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Abstract The objectives of this study were to use image
analysis and artificial neural network to predict mass transfer
kinetics and color changes of osmotically dehydrated
kiwifruit slices. Kiwifruits were dehydrated implementing
four different sucrose concentrations, at three processing
temperatures and during four osmotic time periods. A
multilayer neural network was developed by using the
operation conditions as inputs to estimate water loss, solid
gain, and color changes. It was found that artificial neural
network with 16 neurons in hidden layer gives the best fitting
with the experimental data, which made it possible to predict
solid gain, water loss, and color changes with acceptable
mean-squared errors (1.005, 2.312, and 2.137, respectively).
These results show that artificial neural network could
potentially be used to estimate mass transfer kinetics and
color changes of dehydrated kiwifruit.
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Introduction

Kiwifruit (Actinidia deliciosa) is a highly nutritional fruit
due to its high level of vitamin C and its strong antioxidant
capacity because of a wide number of phytonutrients
including carotenoids, lutein, phenolics, flavonoids, and
chlorophyll (Cassano et al. 2006). Furthermore, kiwifruit
has a very short shelf-life due to high moisture content

(above 80% by weight), and it is necessary to use various
preservation methods to increase its shelf life.

Osmotic dehydration is used as a pre-treatment to many
preservation processes such as freezing, freeze drying,
microwave drying, and air drying to improve nutritional,
sensorial, and functional properties of fruits without changing
their integrity. This operation is used for the partial removal of
water from plant tissues by immersion in a hypertonic
(osmotic) solution. Water removal is based on the natural
and nondestructive phenomenon of osmosis across cell
membranes. The diffusion of water out of the plant’s tissues
is accompanied by the simultaneous counter diffusion of
solutes from the osmotic solution into the tissue. There may
also be minor flow of other solutes from fruit to solution (Sun
2005). The existence of those simultaneous and opposite mass
transfers is one of the main difficulties in modeling osmotic
dehydration kinetics (solid gain and water loss) of fruits
(Spiazzi and Mascheroni 1997). However, there are several
models reported in the literature for the estimation of mass
transfer kinetic during osmotic dehydration, mostly based on
the solution of Fick’s second law (El-Aouar et al. 2003;
Garcia et al. 2007; Rastogi and Niranjan 1998) or nonlinear
regression (Nieuwenhuijzen et al. 2001). Although these
models give a reasonable fitting of the experimental data,
their application is limited due to their semiempirical nature,
and therefore, they are only capable of estimating data within
the processing conditions for which they were developed or
they depend on a large number of physical properties of
fruits (Ochoa-Martínez et al. 2007).

Artificial neural networks (ANNs) are powerful modeling
techniques that exhibit analogies to the way arrays of neurons
function in biological learning and memory. ANNs offer
several advantages over conventional modeling techniques
because they can model based on no assumptions concerning
the nature of the phenomenological mechanisms and
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understanding the mathematical background of problem
underlying the process and the ability to learn linear and
nonlinear relationships between variables directly from a set
of examples. The fundamental building blocks of ANN are
units called nodes (neurons) comparable to biological
neurons and weighted connections that can be likened to
synapses in biological systems. Nodes are simple informa-
tion processing elements (Haykin 1994; Vinod and Vikrant
2002; Amin et al. 2009).

Some researchers have used ANN as a useful modeling
tool to predict some physical characteristics of dried or
dehydrated products. Poligné et al. (2002) introduced the
application of ANN during a dehydration–impregnation–
soaking process of pork meat. They constructed an ANN by
using smoke flavoring concentration, temperature, and
sugar concentration as input vectors to predict mass transfer
kinetic and quality changes of pork meat. Ochoa-Martínez
and Ayala-Apaonte (2007) developed an ANN model for
prediction of mass transfer kinetics during osmotic dehydra-
tion of apple. They used temperature and concentration of
osmotic solution, immersion time, surface area, solution to
fruit mass ratio, and agitation level as the input variables to
estimate solid gain and water loss of dehydrated apple. The
authors developed an ANN which included one hidden layer
and four hidden neurons. The developed ANN was better
performed compared to the corresponding linear multivariable
regression. Amiryusefi and Mohebbi (2008) employed
feedforward neural network to estimate the solid gain, water
loss as well as moisture content (w.b.) of dehydrated potato.
Their results showed that the best ANN, which was
developed based on two hidden layers and ten neurons per
each hidden layer, is capable to predict these parameters with
the correlation coefficients more than 0.98 in all cases.

In addition to mass transfer kinetics, the color of the
dehydrated product is an important quality factor, which is
affected by the operation conditions. Color usually is the first
quality parameter that is evaluated by consumers and is critical
in the acceptance of the product. Recently, image analysis has
been used as a promising approach to the objective assessment
of a dried product’s quality. Riva et al. (2005) investigated the
influence of osmotic agents (sucrose and sorbitol solutions)
and syrup composition on chemical–physical properties,
structure collapse, and color changes of osmo-air-
dehydrated apricot cubes. They reported color parameters
showing a slight change after the osmotic step: a* and b*
components maintained their initial values (no browning),
whereas L* values diminished (darkening). These authors
also mentioned that using sorbitol as the osmotic solution led
to the highest protective effect on the color of dried apricot
compared to the other tested solution. Mohebbi et al. (2007)
investigated the possibility of machine vision and ANN
application for prediction of moisture content (w.b.) of dried
shrimp. They considered six color parameters of dried

shrimp as inputs of ANN and found that the optimum
configuration, which included five neurons per hidden layer,
could predict moisture content (w.b.) of dried shrimp with
coefficient of determination of 0.86. These researchers stated
that application of image processing in conjunction with
ANN could reduce processing time and cost by minimizing
chemical experiments such as determination of moisture
content.

This study aimed to investigate the dependence of mass
transfer kinetics (water loss (WL) and solid gain (SG)) as well
as color changes of dehydrated kiwifruit on different osmotic
conditions (concentration, temperature, and duration of
osmotic process) and study the efficiency of ANN for
predicting these parameters.

Materials and Methods

Preparation of Samples

Kiwifruits, cultivar Hayward, were purchased in Sari, Iran
and stored at 1 °C before used in the experiments. Initial
moisture and soluble solid content were 84.5±0.9 (% w.b.)
and 12.4±0.7° Brix, respectively. Kiwifruits were cut into
40 mm diameter and 10 mm thickness slices.

Osmotic Dehydration and Mass Transfer Kinetic Analysis

Kiwifruit slices were weighed and placed into a beaker which
contained osmotic solutions prepared with food grade sucrose.
Kiwifruits were dehydrated with four different sugar concen-
trations (30, 40, 50, and 60° Brix) at temperatures of 20, 40
and 60 °C. A fruit/solution ratio of 1:10 by weight was used to
avoid an excessive dilution of osmotic solution. Osmotic
dehydration was performed under the samemagnetic agitation
to maintain uniform temperature and concentration through-
out the experiment. Immersion times of 0.5, 1, 1.5, and 2 h
were tested. At the end of the osmotic dehydration process,
samples were taken out of the sucrose solution, washed with
distilled water to remove the adhered osmotic solution, and
blotted with adsorbent paper. The weight (by means of an
electronic balance reading with an accuracy of 0.01 g; AND
EK-300i, Japan) and moisture content (percent w.b.; at 90 °C
until constant weight was obtained) were measured individ-
ually. The experiments were conducted as a 4×3×4 factorial
design (4 osmotic concentrations × 3 osmotic temperatures ×
4 osmotic times) with four replications.

Two quantities represent adequately the osmotic dehydra-
tion process: The WL and SG were calculated based on the
following equations (Giangiacomo et al. 1987; Shi et al. 2009):

WL ¼ WW 0ð Þ � Wt �WStð Þ
WS0 þWW 0ð Þ � 100 ð1Þ
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SG ¼ WSt �WS0ð Þ
WS0 þWW 0ð Þ � 100 ð2Þ

where WW0 is the weight of water and WS0 is the weight
of solids initially present in the kiwifruit. Wt and WSt are
the weight of the kiwifruit and the weight of the solids after
osmotic dehydration, respectively.

Image Acquisition and Analysis

In order to investigate the effect of osmotic dehydration on
color changes of dehydrated kiwifruit samples, the following
procedure was applied:

(a) A computer vision system generally consists of four
basic components: illumination, a camera, computer
hardware, and software. In this research, sample
illumination was achieved with three fluorescent
lights (Opple, 8 W, model: MX396-Y82; 60 cm in
length) with a color index (Ra) close to 95%. The
illuminating lights were placed in a wooden box,
45 cm above the sample and at the angle of 45º with
sample plane to give a uniform light intensity over
the kiwifruit sample (Quevedo et al. 2009). The
interior walls of the wooden box were painted black
to minimize background light. A color digital camera
(Canon Powershot, Model A520, Japan) with 4 Mega
pixels of resolution was located vertically at a
distance of 25 cm from the sample. The angle
between the camera lens axis and lightening sources
was around 45º. The iris was operated in manual
mode, with the lens aperture of 4 and speed 1/10 s
(no zoom, no flash) to achieve high uniformity and
repeatability. Images were captured with the men-
tioned digital camera at 2,272×1,704 pixels and
connected to the USB port of Pentium IV, 2.4 GHz
computer. Canon Digital Camera Solution Software

(version 22) was used to acquire the images in the
computer in JPEG format.

(b) Image preprocessing: In order to improve background’s
contrast of digital images, preprocessing was accom-
plished using Adobe Photoshop (Adobe, v.7.0).

(c) Segmentation: Image segmentation was performed to
separate the true image of the kiwifruit sample from
background, using threshold combined with an edge
detection approach based on the Laplacian-of-Gaussian
filter (Castleman 1996).

(d) Conversion of RGB chromatic space into L*a*b* units:
Since the computer vision system perceived color as
RGB signals, which is device-dependent (Fernández et
al. 2005), the images taken were converted into L*a*b*
units to ensure color reproducibility. In the L*a*b*
space, the color perception is uniform, and therefore,
the Euclidean distance between two colors corresponds
approximately to the color difference perceived by the
human eye (Pedreschi et al. 2007). Transformation
RGB into L*a*b space was performed according to a
direct model similar to the procedure described by León
et al. (2006).

The color changes (ΔE) of dehydrated kiwifruits were
estimated from the coordinates of color by applying the
following equation (Shafafi Zenoozian et al. 2008):

ΔE ¼ L*2 � L*1ð Þ2þ a*2 � a*1ð Þ2þ b*2 � b*1ð Þ2
h i1

2 ð3Þ

where L* is lightness component, which ranges from 0 to
100 and parameter a* (from green to red) and b* (from blue
to yellow) are two chromatic components, which range
from −120 to 120. Subscripts 1 and 2 are referred to as
color components before and after osmotic dehydration,
respectively. In this study, the image analysis was
performed using Imagj software version 1.40g.

Fig. 1 Multilayer feedforward
neural network architecture
with one hidden layer for
prediction solid gain, water
loss, and ΔE of osmotically
dehydrated kiwifruit
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Artificial Neural Network

In this study, fully interconnected multilayer feedforward
network, which is the most widely used ANN, was applied for
modeling mass transfer kinetics and color changes of
osmotically dehydrated kiwifruit. One of the commonly used
feedforward ANN architectures is multilayer perceptron
(MLP) network. The main advantages of MLP compared to
other neural model structures are that it is easy to implement
and it can approximate any input/output map (Menhaj 1998).
MLP consists of (a) an input layer with neurons representing
input variables to the problem, (b) an output layer with
neuron(s) representing the dependent variable(s), and (c) one
or more hidden layers containing neuron(s) to help capture
the nonlinearity in the system (Fig. 1). The complexity of the
MLP network depends on the number of layers and
the number of neurons in each layer. The hidden layer maps
the input pattern x with output pattern y through a series of
interconnected weights. Mathematically (Razavi et al. 2003):

yj ¼
Xn
i¼1

f wijxi
� �þ bj ð4Þ

where Wij is the weight of the ith input vector that is
connected to the jth neuron; n is number of inputs to the
neuron; bj is the bias associated with the jth neuron, which
adds a constant term in the weighted sum to improve
convergence; and f is the activation function that determines
the processing inside the neuron. Activation function can be
linear or nonlinear (commonly hyperbolic tangent or
sigmoid) function depending on the network topology. In
this work, the operational variables of osmotic process of
kiwifruit (concentration, temperature of osmotic solution,
and osmotic duration) were used as inputs, and solid gain,
water loss, and ΔE were considered as outputs. A hyperbolic
tangent activation function (Eq. 5) was chosen to be used in
the hidden layer, due to lower calculated mean-squared error
values than the respective sigmoid function, while a linear
function was used in the output layer.

tanh ¼ ex � e�x

ex þ e�x
ð5Þ

Two important factors must be considered in order to
ensure a successful modeling of MLP. First, is the number of
hidden layers and second is the number of neurons in each
hidden layer. Since almost all of the problems in neural
network modeling could be solved with one hidden layer
(Chen et al. 2001; Kashaninejad et al. 2008; Mohebbi et al.
2007; Movagharnejad and Nikzad 2007; Ochoa-Martínez
and Ayala-Apaonte 2007; Mitra et al. 2009), an ANN with
three layers was used in this research. In addition, using too
many hidden layers may lead to problem of data overfitting,
affecting the system’s generalization capability (Abdullah et

al. 2006). On the other hand, to find the best architecture,
different networks were built with different hidden neurons
varying from 2 to 20.

In total, 192 data were collected for the four different
concentrations and osmotic times and three osmotic
temperatures. First, the data order was randomized and
then the data were divided into three partitions. The first
partition (training data) was used to perform the training
of the network (40% of data). The second one (cross-
validation data) was used to evaluate the prediction
quality of the network during the training (30% of data).
For the purpose of estimating the performance of the
trained network on new data, a third partition, which
never was seen by the artificial neural network during
the training and cross-validation process, was used (30%
of data) for testing. During training, momentum value
was fixed at 0.7, and learning rate was determined at
level 1 on the hidden layer and 0.1 at the output layer.
The training process was carried on for 1,000 epochs or
until the cross-validation data’s mean-squared error
(MSE), calculated by Eq. 6, did not improve for 100
epochs to avoid over-fitting of the network.

Backpropagation algorithm was used to implement
supervised training of the network. Backpropagation is
based on searching an error surface (error as a function of
ANN weights) using gradient descent for point(s) with
minimum error. Each iteration in backpropagation con-
stitutes two sweeps: forward activation to produce a
solution, and the backwards propagation of the computed
error to modify the neurons’ weights (Movagharnejad and
Nikzad 2007).

Testing was carried out with the best weights stored
during the training. Evaluation of the performance of the
trained network was based on the accuracy of the
network in the test partition. Therefore, MSE, normalized
mean-squared error (NMSE), mean absolute error
(MAE), and correlation coefficient (R) for each output
were calculated by using Eqs. 6–10 (Mohebbi et al. 2008)
based on testing data and were used to compare the
performance of different ANN architectures. In this
study, the ANN models were constructed by Neuro-
solution for Excel software release 5.0, produced by
NeuroDimension, Inc.

MSE ¼
PN
i¼1

Oi � Tið Þ2

N
ð6Þ

NMSE ¼ 1

s2

1

N

XN
i¼1

Oi � Tið Þ2 ð7Þ
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where Oi is the ith actual value, Ti is the ith predicted value,
N is the number of data, σ2 is the variance, and

Tm ¼
PN
i¼1

Oi

N
: ð10Þ

Statistical Analysis

Analysis of variance (ANOVA) of data was performed
using a computerized statistical program called “MSTAT”
version C, and determination of significant differences of
means was carried out by “Duncan” test at 1% significant
level using the above software program.

Results and Discussion

Effect of Osmotic Dehydration on Mass Transfer Kinetics
and Color Changes

Average values of solid gain, water loss, water loss/solid
gain ratio, color changes, and changes of each chromatic
parameter during the osmotic dehydration of kiwifruit slices
for the whole treatments are presented in Tables 1 and 2,
respectively. In Table 3, parts of ANOVA tables for solid
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of 60% on solid gain of osmotically dehydrated kiwifruit

Table 3 Successive mean squares from the analysis of variance of the solid gain, water loss, color changes, and changes of three chromatic
parameters (L*, a*, and b*)

Source Degree of freedom Mean square

SG WL ΔE L*2–L*1 a*2–a*1 b*2–b*1

A 3 42.07** 1,974.6** 3.18* 0.55 NS 31.75 NS 0.98 NS

B 2 280.53** 6,307.66** 520.15** 0.54 NS 34.87** 0.43 NS

C 3 81.78** 1,319.47** 16.12** 1.54 NS 0.87* 0.95 NS

A×B 6 0.502 NS 102.25** 3.28* 0.03 NS 1.08 NS 0.12 NS

A×C 9 1.74* 47.41** 4.34* 0.76 NS 1.27 NS 0.31 NS

B×C 6 5.15** 115.45** 2.75* 0.47 NS 1.13 NS 0.19 NS

A×B×C 18 0.54 NS 7.43** 4.79* 0.09 NS 0.14 NS 0.04 NS

Error 144 1.22 1.33 1.9 1.11 1.21 1.18 NS

Total 191

A osmotic concentration, B osmotic temperature, C osmotic time, NS not significant

**p=0.001; *p=0.05
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gain, water loss, color changes, and changes of each chromatic
parameter are given. It was found that solid gain and water
loss increased significantly as temperature, concentration, and
osmotic duration increased. Therefore, samples immersed in

osmotic solution of 60% at 60 ºC for 2 h had the greatest solid
gain (9.28%) and water loss (52.98%). The solid gain and
water loss at the end of the osmotic process for the four levels
of immersion times and three osmotic temperatures for the

No. of neurons Solid gain Water loss ΔE

MSE NMSE MAE MSE NMSE MAE MSE NMSE MAE

2 3.042 0.515 1.363 79.02 0.536 7.37 8.37 1.058 2.215

3 1.109 0.175 0.791 12.864 0.091 2.833 2.494 0.317 1.299

4 1.078 0.174 0.796 6.000 0.038 1.991 2.279 0.273 4.473

5 1.450 0.251 0.914 8.775 0.079 2.226 2.199 0.292 1.174

6 1.727 0.285 1.003 7.934 0.058 2.11 2.606 0.339 1.222

7 1.336 0.274 0.882 5.261 0.058 1.887 3.076 0.413 1.417

8 1.552 0.206 0.963 5.311 0.039 1.846 3.339 0.536 5.642

9 1.069 0.235 0.786 6.638 0.051 2.032 3.504 0.458 1.365

10 1.322 0.181 0.868 2.995 0.018 1.303 4.001 0.432 1.519

11 1.075 0.174 0.814 2.553 0.017 1.164 3.022 0.412 1.176

12 1.513 0.209 0.954 3.492 0.028 1.366 3.392 0.384 5.241

13 1.174 0.214 0.733 2.546 0.017 1.302 2.398 0.298 4.022

14 1.124 0.218 0.776 3.866 0.033 1.574 2.145 0.429 1.19

15 1.527 0.213 0.893 5.394 0.039 1.832 2.91 0.356 4.375

16 1.005 0.16 0.798 2.312 0.039 1.848 2.137 0.272 1.168

17 1.267 0.175 0.877 3.709 0.030 1.493 3.673 0.51 1.451

18 1.343 0.209 0.852 3.757 0.030 1.559 3.018 0.397 1.302

19 1.505 0.264 0.904 6.761 0.052 1.898 3.905 0.418 1.448

20 1.314 0.244 0.876 2.419 0.023 1.283 2.717 0.434 1.256

Table 4 Errors in prediction
of solid gain, water loss, and
ΔE using ANN with different
number of neurons in single
hidden layer for osmotically
dehydrated kiwifruit

Table 5 Corresponding weight and bias values of each neuron for optimum ANN configuration used to predict SG, WL, and ΔE of osmotically
dehydrated kiwifruit

Hidden neurons Bias Input neurons Output neurons

Concentration Temperature Time Solid gain Water loss ΔE

1 0.76968 0.03497 −1.20001 −0.18476 −0.35974 −0.29263 −0.18091
2 0.47119 −0.32792 −0.37287 −0.68928 0.25142 0.059 0.27054

3 0.14329 0.32552 −0.48708 −0.08214 −0.3209 −0.21015 −0.34749
4 0.48321 0.00897 −0.94081 0.08359 −0.20761 0.11877 0.35841

5 0.19503 0.30375 0.46528 0.1889 −0.06018 0.07583 −0.08675
6 0.33798 −0.05073 0.15364 0.26056 0.23057 0.04786 −0.13814
7 −0.52286 0.57002 0.06464 −0.00985 −0.1575 −0.29013 −0.31561
8 −0.00388 0.54773 −0.4758 0.1785 −0.03775 0.28899 0.20374

9 −0.38034 −0.81863 −0.04547 −0.40282 0.01505 0.02413 0.42987

10 0.24197 −0.47857 0.04043 −0.40559 −0.19982 0.37225 −0.01796
11 −0.44819 0.39526 0.52965 0.39421 −0.05423 −0.02367 −0.31778
12 −0.35041 0.22844 −0.32133 −0.41326 −0.15015 −0.14233 −0.41029
13 −0.25663 0.44577 0.41055 0.19203 0.30183 0.26501 0.1056

14 0.27025 0.3265 0.0028 0.42678 0.16696 0.39431 −0.29234
15 −0.0671 −0.10848 −0.06417 0.27949 −0.19963 0.19242 −0.21289
16 0.26917 −0.02665 0.39768 −0.27706 −0.04674 −0.11674 −0.14285
Bias −0.26384 0.2384 0.10634
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concentration of 60% are shown in Figs. 2 and 3, respectively.
The same tendencies were also found for the osmotic
concentrations of 30%, 40%, and 50%. Increasing WL and
SG by increasing temperature could be attributed to the
effect of temperature on the membrane permeability by
making it more permeable to water and sugar exchanges. On
the other hand, by increasing sucrose concentration, the
osmotic pressure in the kiwifruit tissue is increased, which
led to increase water loss and solid gain.

The effect of operating conditions can also be assessed
by water loss/solid gain ratio. In an osmotic dehydration
process, the higher water loss is more favorable than solid
gain. On the other hand, high solid gain affects negatively
the quality and sensory characteristics of the dehydrated
fruit. When high levels of sugar are infiltrated into the fruit
during osmotic dehydration, significant sensory alterations
can occur, and the osmotically dehydrated product may
present a different taste from the fresh fruit (Rodrigues and
Fernandes 2007). The kiwifruit samples, treated with
osmotic solution of 40% at 40 °C for 1.5 h, had the
greatest water loss/solid gain ratio (average value of 7.37).

As Table 2 shows, the variations in ΔE and b* are
statistically significant, whereas the relationship between
chromatic parameters L* and b* and operation conditions
were not statistically significant.

Table 1 reveals that increasing temperature caused an
increase in ΔE values. The chromatic parameter a* is
found to be the major component that contributes most to
the overall color change during osmotic dehydration of the
kiwifruit. The a* values increased significantly by increas-
ing osmotic temperature, which shows diminishing of green
color of dehydrated kiwifruits. This phenomenon can be
attributed to the decay in chlorophyll pigments, which can
be explained with Arrhenius-type temperature dependence
of chlorophyll degradation (Nisha et al. 2004) or increased
loss of liberated coloring compounds by migration into the
solution (Tijskens et al. 2001). The samples were osmosed
in osmotic solution of 60% at 60 ºC for 2 h subjected to the
greatest color changes (average ΔE value of 10.09).
Tijskens et al. (2001) found a similar trend during
blanching of broccoli and green beans. Therdthai and Zhou
(2009) reported that using a high temperature during drying
of mint leaves could lead to conversion of chlorophylls to
pheophytins, which caused to increase both a* and ΔE
values.

Artificial Neural Network Optimization

The optimum number of neurons in the hidden layer is
determined by trial/error procedure based on minimizing
the difference between estimated ANN outputs and exper-
imental values. The error measures for estimation of solid
gain, water loss, and ΔE during the testing process of
different architectures of ANN with two to 20 neurons in
the hidden layer are shown in Table 4. It was found that
ANN with 16 hidden neurons had the minimum MSE
values for solid gain (1.005), water loss (2.312), and ΔE
(2.137) predictions. This architecture also had the lowest
NMSE (0.16) as well as NMSE (0.272) and MAE (1.168)
in the case of solid gain and ΔE estimation, respectively,
and therefore, this one was chosen as the best ANN.
Table 5 tabulates the weight and bias values of the chosen
ANN, which could be used to predict mass transfer kinetics
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and color changes of osmotically dehydrated kiwifruit
slices under specific experimental conditions.

Artificial Neural Network Performance

The prediction efficiency of the chosen ANN model for
testing data is presented in Figs. 4, 5, and 6 for SG, WL and
ΔE, respectively, in which the predicted values are plotted
against their experimentally measured values for the best
configuration ANN (16 neurons in the hidden layer). The
calculated correlation coefficient values for estimation of SG,
WL, and ΔE (0.92, 0.994, and 0.88, respectively) were
acceptable and revealed good agreement between predicted
and experimental values. Therefore, the configuration of
ANN model including 16 neurons in the hidden layer is
efficiently suggested for prediction of solid gain, water loss,
and ΔE of osmotically dehydrated kiwifruit slices.

Conclusions

The following conclusions are drawn from the investigation
on osmotic dehydration of kiwifruit and the possibility of
application of image analysis and artificial neural network
to predict mass transfer kinetics and color changes of
osmotically dehydrated kiwifruit:

1. Solid gain and water loss increased significantly when
osmotic temperature, concentration, and immersion time
increased. The effect of temperature was pronounced
more than the others.

2. It was noted that as the processing temperature was
increased, this could lead to color changes (ΔE).

3. A multilayer feedforward neural network based on three
inputs (operation conditions) and 16 neurons in the single
hidden layer was found to be the best model for predicting
solid gain, water loss, and ΔE (outputs), which showed
minimum MSE (1.005, 2.312, and 2.137, respectively)
and high R (0.92, 0.994, and 0.88, respectively) values.

4. It seems that application of both image analysis and
artificial neural network can lead to an automated,
objective, and rapid inspection as well as online state
prediction and control of osmotic dehydration of kiwifruit.
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