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Abstract The estimation of nitrogen status non-destructively
in rice was performed using canopy spectral reflectance with
visible and near-infrared reflectance (Vis/NIR) spectroscopy.
The canopy spectral reflectance of rice grown with different
levels of nitrogen inputs was determined at several important
growth stages. This study was conducted at the experiment
farm of Zhejiang University, Hangzhou, China. The soil plant
analysis development (SPAD) value was used as a reference
data that indirectly reflects nitrogen status in rice. A total of 64
rice samples were used for Vis/NIR spectroscopy at 325–
1075 nm using a field spectroradiometer, and chemometrics of
partial least square (PLS) was used for regression. The
correlation coefficient (r), root mean square error of
prediction, and bias in prediction set by PLS were,
respectively, 0.8545, 0.7628, and 0.0521 for SPAD value
prediction in tillering stage, 0.9082, 0.4452, and −0.0109 in
booting stage, and 0.8632, 0.7469, and 0.0324 in heading
stage. Least squares support vector machine (LS-SVM)
model was compared with PLS and back propagation neural
network methods. The results showed that LS-SVM was
superior to the conventional linear and non-linear methods in
predicting SPAD values of rice. Independent component
analysis was executed to select several sensitive wavelengths
(SWs) based on loading weights; the optimal LS-SVM
model was achieved with SWs of 560, 575–580, 700, 730,

and 740 nm for SPAD value prediction in booting stage. It is
concluded that Vis/NIR spectroscopy combined with LS-
SVM regression method is a promising technique to monitor
nitrogen status in rice.
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machines (LS-SVM) . Partial least square (PLS) . Back
propagation neural network (BPNN) . SPAD value

Introduction

Nitrogen is one of the most critical nutrients for rice growth
representing the largest part in fertilizer variable input costs.
An appropriate nutrient management can improve the overall
rice marketable yields. Thus, it is very necessary to monitor
the nitrogen status during the growing season by site-specific
application of fertilizers. The spatial and temporal variations
of the nitrogen in rice fields need to be determined in order
to make it correspond as closely as possible with the rice
requirements. This possibility depends on the available
techniques to evaluate nitrogen status.

Several different methods are available for assessing the
nitrogen status of the crop. One is tissue and chemical
analysis such as Kjeldahl nitrogen determination method. It
is a direct and accurate way of crop nitrogen status
detection, but it is time-consuming, and operators are
required. Researchers also approach nitrogen status estima-
tion through remote. Remote sensing with aerial images
was used to assess nitrogen over the entire fields. The
accuracy of such a technique appeared to be easily affected
by the low resolution and obvious soil background noises
(Broge and Leblanc 2001). Noh et al. (2006) adopted multi-
spectral images to increase the sensitivity and improve the
testing precision of nitrogen status in the crop. Visible and
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near-infrared spectroscopy was also used for a non-
destructive detection of nitrogen in Chinese cabbage leaves,
the stepwise multiple linear regression (SMLR) showed the
highest determination coefficient (r2) of 0.846 (Min et al.
2006). Feng et al. (2008) established a quantitative model
for real-time monitoring of leaf N status with key hyper-
spectral bands and estimation indices in wheat. In the paper
of Stroppiana et al. (2009), radiospectrometry was used for
crop condition monitoring, in details for nitrogen and
chlorophyll assessment. Yang et al. (2009) compared radial
basis function neural network and regression model for the
estimation of rice biophysical parameters using the remote
sensing. Hence, it is very crucial to use multivariate
calibration methods to extract the relevant part of the
information for the very large dataset. Several common
methods including principal component regression, SMLR,
and partial least squares (PLS) regression have been
developed and used for data mining in agricultural
applications, being considered a process for quantitative
analysis using numerous correlated variables (Martens and
Naes 1989; Cen et al. 2006; Liu et al. 2009a). PLS is the
most commonly used multivariate calibration method,
which is widely applied in the assessment of agricultural
product quality and plant nutrition (Ehsani et al. 1999;
Fassio and Cozzolino 2003). It is built based on the linear
model, where the relationship between spectra and proper-
ties of samples exists. However, PLS is not appropriate
when the nonlinear model is required (Zhang et al. 2008). It
is very obvious that factors such as experimental condition,
instrument variation, and analyzed characteristics induce
nonlinearities in the spectra. Generally, artificial neural
network (ANN) is a usual choice to solve this problem
(Despagne and Massart 1998; Mello et al. 1999). Although
this method is used frequently to deal with the nonlinear
model, it does not satisfy researchers due to some
difficulties such as the selection of hidden layer size,
learning rate, and momentum. In addition, ANN model
requires a large number of training data, which always
influence the training speed. The overfitting nature is
another difficulty to overcome in order to generate a good
result (Moody 1992).

Recently, a promising method called support vector
machine (SVM) was proposed by Vapnik (1998a). It is
becoming popular because of many attractive features and
excellent performances in wide applications (Burges 1998;
Vapnik 1998b; Guo et al. 2001; Comak et al. 2007; Li and
He 2009). SVM has a good theoretical foundation based on
the statistical learning theory. It embodies the structural risk
minimization principle instead of traditional empirical risk
minimization principle (ERM) employed by conventional
neural network to avoid overfitting problems. SVM is used
as a binary classification tool but also can be easily
extended to regression tasks (Cogdill and Dardenne

2004). Least squares SVM (LS-SVM) is a modified version
of SVM (Suykens et al. 2002). LS-SVM applies least
squares error in the training error function. LS-SVM has the
capability for linear and nonlinear multivariate calibration
and solves the multivariate calibration problems in a
relatively fast way (Suykens and Vanderwalle 1999).
Learning problem is formulated and represented as a
convex quadratic programming problem (Lu et al., 2003)
to obtain the support vectors. It adopts least squares linear
system, as it is the loss function and is applied in the pattern
recognition and nonlinear evaluation. Due to its attractive
advantages and excellent performances, LS-SVM has
attracted attention and has been extensively applied in
spectral analysis (Chauchard et al. 2004; Borin et al. 2006).

The aim of this work is to investigate the potential of
reflectance spectroscopy technique combined with LS-
SVM for nondestructive detection of nitrogen status in rice
at three important growth stages. The robust calibration
model derived from LS-SVM was compared to back-
propagation ANN (BPNN) and PLS model according to
statistical parameters of prediction results. The sensitive
wavelengths (SWs) were extracted by independent compo-
nent analysis (ICA) executed to build a SW-LS-SVM
model for soil plant analysis development (SPAD) value
prediction in the booting stage.

Materials and Methods

Experimental Design

The basin's inner caliber was 30 cm, height was 45 cm, and
soil weight was 10 kg. Place the basin in the slotted field.
To ensure that different level of nitrogen fertilization was
markedly, the soil in the basin was obtained from the
experimental field in the Science Garden and with the
mixed soil 20–40 cm under the surface. Set eight basins for
each of the nitrogen fertility gradient (four gradients, N0,
N1, N2, and N3, two repetition). Soil properties are organic
matter 2.14%, N 121 ppm, P 126 ppm, and K 175 ppm, pH
value of 7.30.

Field Data Acquisition

A total of 64 samples were obtained for spectral measure-
ment, one basin as a sample and with two rice plant. The
measurements were made at the tillering (June 15), booting
(July 2), and heading (July 22) stages. All rice canopy
reflectance measurements were made using a portable
spectroradiometer Field Spec Vis/NIR (325–1075 nm,
Analytical Spectral Devices, Boulder, USA). The instru-
ment uses a sensitivity 512-element, photo-diode array
spectroradiometer, with the resolution of 3.5 nm. The scan
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number for each spectrum was set to ten at the same
position, and for each sample, three reflecting spectra were
taken; thus, a total of 30 individuals were properly stored
for later analysis. Considering its 25° field of view, the
spectroradiometer was placed above the rice canopy at a
distance of 70 cm from the top of the canopy. To achieve
the relative reflectance measurements, the white reference
(a white panel purchased with the spectroradiometer used
as white reference) was collected before scanning samples
until a nice, clean, 100% reference line is obtained. All
samples were stochastically divided into calibration sets of
48 samples and prediction sets of 16 samples. In order to
compare the performance of different calibration models,
the samples in the calibration and prediction sets were kept
unchanged for all calibration models.

A SPAD-502 chlorophyll meter (Minolta, Osaka, Japan)
was used to measure the chlorophyll concentration of the
rice. The SPAD reading for each sample was measured by
30 times for the canopy leaves, and the averaged value was
used as the final value of this rice sample as the referenced
concentration of its nitrogen status.

Data Pretreatment

Due to the potential system imperfection, obvious scatter-
ing noises could be observed at the beginning and end of
the spectral data. Thus, the first and last 75 wavelength data
were eliminated to improve the measurement accuracy, i.e.,
all visible and NIR spectroscopy analysis was based on
400–1,000 nm. The above spectral data preprocessing was
finished in ViewSpec Pro V4.02 (Analytical Spectral
Device, Inc.). After that, the spectral data was preprocessed
by the Savitzky–Golay smoothing with a window width of
7 (3-1-3) points and then the multiplicative scatter
correction was used (Helland et al. 1995). The pretreat-
ments were implemented by “The Unscrambler V 9.6”
(Camo Process AS, Oslo, Norway).

Partial Least Squares

PLS is a bilinear modeling method where the original
independent information (X-data) is projected onto a small
number of LVs to simplify the relationship between X and
Y for predicting with the smallest number of LVs.

The first step in PLS is to decompose the matrix, and the
model is

X ¼ TPþ E ð1Þ

Y ¼ UQþ F ð2Þ
In these equations, X are the spectral variables, and Y are
the corresponding concentration values (SPAD values).

T and U are the score matrices of X matrix and Y matrix,
P and Q are the loading matrices of X matrix and Y matrix,
and E and F are the errors that come from the process of
PLS regression.

In the development of PLS model, calibration models
were built between the spectral data and the SPAD values;
full cross-validation was used to evaluate the quality and to
prevent overfitting of calibration models. The optimal
number of latent variables (LVs) was determined by the
lowest value of predicted residual error sum of squares
(PRESS). LVs can eliminate noises and random errors in
the original data and account as much as possible for the
variability of the original variables.

The prediction performance was evaluated by the
residual predictive deviation (RPD) (Arana et al. 2005),
the correlation coefficient (r), the root mean square error of
calibration (RMSEC), validation (RMSEV) or prediction
(RMSEP), and bias. Leave-one-out cross-validation was
used in the study. The ideal model should have higher RPD,
higher r value, lower RMSEC, RMSEV, and RMSEP
values, and lower bias. The models were carried out by
“The Unscrambler V 9.6” (Camo Process AS, Oslo,
Norway).

Back-Propagation Artificial Neural Network Model

The most popular type for use in analytical applications is
artificial neural network with the BPNN. It is a one-way
multi-perceptron feed-forward network (Widyanto et al.
2005).

The size of the topology, including inputs, hidden,
output neurons, and so on will influence the BPNN
complexity. Reducing the number of inputs will reduce
the training time of network. Furthermore, it can also
reduce repetition and redundancy of the input spectra data.
PLS is a method of data reduction that constructs new
uncorrelated variables, known as LVs. LVs account as
much as possible of the original variables and can be used
as the inputs of neural network.

Least Squares Support Vector Machine

LS-SVM can work with linear or non-linear regression or
multivariate function estimation in a relatively fast way
(Suykens and Vanderwalle 1999; Chen et al. 2007). It uses
a linear set of equations instead of a quadratic programming
problem to obtain the support vectors (SVs). The details of
LS-SVM algorithm could be found in the literature
(Suykens et al. 2002).

In the model development using LS-SVM and radial
basis function (RBF) kernel, gam(γ) and sig2(σ2) parame-
ters were adopted to regulate the models. For each
combination of gam(γ) and sig2(σ2) parameters, the root
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mean square error of cross-validation (RMSECV) was
calculated, and the optimum parameters were selected
when produced smaller RMSECV. In this study, gam(γ)
were optimized in the range of 2−1–210 and 2–215 for
sig2(σ2) with adequate increments. These ranges were
chosen from previous studies where the magnitude of
parameters to be optimized was established (Liu et al.
2009b). The grid search had two steps, and the first was for
a crude search with a large step size while the second step
was for the specified search with a small step size. The free
LS-SVMlab toolbox (LS-SVM v 1.5, Suykens, Leuven,
Belgium, http://www.esat.kuleuven.be/sista/lssvmlab/) was
applied with Matlab 7.0 to develop the calibration models.

Independent Component Analysis

ICA is a well-established statistical signal processing
technique that aims to decompose a set of multivariate
signals into a base of statistically ICs and with the minimal
loss of information content. The independent components
(ICs) are LVs, meaning that they cannot be directly
observed, and the IC must have non-Gaussian distributions.

There are lots of algorithms for performing ICA
(Hyvarinen et al. 2001; Lee 1998). Among these algo-
rithms, the fast fixed-point algorithm (FastICA) is a
computationally highly efficient method for performing
the estimation of ICA, which was developed by Hyvärinen
and Oja (2000). FastICA was chosen for ICA and carried
out in Matlab 7.0 (The Math Works, Natick, USA).

Results and Discussion

Reflectance Spectral Investigation

The reflectance spectra shown in Fig. 1 appeared typical
spectral characteristics of rice canopy reflectance in booting
stage. The distribution rule of different nitrogen content
was similar in trend and different in corresponding
reflectivity. In the blue (400–500 nm) and red region
(600–700 nm), the low reflectance (<10%) was developed
due to the strong absorbing of blue and red light from crop
photosynthesis. While in the green bands (560–570 nm), a
small peak appeared because of the absorbing reduction.
Reflectance increased rapidly at about 690–760 nm (red
edge) from 10% to 50–80%. Besides, different nitrogen
treatments caused variation of reflectance and average
nitrogen of rice canopy. The canopy reflectance decreased
in both of the visible and near-infrared region as nitrogen
availability increased. This trend was explained as the plant
pigment content increases such as chlorophyll with growth
and adequate nitrogen supply, resulting in more visible light
absorption, especially at blue and red bands. The deceases

of reflectance with the increased nitrogen supply in near
infrared region were related to the increases of plant
biomass, leaf area index, and water content in the high
nitrogen rate.

In the following, the correlation between the wavelength
and SPAD value was analyzed. It would be helpful to
examine how SPAD value is simply related to individual
wavelength.

Consider that the reflectance data of rice canopy may
be affected by the height of spectroscopy, the variety of
illumination intensity, and background factors of different
regions. In order to eliminate the influence of background
and clearly reflect the spectral variation properties, the
original spectral reflectivity was disposed with first
derivative. The use of all reflectivity values after first
derivative may increase the calculation time, so data were
averaged by ten from wavelengths 400–1,000 nm, and 60
data were obtained in all. The correlation between SPAD
value and the reflectance by SPSS12.0 software was built,
and the result was shown in Fig. 2. It changed dramati-
cally over wavelengths from visible spectral region to
near-infrared spectral region. Generally, the SPAD value
showed negative correlation with reflectance mainly at the
wavelength region from 430 to 600 nm and 670 to 700 nm
and positive correlation mainly from 580 to 775 nm. The
reflectances near 460, 500, 550, 690 nm have higher
negative correlations, and reflectances near 670 nm and
720–760 nm have higher positive correlations with the
SPAD values. Two wavelengths just matching with green
peak and red edge were included, which took an important
part in the assessing of nitrogen status. Wavelength
regions showing high correlation indicated that reflectance
at these wavelengths might be important for the SPAD
value.

Fig. 1 Reflectance spectra of rice canopy with different rates of
nitrogen in booting stage
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Selection of Feature Input Subset for LS-SVM Model
Based on PLS Analysis

Forty-eight samples used in the calibration sets and the
remaining 16 samples as the prediction sets. In the
calibration models, the results of all parameters for SPAD
value prediction in three different growth stages are shown
in Table 1. With a comparison of these models by the
aforementioned evaluation standards, the models with five
LVs turned out to be the best for prediction SPAD value in
tillering stage, four LVs the optimum number for the
booting stage, and six LVs for the heading stage. In the
prediction models, the correlation coefficient (rp), RMSEP,
and bias in prediction set by optimal PLS models were with
the rp, RMSEP, and bias of 0.8545, 0.7628, and 0.0521 for
tillering, 0.9082, 0.4452, and −0.0109 for booting, and
0.8632, 0.7469, and 0.0324 for heading stages. It indicated
that the prediction result in booting stage is better than the
other two stages (tillering and heading). The reason may be
explained by the fact that, in the tillering stage, rice is not
big enough to eliminate the influence of the soil reflectivity.
In the heading stage, rice begins to be tasseled, and the
spike information may affect the spectral reflectivity of rice
canopy. In the booting stage, rice was thriving, and the
monitoring of its N status is very important. Figure 3 shows
the measured vs predicted values plots for SPAD value in

booting growth stage by PLS model. The diagonal line (y=x)
shows the ideal results, which means that the predicted
values are equal to the measured values. The closer the
sample plots are to this line, the better is the model. The high
RPD and rp, low RMSEP, and bias also define the ability for
the model. From Fig. 3, the sample plots in the prediction
sets were distributed near the ideal line, but they were not
close enough to the ideal line. Hence, an acceptable
prediction performance was achieved by these PLS calibra-
tion models. However, these results were not satisfactory for
practical analysis.

LS-SVM Regression Model

In order to improve the training speed and reduce the
training error, SWs obtained from ICA were applied as
inputs of LS-SVM models because the training time
increased with the square of the number of training samples
and linearly with the number of variables (dimension of
spectra) (Chauchard et al. 2004).

ICA was applied for the selection of SWs, which could
reflect the main features of the raw absorbance spectra.
FastICA (one of the algorithms of ICA, introduced above)
was used to the preprocessed spectra data, and the main
absorbance peaks and valleys were indicated by the spectra
of the ICs. The SWs were selected by the weights of the
first three ICs, and wavelengths with the highest weights
were selected as the SWs. Figure 4 showed three ICs, and
the strong peaks and valleys with the highest weights were
thought to be the SWs for the prediction of SPAD value in
booting stage, such as 575–580 nm and 730 nm in IC1,
560, 700, and 730 nm in IC2, and 580 and 740 nm in IC3,
some of them have high correlation between the wave-
length and SPAD value analyzed above. In order to
evaluate the performance of SWs, they were applied as
the input data matrix to develop the SW-LS-SVM models.

In the model development using LS-SVM and RBF kernel
function, the determination of parameters γ and σ2 is an
important task, which is similar to the process employed to
select the number of factors for PLS analysis. In this study,
these parameters were optimized by grid-search technique
using fivefold cross-validation with values of γ in the range
of 2−1–210 and σ2 in the range of 2–215 with adequate
increments. For each combination of γ and σ2 parameters,

Fig. 2 Correlation between rice canopy reflectance and SPAD values

Stages LVs Calibration Validation RPD

rc RMSEC Bias rv RMSEV Bias

Tillering 5 0.8659 0.7452 0.0471 0.7425 0.8624 0.0642 1.48

Booting 4 0.9274 0.4182 −1.304e-06 0.8897 0.4818 0.0172 2.89

Heading 6 0.8742 0.7217 −0.0224 0.7519 0.8423 0.0581 1.39

Table 1 Validation results of
rice by PLS in calibration and
validation sets
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the RMSECV was calculated, and the optimum parameters
were selected to produce smaller RMSECV. The optimal pair
of (γ, σ2) was found at the value of γ=68.5 and σ2=23.1.

The performance of these models was evaluated by 16
samples in prediction set, and the rp, RMSEP, and bias for
prediction set were 0.9421, 0.2586, and −1.012e−06 for
SPAD values (booting stage), as shown in Fig. 5. The
prediction results for calibration and prediction sets showed
that SW-LS-SVM models outperformed PLS models in this
growth stage. Therefore, the SWs from ICA analysis could
represent most of the features and characteristics of the
original spectra and could be applied instead of the whole
wavelength region to predict the SPAD value in booting
stage. Furthermore, the SWs might be important for the
development of portable instruments and online monitoring
N status of rice.

PLS Regression Model Combined with the ICA

In order to compare the performance of LS-SVM and PLS
models, the PLS model combined with the ICA was also
analyzed. The SWs obtained from ICA was used as the
inputs of PLS model.

The same as the above paragraph, SWs of 575–580 nm,
730 nm in IC1, 560, 700, and 730 nm in IC2 and 580 nm
and 740 nm in IC3 were applied as the input data matrix to
develop the PLS models. The optimal pair of (γ, σ2) was
found at the value of γ=46.2 and σ2=17.5.

The performance of PLS model was evaluated by 16
samples in prediction set, and the rp, RMSEP, and bias
for the prediction set were 0.9128, 0.4397, and 2.983e−03
for SPAD values (booting stage). The prediction results for
calibration and prediction sets showed that the precision of

Fig. 4 Three ICs with the highest loading weights for the prediction
of SPAD value in booting stage

Fig. 3 Measured vs predicted values for SPAD value prediction by
the best PLS calibration model in booting stage

Fig. 5 Measured vs predicted values for SPAD value prediction by
the SW-LS-SVM calibration model in booting stage

Fig. 6 Measured vs predicted values for SPAD value prediction by
the BPNN calibration model in booting stage
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SW-PLS model was lower than SW-LS-SVM model in this
growth stage.

Comparing Predicting Results of LS-SVM, BPNN,
and PLS Models

BPNN was also established to predict SPAD value in
booting stage with the same sample set in LS-SVM, which
was split into two groups: a calibration set of 48 and a
prediction set of 16. The BPNN model with three layers
was derived using the four LVs of PLS analysis, which
have been referred above when PLS model was discussed.
The momentum was set as 0.8, and it was determined after
several trials in the range of 0.3–0.9 (The optimal
momentum was determined by the lowest value of PRESS).
The least learning rate was set as 0.2, the threshold residual
error was set as 1.0×10−5, and the times of training was set
as 2,000. The above parameters were settled based on
experience and previous reports (Shao et al. 2007). The
BPNN model was achieved with the structure of three
layers, three nodes for input layer, six nodes for hidden
layer, and one node for output layer, and the transfer
function was sigmoid function.

The performance of BPNN models was validated by the
samples in the prediction sets. The residual error of
prediction was −1.058×10−4 for SPAD value in the booting
stage. The prediction results of the correlation coefficient
(rp), RMSEP, and bias were 0.9185, 0.4562, and 0.0650,
respectively, as shown in Fig. 6. It indicated that the
performance of BPNN was a little better than that of PLS
models. The reason might be that BPNN model could
handle certain latent nonlinear information of spectral data,
and the nonlinear information was contributed to the better
performance of BPNN model.

The performance of LS-SVM was found to be better
than the classical linear and non-linear methods. LS-SVM
produced the best rp of 0.9421, RMSEP of 0.2586, and bias
of −1.012e−06, compared to the results of BPNN and PLS.
LS-SVM with ten variables (560, 575–580, 700, 730, and
740 nm) from ICA analysis succeeded in predicting SPAD
value in the booting stage to estimate the nitrogen status of
rice and was obviously superior to the conventional linear
and non-linear methods. These indicate that LS-SVM is a
powerful tool for the regression analysis to quantify
nitrogen status in rice.

In some early papers, Xue et al. (2004) found that R810/
R560 was especially linearly related to total leaf N
accumulation, and the predicted and observed values was
with an estimation accuracy of 96.69%, root mean square
error of 0.7072, and relative error of 0.0052. Lee et al.
(2008) used the reflectance of 735 nm to assess nitrogen
status of rice canopy. They developed a simplified imaging
system, which was assembled and mounted on a mobile

lifter and used a helicopter to take spectral imageries for
mapping canopy N status within fields. Results indicated
that the imaging system was able to provide field maps of
canopy N status with a reasonable accuracy r of 0.465–
0.912 and root mean standard error of 0.100–0.550.

Conclusions

LS-SVM regressionmodel using canopy reflectance produced
acceptable precision and accuracy in predicting SPAD values
for assessing nitrogen status in rice. The results of comparison
analysis showed that LS-SVM outperformed the other
methods. Finally, it can be concluded that LS-SVM is a
promising alternative for the regression analysis to quantify
nitrogen status in rice.
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