
“overfittedness” or “underfittedness.”

The results of PLS analysis with original spectral data
and DOSC preprocessed data were shown in Table 2. The
optimal number of principal components in PLS model
with original data is 4, while that in DOSC-PLS model is 1.
The correlation coefficient of calibration and cross-
validation of PLS and DOSC-PLS models are both higher
than 0.95 and that of DOSC-PLS model is up to 0.99. The
RDC and RDCVof DOSC-PLS model are also much lower
than PLS model, the RDC and RDCV of PLS model are
0.158 and 0.171, while that of PLS-DOSC model are both
0.008. Therefore, the calibration model of DOSC-PLS is
much better than PLS model with original data.

GA-PLS Analysis

The GA-PLS analysis was carried out using the full
spectrum without preprocessing, and for a comparative

study, DOSC preprocessing method was employed before
the GA-PLS analysis. Prior to the GA-PLS analysis, the
data set was autoscaled to unit variance to give each
variable equal importance.

GA-PLS is a sophisticated hybrid approach that com-
bines GA as a powerful optimization method with PLS as a
robust statistical method for variable selection (Riccardo
2000; Liu et al. 2004). In GA-PLS, the chromosome is
corresponding to a set of variables, and the RDCV resulting
from PLS model is the fitness function value of the
individual. The values of empirical parameters of GA-PLS
were defined as follows: number of population is 100,
probability of initial variable selection is 0.5, probability of
crossover is 0.5, probability of mutation is 0.1, and number
of generations is 50. These values were determined to be

Fig. 2 The preprocessed spectra by DOSC method

Table 2 The main parameters of four PLS models

Method Principle components Calibration Cross-validation Prediction

R2
C RDC R2

CV RDCV R2
P RDP Recognition ratio (%)

PLS 4 0.962 0.158 0.957 0.171 0.943 0.194 70

DOSC-PLS 1 0.999 0.008 0.999 0.008 0.989 0.087 97

DOSC-GA-PLS 1 0.999 0.005 0.999 0.005 0.987 0.093 97

GA-PLS 4 0.972 0.137 0.966 0.152 0.944 0.194 67
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Fig. 3 Number of selected wavelength versus relative deviation of cross-
validation in DOSC-GA-PLS analysis (a) and GA-PLS analysis (b)
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optimal after several GA-PLS computations with changed
values.

The selection of wavelengths based on GA-PLS contains
three fundamental steps: (1) 100 populations of chromo-
somes were created. Each chromosome is a binary bit
string, by which the existence of a variable is represented. If
the bit is set to “1,” this band is selected in PLS modeling.
Otherwise, the bit is set to “0” and the band is not used. (2)
The fitness of each chromosome is evaluated by the RDCV
through the leave-one-out procedure of PLS. The number
of independent variables (wavelengths) of fitness function
is set to between 1 and 50, and the one with minimum
RDCV will be selected. (3) After selection, crossover and
mutation of chromosomes the next generation is repro-
duced. Steps 2 and 3 are continued until the maximum
number of the generation is reached.

Figure 3 shows the result of RDCV versus the number of
selected wavelength in DOSC-GA-PLS and GA-PLS
models. The results show that the DOSC-GA-PLS model
(a) is better than the GA-PLS (b) model. In GA-PLS model,
with the increase of the number of selected wavelengths,
RDCV became lower, and the lowest RDCV value was
0.025 with 45 selected wavelengths. For DOSC-GA-PLS
model, the lowest RDCV value was 0.0005 with only 37
selected wavelengths, which greatly improved and simplified
the model.

Fig. 4 Frequency of wavelength selection in GA-PLS (a) and DOSC-
GA-PLS (b) model

Fig. 5 Principal components
score image (PC1×PC2×PC3)
of three different geographical
origin of olive oil of DOSC-GA-
PLS model (a), DOSC-PLS
model (b), GA-PLS model,
(c) and PLS model (d)
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Figure 4 shows the cumulative frequency of selected
wavelengths during 50 GA runs using original spectral data
(a) and DOSC preprocessed data (b); it demonstrates which
variables are selected most often and which ones are rarely
or never selected. The selected wavelengths for both
models are around 479 and 913 nm corresponding to the
peaks and valleys appearing on the spectra (Fig. 1). Most of
the selected wavelengths by two methods were the same,
but the frequency of selection was different. Data prepro-
cessed by DOSC method got higher selected frequency,
because after the DOSC preprocessing, most of the
unrelated information in the original spectral has been
removed, and GA optimization is carried out with less
disturbance of irrelevant variables after the DOSC prepro-
cessing, so the DOSC-GA-PLS model has higher stability
than the GA-PLS model.

Prediction Performance of Models

In order to estimate the predictive power of four models,
external validations were carried out. The geographical
origins of olive oil in the prediction set were predicted by
the constructed models from the calibration set. There are
two parameters calculated to determine the predictive
power of model, correlation coefficient of prediction (R2

P)
and RDP. Higher R2

P and lower RDP values indicate to be a
better prediction powder. When the same level of RDP was
obtained, the one with less number of input variables
presents better. The correlation coefficients of prediction for
four models were all higher than 0.94. PLS and GA-PLS
model present similar prediction results. DOSC-PLS and
DOSC-GA-PLS also get similar prediction results, but the
numbers of input variables of them were different. When
full spectral data were used, in PLS and DOSC-PLS model,
there are 751 variables, while in GA-PLS model, only 45
selected wavelengths were applied, and in DOSC-GA-PLS
model only 37 selected wavelengths were used. The total
recognition ratio for each model was 70% for PLS, 97% for
DOSC-PLS, 67% for GA-PLS, and 97% for DOSC-GA-
PLS model, respectively. The classification results of
DOSC-PLS and DOSC-GA-PLS models were good enough
for the practical application. Compared with previous
works, the total recognition ratio of prediction was
improved. Giovanna et al. (2003) use nuclear magnetic
resonance spectroscopy technology to determine the geo-
graphical origin of olive oils, and the recognition ratio of
prediction was 79%. Araghipour et al. (2008) employ
proton transfer reaction mass spectrometry to classify the
geographical origin of olive oils, and the recognition ratio
of prediction was 86%.

To reveal the clustering results, the scatter plot of PC1×
PC2×PC3 for all the samples used in calibration and in
prediction are shown in Fig. 5. DOSC-GA-PLS model (a) and

DOSC-PLS model (b) can clearly discriminate the olive oil
of different geographical origins in the three-dimensional
area. The clustering result of GA-PLS model (c) and PLS
model (d) is not satisfying, where there are no distinct
boundary between them and some areas are overlapped.

Conclusions

Vis/NIR spectroscopy combined with chemometrics method
was successfully utilized for the identification of geographical
origin of olive oil. Four PLS regression models were
established to predict the geographical origin of olive oil.
DOSC-PLS and DOSC-GA-PLS models present satisfying
results; their relative deviation of prediction was 0.087 and
0.093, respectively; and their recognition ratio was both 97%.
The prediction results of PLS and GA-PLS model were not
good enough, their relative deviations of prediction were both
0.194, and their recognition ratio was 70% and 67%.
Although the prediction result of DOSC-PLS and DOSC-
GA-PLS models were similar, DOSC-GA-PLS model still
come out to be a better one, because DOSC-PLS model was
established with full spectrum of 750 variables, while DOSC-
GA-PLS model only uses 37 selected wavelengths by GA,
which greatly simplify the model and improve the efficiency.
It was concluded that Vis/NIRS combined with DOSC-GA-
PLS model has the capability to discriminate the geographical
origin of olive oil with high accuracy.
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