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Abstract Data collection and the availability of large data sets has increased over the
last decades. In both statistical and machine learning frameworks, two methodolog-
ical issues typically arise when performing regression analysis on large data sets.
First, variable selection is crucial in regression modeling, as it helps to identify an
appropriate model with respect to the considered set of conditioning variables. Sec-
ond, especially in the context of survey data, handling of missing values is important
for estimation, which occur even with state-of-the-art data collection and processing
methods. Within this paper, we provide an Bayesian approach based on a spike-and-
slab prior for the regression coefficients, which allows for simultaneous handling of
variable selection and estimation in combination with handling of missing values in
covariate data. The paper also discusses the implementation of the approach using
Markov chain Monte Carlo techniques and provides results for simulated data sets
and an empirical illustration based on data from the German National Educational
Panel Study. The suggested Bayesian approach is compared to other statistical and
machine learning frameworks such as Lasso, ridge regression, and Elastic net, and
is shown to perform well in terms of estimation performance and variable selection
accuracy. The simulation results demonstrate that ignoring the handling of missing
values in data sets can lead to the generation of biased selection results. Overall, the
proposed Bayesian method offers a holistic, flexible, and powerful framework for
variable selection in the presence of missing covariate data.
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1 Introduction

In regression modeling a long-standing problem is to select an appropriate model
in terms of the considered set of conditioning variables. The selection of appropri-
ate variables is always related to the associated selection of models, where various
approaches arising in the domain of statistical or machine learning algorithms are
discussed in the literature to solve this task. While model selection is in principle
straightforward in terms of a decision theoretic approach typically pursued in the
context of model averaging, see Hansen (2007), implementation of such a model
selection strategy considering all possible model setups is often impossible given
available computing capacities. Since the seminal paper of Schwarz (1978) providing
a benchmark criterion for model complexity obeying Occam’s razor and allowing
for model comparison on a common scale, many papers have addressed variable se-
lection in frequentist and Bayesian model setups, see among others Raftery (1995);
Tibshirani (1996); O’Hara and Sillanpää (2009); Bottolo and Richardson (2010); Ish-
waran and Rao (2005). Clyde and George (2004) depict variable selection problems
to become a special part of model selection with every subset of covariates corre-
sponding to a distinct model, and finally every selection problem is a description
of uncertainty to the data.1 To avoid computationally difficulties when considering
all possible models, selection methods help to pick up relevant variables and reduce
the amount of variables that become part of the modeling process.2 Further, for-
malized model selection strategies guard against ad-hoc multiple testing approaches
invalidating the use of p-values and informal model assessment potentially results in
incorrect inference due to strong multicollinearity among the set of variables. This
points to the choices with regard to the set of variables considered within model
selection. Next to the set of actually observed variables, say X, any combination of
the variables in terms of higher order moments and cross products, or functional
transformation thereof could be considered as well to handle nonlinear relation-
ships. This increases also for moderate P the number of variables to be considered.
While Hansen (2007) and Frühwirth-Schnatter (2010), as typical for the applied
literature, consider complete data scenarios, model selection strategies at least in the

1 Model selection is further often related to prediction and estimation performance, which in the sense
of model fitness is used as a model selection criterion. In the context of variable selection, the prediction
and estimation performance relate to the ability to identify the relevant set of covariates and the implied
regression relation correctly with higher prediction and estimating performance indicating higher quality
of the applied approach. A side aspect of quality relates to the conceptual stringency and interpretability
of the considered approach.
2 Once a statistical modeling has been agreed upon, model selection problems can also be classified in
terms of the number of variables (P) and number of observations (N). Thereby, the case with N � P
typically arises for survey data, whereas the case with P � N can be found for medical data.
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field of surveyed and administrative data should also address potentially incomplete
data, i.e. the estimation strategy requires handling of missing data.

Typical formalized approaches to variable selection discussed in the statistical and
machine learning literature are shrinkage estimators, with Lasso, ridge regression,
and Elastic-net as the prominent variants. Next to established procedures such as
stepwise selection, see Marill and Green (1963), also spike-and-slab prior formula-
tions have been suggested, see Ročková and George (2018) and O’Hara and Sillan-
pää (2009) for an overview. As pointed out by Korobilis and Shimizu (2022) shrink-
age estimators can be well aligned to the Bayesian estimation paradigm, where the
different penalization terms correspond to assumed prior distributions, whereas the
considered loss functions correspond to likelihood functions. However, the Bayesian
estimation approach can be readily extended to handle missing values via the device
of data augmentation, see Tanner and Wong (1987). Data augmentation in combina-
tion with Markov chain Monte Carlo methodology (MCMC) allows for derivation
of estimators via sample averages. Further, the more complex the assumed likeli-
hood structures are, the more compelling MCMC approaches to provide estimators
may become.3 When considering binary data or hierarchical model structures, the
involved loss and likelihood functions, serving as optimization criteria in the sta-
tistical and machine learning context, become more complex although in principle
straightforward to handle via MCMC techniques, see among others Aßmann and
Boysen-Hogrefe (2011).

In this article, we hence illustrate how model selection for binary regression mod-
els can be performed simultaneously to handling missing values in the considered
set of covariate data in a Bayesian framework. Comparison is provided regarding
alternative statistical and machine learning approaches arising in the context of
shrinkage estimation, such as Lasso, ridge regression, and Elastic-net regression for
binary dependent variables. We provide the corresponding Bayesian approach based
on a MCMC implementation for the handling of missing values accomplished in
conjunction with estimation and variable selection and review the close relation-
ships between shrinkage estimators. The described approach uses classification and
regression trees to approximate the full conditional distribution of missing values.
The holistic Bayesian approach allows for the incorporation of prior uncertainty and
the flexibility to consider any function of observed or augmented data within the set
of conditioning variables.

We assess the quality of different variable selection approaches when missing
values occur, where the considered shrinkage estimation approaches are combined
with multiple imputation, via a simulation study and an empirical illustration. As in-
dicators of quality, we use indicators assessing the prediction performance regarding
variable selection. The results suggest that for simple setups in terms of numbers of
variables, missing mechanism, and dependency structures, all considered approaches
perform well with regard to model selection. The more complex the setups becomes,
the less reliable standard model selection approaches work, where especially infer-

3 With more complex model structure also the burden of involved numerical optimization may rise. In
combination with efforts to handle missing values via multiple imputation, see Rubin (1984), the compu-
tational costs increased considerably.
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ence is more accurate for the suggested Bayesian approach based on spike-and-slab
priors and simultaneous consideration of missing values. The empirical application
illustrates that the considered Bayesian approach is well suited to provide weights
that can be used in subsequent analyses. A main finding of the paper is hence that
the quality of variable selection approaches remains high in principle even in the
context of incomplete data situations. The paper also documents the required com-
putational resources to apply estimation and model selection of this kind. Finally,
the Bayesian approach to handling missing values and variable selection is a power-
ful and flexible framework that offers several advantages over established methods.
By providing a coherent and unified framework, the Bayesian approach enables the
comparison of different models on a common scale and the incorporation of prior
knowledge and expert opinion. Additionally, standardizing the variables and ranking
them based on the effect sizes can provide a simple and intuitive way to interpret the
results. However, it is important to consider other concepts of variable importance
when interpreting the results to gain a more comprehensive understanding of the
relationships between the variables and the response variable.

The paper is organized as follows. Sect. 2 reviews the relationship between shrink-
age estimators and Bayesian estimation and provides the suggested Bayesian ap-
proach towards model selection in the presence of missing covariate data in terms of
a spike-and-slab approach for binary regression models. Also, the details with regard
to posterior sampling and corresponding inference are provided. Sect. 3 subsumes
the variable selection methods in statistical learning and handling of missing values
in general and Sect. 4 adds quality assessments of variable selection. Sect. 5 presents
results for simulated data sets and Sect. 6 provides the empirical illustration. Sect. 7
concludes.

2 Bayesian estimation for binary regression models with variable
selection and handling of missing values

A Bayesian estimation approach in general can be motivated in terms of a decision
theoretic approach using a loss function to assess the difference between parameter of
interest taking value � and the corresponding estimator ��. A loss function L.�; ��/

is defined as a mapping of the estimators �� from the set of possible estimators and
each of the parameter values � within the parameter space in the real line. The
optimal estimator Q�� in terms of minimal expected posterior loss is then defined as

Q�� D argmin
Z

�

L.�; ��/f .� jD/d�;

where f .� jD/ denotes the posterior density of all parameters of interest � . The
resulting minimization problem is similar to optimization problems arising in the
context of penalized estimation if the involved loss function is defined to imply the
mode of the posterior distribution and if the target function in penalized estima-
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tion (possibly in log scale) is similar to the structure of the posterior distribution
proportional to the product of likelihood and prior distribution.4

This framing in terms of a decision theoretic approach points out that also all
model selection decisions are an integral part of the estimation process with various
model selection approaches being discussed within the literature. Standard estima-
tion procedures are typically conditional on one specific statistical model and the data
set under consideration, where properties of the considered data need to be reflected
within the statistical model. These properties refer to the scale type of variables
within the data, the dimensionality of the data set, and the completeness. Whereas
the scale of the variables is reflected in the considered statistical model, strategies to
handle the dimension or incompleteness of the data are typically not an integral part
of the estimation routine, but considered in a sequential manner. The straightforward
strategy to address all issues simultaneously provided by complete enumeration of
all possible models (including all possible subsets of variables and incomplete data
constellations) is often hindered by the tremendous computational efforts involved
and the intractability of the incomplete data likelihood functions. The computational
intensity is one of the main reasons why, from a historical viewpoint, strategies such
as stepwise variable selection, both forward and backward, have been discussed in
the context of complete data early.5 Thus, the model selection process involves in
complete data situations at most the evaluation of P.P C 1/=2 model specifications
instead of 2P model specifications to find a maximum or minimum of the underlying
break-up criterion. Thereby, the number of models considered within the selection
is dramatically reduced although at the cost of path dependency.6

For illustration of the mechanisms involved in complete model enumeration, con-
sider a set of models fMmgM

mD1. Given data D, prediction or inference can be based
on the asymptotic distribution or the posterior distribution of a parameter estimator
for � being model specific, i.e., f .� jD;Mm/ being specific for the considered mod-
els m D 1; : : : ; M with 2P � M in case model selection coincide with selecting the
appropriate subset of covariate variables, or M even larger than 2P when alternative
model frameworks or missing data patterns are considered additionally.7 A common
pitfall is relying on a single model, especially when multiple models are equally
likely but provide differing predictions or inferences.

4 A direct correspondence is given when the prior is directly comparable in structure to the penalization
term and the function assessing model fitness in the penalized context reflects the properties of the negative
(logarithmic) likelihood function.
5 For completeness, note that stepwise selection backwards starts with the most general still manageable
model specification involving allP variables and selects from P candidate models, where these P models
each leave one variable out. If the predefined model selection criterion detects better fit among the can-
didate models, the candidate model with the largest increase in model fit is chosen, and the process is
repeated until no further increase in model fit is detected. Stepwise selection – forwards or backwards –
add or removes just one variable per step that changes the criterion most.
6 Note that a similar strategy is also inherent to other approaches like classification and regression trees,
see Breiman et al. (1984), where splitting points are defined in terms of single variables only.
7 When making prediction or inference, it’s essential to recognize that the both are based on a specific
model and may be optimal only within the context of the considered models.
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Bayesian model averaging provides a formal mechanism to aggregate estimation
results from different models arising when performing a complete enumeration.
Aggregated prediction or inference can be obtained via

f .� jD/ D
MX

mD1

f .� jD;Mm/f .MmjD/;

with

f .MmjD/ D f .DjMm/f .Mm/PM
m0D1 f .DjMm0/f .Mm0/

; m D 1 : : : ; M

and f .MmjD/ denoting the posterior and f .Mm/ the prior model probability,
whereas f .DjMm/ denotes the marginal model specific likelihood implied via

f .� jD;Mm/ D L.Dj�;Mm/f .� jMm/

f .DjMm/

D L.Dj�;Mm/f .� jMm/R L.Dj�;Mm/f .� jMm/d�
; m D 1; : : : ; M:

L.Dj�;Mm/ and f .� jMm/ thereby denote the model specific likelihood and prior
distributions, respectively. In case the model specification addresses missing values,
the likelihood

When a specific model, say Mm0 , has by far the highest probability aggregated
prediction and inference resembles the inference and prediction conditional on model
Mm0 . In case the posterior model probabilities of different models are similar, the
aggregated and conditional predictions and inferences will also be similar.

This scheme allows for aggregating inference and prediction from a set of con-
sidered models, whether nested or non-nested. However, operationalization and im-
plementation of this scheme require access to the likelihood function as well as
tractability of the integration involved to derive the marginal model likelihood. Fur-
ther, the scheme may be criticized to depend on prior assumption, although the set
of considered models may include different prior settings as well for a given like-
lihood specification. As the computational efforts can become easily prohibitively
large, this strategy is applied in the literature in case only relatively small sets of al-
ternative models are considered, see Aßmann and Boysen-Hogrefe (2011), Aßmann
(2012), and Frühwirth-Schnatter and Kaufmann (2008), where the computational
issues are tractable.

Given the tremendous efforts possibly involved in this general strategy, alternative
strategies are discussed in the literature providing model selection based on adaptive
strategies. These alternative strategies may consider a restricted class of statistical
models only or use alternative model criteria for selection and aggregation purposes
which involve tractable computational efforts. In particular, model selection comes
down to variable selection, also referred to as feature selection in the literature,
when the statistical model is restricted to take the form of a regression model with
the conditional expectation of the dependent variable taking the form Xˇ, where ˇ
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is a P � 1 vector of parameters. In general, looking on the 2P possible regression
models in total requires to calculate 2P different comparative measurements, e.g.,
the Bayes-factor, which leads to model-averaging to get a posterior distribution that
takes into account the uncertainty about all M models which requires computing the
posterior distribution over the parameters of interest in each model Mm (Clyde and
George 2004). Additional computation is required for the posterior distribution over
all such models. For linear regression models with complete covariate data Hansen
(2007) discusses model averaging allowing as well as for model selection. Other-
wise, in a Bayesian view ignoring the model or parameter by setting the prior to zero
violates Cromwells’s rule (Jackman 2009). Further, for a restricted model class, the
model selection issue can be tackled as well by means of shrinkage estimation often
also labeled as penalized estimation approaches. In a model-averaging perspective
we are interested in all posterior model probabilities for models in which the re-
gression parameters are unequal to zero which leads to variable selection (George
2000).

In the following, we will consider binary regression models with missing data
in covariate variables and discuss shrinkage estimators and Bayesian variable selec-
tion approaches to handle the model selection issue arising in form of selecting the
most appropriate subset of conditioning variables. The discussion will also point out
how these approaches relate to the general strategy. The considered model frame-
work can be described as follows. Let D D fy; Xg comprise a N � 1 vector
y D .y1; : : : ; yN /0 of binary dependent variables and a N � P matrix of covari-
ate data X D .X 0

1; : : : ; X 0
N /0 not including a constant. We will introduce the probit

specification for the binary regression model in the following as the involved MCMC
sampling scheme is more tractable compared to a corresponding Logit specification.
Hence, the binary regression model with probit link is given as

yi D
(

1 if y�
i D ˛ C Xiˇ C ei > 0;

0 if y�
i D ˛ C Xiˇ C ei � 0;

where e D .e1; : : : ; eN /0 is a N � 1 vector of independent standard normally dis-
tributed error terms and y� D .y�

1 ; : : : ; y�
N /0 a vector of latent variables. The corre-

sponding likelihood and augmented likelihood functions take the forms

L.yjX; ˇ; ˛/ D
NY

iD1

ˆ..2yi � 1/.˛ C Xiˇ// (1)

and

L.y; y�jX; ˇ; ˛/ D
NY

iD1

�.y�
i � .˛ C Xiˇ//fyiI.y�

i > 0/ C .1 � yi /I.y�
i < 0/g;

(2)
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where ˆ.�/, �.�/, and I.�/ denote the cumulative density of the standard normal dis-
tribution, the density of the standard normal distribution, and the indicator function,
respectively.

The consideration of the augmented likelihood function is based on Albert and
Chib (1993) as it simplifies the implementation of a MCMC sampling scheme for
estimation. Contextualizing this for variable selection within binary regression mod-
els, a representation for all possible model specifications is required. In general, the
model setup is implied via the likelihood and the prior distribution which yields to
approximate the posterior distribution as proportion of the likelihood and the prior
distribution. To describe differences between Bayesian estimators and shrinkage or
Maximum Likelihood estimators in general it may be helpful to recall that Bayesian
estimators can be formulated as a decision theoretic problem aiming at minimizing
Bayes risk. This risk is associated with an appropriate loss function, see Mood et al.
(1974). Depending on the loss function, the posterior mean or median are appro-
priate Bayesian estimators. In this sense, shrinkage estimators may be interpreted
as posterior mode estimators, although as pointed out by Gneiting (2011) it might
be hard to reconcile this kind of estimator with the decision theoretic duality of
loss functions and estimators in case of interaction between penalization and cross-
validation. In this sense, and as the posterior distribution is hardly ever accessible by
analytical means, Bayesian estimators are typically derived as sample means, where
samples from the assumed posterior distribution are obtained using Markov chain
Monte Carlo (MCMC) methods. Different MCMC techniques for Bayesian variable
and model selection are developed varying the prior distribution or the mechanism
in the MCMC sampler, for details see Yang et al. (2005).

To arrive a general model specification encompassing all possible models, the
binary regression setup with ˇ D .ˇ1; : : : ; ˇP /0 described above can be extended
as follows. Following Lee et al. (2003), we use a P � 1 indicator vector � , where
each single �j with j D 1; : : : ; P is defined by

�j D
(

1; if variable Xj is considered corresponding to ˇj ¤ 0;

0; if variable Xj is not considered corresponding to ˇj D 0:
(3)

Taking � as a condition into account, the model described in Eqs. (1) and (2) would
become

L.yjX; ˇ; ˛; �/ D
NY

iD1

ˆ.2yi � 1/.˛ C Xidiag.�/ˇ/

and

L.y; y�jX; ˇ; ˛; �/ D

D
NY

iD1

�.y�
i � .˛ C Xidiag.�/ˇ//fyiI.y�

i > 0/ C .1 � yi /I.y�
i < 0/g; (4)
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with the diag() operator stacking the indicated vector on the main diagonal of cor-
responding square matrix. To complete the model setup, priors for ˛, ˇ, and � need
to be specified when variable selection is considered for binary regression models.
The implied posterior can be described via

p.ˇ; ˛; � jy; X/ / L.yjX; ˇ; ˛; �/f .ˇ; ˛; �/: (5)

Thereby, all quantitative continuous covariate variables in the data set are considered
to be standardized via a z-transformation.8 In case an intercept is considered in the
model specifications, the intercept is then the common parameter for all possible
model and represents the overall mean of the model. Following Lamnisos et al.
(2009); George and McCulloch (1993); Lee et al. (2003) we use a normal prior for
˛ with expected value ˛0 and variance h, i.e.

f .ˇ; ˛; �/ D f .˛/f .ˇ; �/ D �.˛j˛0; h/f .ˇ; �/; (6)

with �.�j�; �/ denoting the normal distribution with indicated expectation and variance
parameter. Typically, h is set as a large value corresponding to an uninformative prior
setting with regard to the intercept (Lamnisos et al. 2009). Table 1 outlines the details
with regard to hyperparameters of all prior distributions.

The prior setting for ˇ and � is based on George and McCulloch (1993) assuming
an independent marginal conditional setup

f .ˇ; �/ D
PY

j D1

f .ˇj ; j�j /f .�j /: (7)

The functional forms follow spike-and-slab priors first suggested by Mitchell and
Beauchamp (1988) for Bayesian variable selection for normal linear regression mod-
els. The according mixture distribution for the coefficients is given as

f .ˇj j�j / D .1 � �j /f1 C �j f2; (8)

where f1 and f2 are placeholders for any appropriate continuous or discrete prob-
ability density function. Given this mixture form, f1 is used to steer coefficients to
zero (spike), e.g., f1 assigns a unit point mass at ˇj D 0 and f2 allows for non-
zero coefficients (slab), which can be an absolutely continuous density otherwise
such as uniform or normal. Hence, this setup directly incorporates selective shrink-
age, i.e., the separating effect in the coefficients caused by the spike-and-slab so

8 The situation with incomplete covariate data requires that each imputed data set is subject to a specificz-
transformation or that within each iteration of the MCMC algorithm a z-transformation is performed as
explained below. In addition, while the use of standardized covariate data is an implicit requirement in the
context of shrinkage estimation as a single parameter steers the shrinkage, the Bayesian formulation in
form of a variable specific prior allows for more flexibility. Most important, while for continuous quan-
titative variables standardization is possible using a z-transformation or other stabilizing transformations
such as singular value decomposition, standardization is less straightforward implemented for categorical
variables.
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Table 1 Prior specification and MCMC starting values

Parameter Functional form Probability
distribution

Starting values

Intercept

˛ / �.˛0 D 0; �2
˛h/ Normal –

Depending on scaling parameter h

Wet set to h D 1, thus

�˛ / IG.c1; c2/ Inverse gamma –

With c1 and c2 const.

Regression vector

ˇp / .1 � �j /N .ˇ0; �2
1 �2

ˇ
/ C �j N .ˇ0; �2

2 �2
ˇ

/ Mixing normal f1gP
pD1

Depending on

ˇ0 D 0

�2 � �1 > 0 with �2 D 1 and �2 Constant Set individually

�ˇ / IG.d1; d2/ Inverse gamma –

With d1 and d2 const.

Mostly d1 D 100, and d2 D 100

Indicator vector, i.e., spike-and-slab

� / Bernoulli.w/ Bernoulli f1gP
pD1

Depending on

w 2 .0; 1/ Constant Set individually

Missing values

Xmis / observed sample distribution Nonparametric Random draws

The hyperparameters for the inverse gamma distribution are chosen to provide finite variance and smallest
possible prior sample size.

that most coefficients are peaked at zero and significant coefficients are set different
from zero. A mixture of two normal distributions with different variances are widely
used implying

f .ˇj j�j / D .1 � �j /�.ˇj jˇ0; �2
1 �2

ˇ / C �j �.ˇj jˇ0; �2
2 �2

ˇ /; (9)

where typically �2 � �1. Note that different approaches for spike-and-slab prior
setups can be found, such as Laplace priors (Tibshirani 1996) or Horseshoe pri-
ors (Carvalho et al. 2010) or setting f1 to unit mass at zero (George and McCulloch
1997). Hence, if ˇj is found to differ substantially from zero, it will be assigned in
the model (slab) or otherwise will be skipped out of the model (spike). Note that
the different prior setups correspond to different setups of the penalization function
in the context of shrinkage estimators.

George and McCulloch (1993) introduced the Stochastic Search Variable Selec-
tion (SSVS) method, which is a Bayesian approach for variable selection in linear
regression models. SSVS uses a mixture of two normal distributions as a prior for
the regression coefficients, where one distribution has a very small variance and
the other has a large variance. This prior encourages shrinkage of the coefficients
towards zero, and the stochastic search algorithm explores the model space to iden-
tify the most important variables. For the prior for � that specifies the model space
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we follow George and McCulloch (1993, 1997) and Lee et al. (2003) and consider
a Bernoulli prior framework given as

f .�/ D
PY

j D1

w
�j

j .1 � wj /1��j (10)

with wj 2 .0; 1/ governing the probability that the j-th column of X is considered
within the regression. It is also common to set wj D w for j D 1; : : : ; P , thereby
assuming homogeneity of the inclusion probabilities.

In this case, the prior distribution of � is binomial and the a priori expected
number of selected variables of X can be modeled in terms of w. A fixed value
for w can be set if there is consolidated knowledge. If P � N , small values of
w are chosen, to bound the number of variables in the model. Hence, the prior
penalizes larger models by setting w to a small percentage.9 Otherwise, a maximum
for the model size Pmax can be set as in Dobra (2009).10 In the following, we use
the binomial prior on � with homogeneous inclusion probabilities.

The model setup so far describes the situation with completely observed data and
is, as discussed in the literature, accessible to posterior sampling, see also Albert
(1992). Data augmentation can also be used to handle missing values. To per-
form Bayesian inference, an MCMC sampling scheme, see e.g., Geman and Geman
(1984); Gelfand and Smith (1990); Aßmann and Preising (2020), is implemented
to generate a sample from the posterior distributions of interest. Handling of la-
tent structures and missing values is conceptually straightforward in the Bayesian
context via the device of data augmentation since the full conditional distributions
of missing values can be added as outlined in Aßmann et al. (2022). The prior is
thereby also augmented where we opt for a prior for the missing values proportional
to the distribution of observed values, see also below. The parameter vector can be
augmented with the missing values, which can then be utilized as conditions for
all other full conditional distributions of interest. In the context of a binary probit
models, data augmentation involves augmenting the dependent variable y by draw-
ing a new value y� from a conditional distribution depending on the other current
model parameters, thus the observed binary data is augmented with the latent con-
tinuous variable. Data augmentation can be operationalized via including a set of
appropriately specified full conditional distribution for the missing values within the
MCMC sampling scheme. First the latent variable is drawn or the missing variable
are handled, then the model parameters are updated by using the current augmented

9 In the case of a huge more variables than individuals, a smallw selects only a few variables. e.g., a data set
with 10,000 variables and 1000 individuals a value of w D 0:001 means that only 10 variables a expected
to be selected into the model.
10 An alternative way is to specify a hierarchical prior distribution forw. Thereby, uncertainty of w can be
modeled by implementing a prior for w following a distinct distribution, e.g., a Beta distribution with B is
a Beta function and w � B.ı1; ı2/ (Kohn et al. 2001) so that

f .w/ D wı1�1.1 � w/ı2�1

B.ı1; ı2/

with B.�; �/ denoting the Beta function. The prior belief of the model size, i.e., the number if included
variables can be parameterized with both ı1 > 0 and ı2 > 0.
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data. Finally, it allows to estimate the model parameters more accurately and flexi-
bly, and can be used in a variety of applications.11 This framework has been widely
used in various applications, including missing data imputation.

The quantities of interest are hence y�; ˇ; ˛; � , and Xmis, where Xmis denotes
the missing values of the covariate data X with X D .Xobs; Xmis/. The correspond-
ing posterior of interest results from Eqs. (4) in combination with the assumed
operationalizations of Eq. (6), see also Table 1. The prior for the missing values
Xmis is discussed when providing the assumed full conditional distribution. Starting
point for sampling and inference is hence the augmented posterior distribution, see
also Aßmann et al. (2022), given as

p.ˇ; ˛; �; y�; Xmisjy; Xobs/ / L.y; y�jX; ˇ; ˛; �/f .˛/f .ˇ; �/f .Xmis jXobs/:

Thus, we draw the posterior values iteratively for m D 1; : : : ; M from the respec-
tive full conditional distributions of the considered parameter blocks y�; ˇ; �; Xmis.
After setting appropriate starting values for ˇ; �; Xmis, the set of full conditional
distributions in the Gibbs sampler is set up as follows. Fig. 1 shows the schematic
progression of the Gibbs sampler with the setting of the start values and the sequen-
tial structure of the full conditional distributions.

f .y�j�/ The full conditional distributions of the latent variables y� corresponds
to a product of truncated normal distributions, since the single elements
y�

i , i D 1; : : : ; N , are mutually independent. Sampling for each element
is hence performed from a truncated normal distribution with moments
�y�

i
D ˛ C Xi;�ˇ� and variance equal to one with the truncated sphere

ranging from �1 to 0 in case yi D 0 and in case yi D 1 ranging from
0 to 1.

f .˛; ˇj�/ Following Albert and Chib (1993), the full conditional distribution fol-
lows in principle the standard Bayesian linear regression given the la-
tent continuous variable y�. Consideration of the underlying continuous
spike-and-slab prior the full conditional distribution has the form of
a multivariate normal with variance and expectation given as

V˛;ˇ D .D�1 C QX 0 QX/�1 and m˛;ˇ D V.D�1.˛0; ˇ0
0/0 C QX 0y�/

11 Depending on the scale of the variables under consideration, both parametric and non-parametric models
may be appropriate to specify the full conditional distribution of the variables showing missing values.
Following Burgette and Reiter (2010) and Doove et al. (2014), we use classification and regression trees
(CART) as discussed by Breiman et al. (1984) to approximate the full conditional distributions. This offers
a flexible yet computationally feasibly way to model missing values. As previously stated by Aßmann and
Preising (2020), data augmentation is employed directly within the MCMC sampler. During the individual
draws from the full conditional distributions of an MCMC run, not only are the estimates calculated and
a variable selection performed, but also the missing values are imputed. The imputation is conducted using
the approach proposed by Tanner and Wong (1987), where a general framework for data augmentation is
proposed, which involves introducing latent variables to the model to simplify the estimation of parameters.
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Fig. 1 Schematic progress of the sequential structure of the full conditional distributions within the Gibbs
sampler. Note that the starting values are set once before starting the m D 1; : : : ; M iterations. The full
conditional distributions in the ellipses express extended data, whereas the rectangular blocks represent the
full conditional distributions, which provide the output of interest. After subtracting an appropriate burn-
in phase, both provide the corresponding estimators based on the median or mean

respectively, where D is a diagonal matrix with D D diag.h; .�P �
�/�1 C ��2/ with �� denoting a vector of ones with indicated size and
QX D .�N ; X/, see also Biswas et al. (2022) for a discussion of this full
conditional distribution.12

f .� j�/ The full conditional distribution for � is implied via the assumed prior
structure and corresponds to P independent Bernoulli distributions as
the single elements �j , j D 1; : : : ; P , are mutually independent. The
corresponding implied probabilities are given as

pj D
w��1

2 exp

�
� ˇ 2

j

2�2
2

�

w��1
2 exp

�
� ˇ 2

j

2�2
2

�
C .1 � w/��1

1 exp
�
� ˇ 2

j

2�2
1

� ; j D 1; : : : ; P;

12 Drawing directly from the distribution is very time intensive if P � N . Following Biswas et al. (2022)
the direct drawing routine requires computational cost of O.p3/ and thus can be modified based on the
Woodbury matrix identity summarized by Bhattacharya et al. (2016), which requires still cost ofO.N 2p/
but instead of other approaches converges to the posterior distributions.
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with the hyperparameters 0 < w < 1 and �2
2 � �2

1 > 0, see Biswas et al.
(2022) for discussion and Table 1 for chosen values.

f .Xmisj�/ Values of Xmis are sampled sequentially for each column vector of X ,
i.e., X D .X .1/; : : : ; X .P //, based on the non-parametric approxima-
tion suggested in the form of classification and sequential regression
trees (CART), see Burgette and Reiter (2010). Let X

.k/
com D .X

.k/
obs ; X

.k/
mis /,

k D 1 : : : ; P , denote the completed variables, and X
.nk/
com , k D 1; : : : ; P ,

denotes the completed matrix of variables except column k. It is a ma-
jor advantage of the data augmentation approach that the latent variables
possibly serving as kinds of sufficient statistics can be used for the ap-
proximation of the full conditional distribution of missing values. In
a first step, a decision tree is built for X

.k/
com conditional on the corre-

sponding values of all remaining variables X
.nk/
com as well as conditional

on y and y� serving as a kind of sufficient statistic for y.13 In each
iteration the covariates are standardized in the spike-and-slab approach
as well as in the imputation for the variable selection. To incorporate
a prior uncertainty on the hyperparameters of the sequential partition-
ing regression trees, we build trees with a randomly varying minimum
number of elements within nodes. Every missing observation can then
be assigned to a node and thus a grouping of observations implied by the
binary partition in terms of the conditioning variables. The values within
each node provide access to an empirical distribution function serving
as an approximation to the full conditional distribution of a missing
value and thus as the key element for running the data generating mech-
anism for missing values. Thereby, this modeling approach is in line
with prior distributions of missing values proportional to observed data
densities. Draws from the empirical distribution function within a node
correspond to draws from the full conditional distributions of missing
values, where sampling is performed via the Bayesian bootstrap to ac-
count for the estimation uncertainty of the full conditional distribution,
see Rubin (1981). The considered approach further offers the flexibility
to consider any function of observed or augmented data within the set
of conditioning variables as well. We incorporate the implementation
available within the rpart package available for R (R Core Team. 2020),
see Therneau and Atkinson (2018) for further details. The sampled Xmis

values allow to refer to an updated completed matrix of covariates in all
other steps of the MCMC algorithm including a renewed standardization
of the covariate data.

Given the MCMC output, estimators are readily defined via corresponding sample
moments, either arithmetic means or medians. Whether arithmetic means or medi-
ans are reported depends on the loss function involved in defining a Bayesian point
estimators based on a Risk function, see Mood et al. (1974). Arithmetic means

13 Note that this specification is also used when performing imputation in the context of alternative ap-
proaches serving as comparative benchmarks.
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correspond to quadratic Bayesian loss, whereas medians correspond to absolute
Bayesian loss. Furthermore, the model structure implies that estimators conditional
on �j D 1, j D 1; : : : ; P , may be considered as well as unconditional estimators.
Whereas unconditional estimators can be obtained via using the complete MCMC
output, conditional estimators correspond to discarding those draws for which the
sample elements in � are equal to one. In this sense, estimates of the inclusion
probabilities reaching at least 50% are necessary to consider a variable as a part of
the true underlying data generating process, see also Russu et al. (2012); Bottolo
and Richardson (2010); Hans et al. (2007). Finally, note that within the simulation
experiments as well as within the empirical illustration, we set M to equal 20,000
after a burn-in phase of 5,000 was found sufficient to discard the effects of initializa-
tion both within the simulations study and the empirical illustration. Next, we will
discuss variable selection and handling of missing values in the context of shrinkage
estimators the relations to Bayesian estimation.

3 Shrinkage estimation for binary regression models with missing
covariate data

Variable selection as a special case of model selection can be performed in terms of
shrinkage estimators. Thereby, the task is to identify a subset of variables that are
potential predictors for the dependent variable and is best with respect to predefined
optimality criterion. Resulting reduced models give us a higher chance to interpret,
visualize and handle the results suitably.

In general, the shrinkage or penalized estimation approach for variable selection
is provided in terms of a loss function. Hence, with � D .˛; ˇ/, the resulting can be
defined as

�shrink D argmin
�

fLF.D; �/ C pshrink.ˇ; 	/g: (11)

Thereby, LF.D; �/ measures the ability of the model to fit the data usually taking
a form close to a likelihood function, whereas p.ˇ; 	/ penalizes model complexity,
i.e., the dimensionality of the parameter vector ˇ and 	 steers the magnitude of
penalization. The different shrinkage estimators discussed in the literature differ
with respect to alternative specifications of LF.D; �/ and pshrink.ˇ; 	/. In general,
the loss function resembles in structure the Mallows criterion, see Mallows (1973).

Prominent choices for measuring model fitness is the residual sum of squares for
continuous dependent variables, where the sum of squared residuals is also a con-
stituent part of the log likelihood function given the assumption of multivariate
normality or more generally assuming an ellipsoid distribution. The penalization
function should be monotonically increasing for larger dimension of ˇ, where typi-
cal functions fulfilling this requirement are quadratic or absolute distance functions.
Note that these also play a prominent role in logarithms of densities, for example
the normal or Laplace density, respectively. Given this, log likelihood functions and
log prior distributions operate in the same way as loss and penalty functions respec-
tively, which in turn makes log likelihood functions and priors natural candidates for
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defining shrinkage estimators. These relationships will be highlighted in more de-
tail, when discussing specific shrinkage estimators in the following. A final remark
relates to the mechanism how the consideration of penalty functions causes the se-
lection of a subset of variables. For illustration consider the case, where the function
assessing model fitness takes the form of an ellipsoid with fitness decreasing with
larger distance to the center of the ellipsoid. The penalty function contributes mini-
mum loss when parameters take the value zero. The overall loss function is thereby
minimized via balancing marginal increase in fitness with marginal loss arising from
the penalization in a Lagrangean manner. The point where the marginal fitness and
penalization contributions can be balanced depends on the chosen functional forms,
where opting for absolute loss may provide shrinkage of single parameters exactly
towards zero.

Different specifications of p.ˇ; 	/ imply different shrinkage estimators. A gen-
eral specification for the penalization function can be stated in form of a linear
combination of different distance functions or norms, i.e.,

p.ˇ; 	/ D
JX

j D1

	j jˇ0ˇj
�j
2 ;

where for 
j taking values 1; 2; : : :, i.e., the corresponding L�-norms are involved.
The following special cases are prominent in the literature. For J D 1 and 
1 D 2,
the penalization function involves quadratic norms L2 what is referred to as ridge
regression, i.e., pridge.ˇ; 	/ D 	1ˇ0ˇ, see Hoerl and Kennard (1970) and Friedman
et al. (2010) for a discussion in the context of generalized linear models. 	1 controls
the impact of the penalization, with higher values pushing more coefficients towards
zero. If 	1 ! 1, then Ǒ

ridge ! 0, so that the model finally consists only of the
intercept. With ridge regression no genuine variable selection is possible because
all coefficients stay in the model but are more or less shrunk towards zero. In the
context of the binary probit regression model, the loss function is typically chosen as
LF.D; �/ D � lnL.Dj�/ D � lnL.yjX; ˇ/ D � PN

iD1 lnˆ..2yi � 1/.˛ C Xi ˇ//.
Given this, the ridge regression approach towards binary dependent data resembles
a Bayesian estimation approach with multivariate normal prior in the sense that
the overall optimality function of the ridge regression has a functional form that is
proportional to the logarithm of the implied unnormalized posterior distribution.

A similar situation arises when considering the case with J D 1 and 
1 D 1,
implying the use of absolute values instead of squared ones. Tibshirani (1996) intro-
duced this least absolute shrinkage and selection operator (Lasso) to the linear regres-
sion problem, extended to the generalized linear model by Park and Hastie (2007).
Given this, the penalization function p.ˇ; 	/ becomes pLasso.ˇ; 	/ D 	1.ˇ0ˇ/

1
2 .

Increasing 	1 sets more coefficients to zero, causing the selection of fewer variables
with the selected being shrunk, and finally the number of nonzero coefficients de-
creases. The analytical solution of the Lasso due to the L1-norm penalty is more
complicated than with L2-norm.14 Again, similarity to a Bayesian setup with Laplace

14 Note that for handling the problem of (high) correlation among the variables, fused Lasso (Tibshirani
et al. 2005) or adaptive Lasso (Zou 2006) are discussed in the literature.
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prior distribution should be noted when considering the functional forms of the log-
arithm of the unnormalized posterior density and the overall loss function. Friedman
et al. (2010) show that both Lasso and ridge regression have their drawbacks and
advantages in the context of correlated variables and over-fitting. Therefore, Zou and
Hastie (2005) proposed the Elastic net approach incorporating to include the best of
both. This method uses both L1- and L2-penalties and thus is a convex combination
of the ridge and Lasso approach towards shrinkage. Friedman et al. (2010) extend
the Elastic net to generalized linear models where J D 2, 	1 D 1, and 	2 D 2.
After reparametrization the Elastic net manifests as

ˇElasticNetMod D argmin
ˇ

n
LF.D; �/ C 	.'jˇ0ˇj C .1 � '/jˇ0ˇj/ 1

2

o
; (12)

thereby using ' as control parameter for the weight given to the L1- and L2-
norm driven penalty with 0 < ' < 1 and 	 > 0 as weighting parameter given to
the penalty. The combination causes the Lasso penalization term to select among
the variables thereby putting all weight on the set of selected variables, whereas
the ridge term shrinks coefficients towards each other. Hence, Elastic net finds
a sparse model with typically high prediction accuracy. Framing this approach from
a Bayesian perspective implies that the penalization function is similar to the kernel
of the logarithm of a mixture distribution, where the two mixture components follow
normal and Laplace distributions, respectively.

As discussed, the Bayesian approach to handling missing values and variable
selection, as well as established methods, can set regression coefficients to zero if
appropriate. This means that variables are selected by the different approaches, but
without ranking the importance of these variables. However, if using standardized
variable values, the size of the regression coefficients can be used as a comfortable
and simpler way to rank the variables. This ensures that all variables are on the
same scale, which facilitates easy comparison of each variable. This approach is
recommended by Kyung et al. (2010) for handling different variables with different
measurements. Additionally, as discussed by Friedman et al. (2010), standardizing
the variables simplifies the analysis. When ranking variables based on the size of
the regression coefficients, it is essential to recognize that this ranking reflects the
effect sizes. However, it is also crucial to consider other concepts of variable impor-
tance, such as significance and permutation feature importance. These alternative
concepts can provide additional insights into the relationships between the variables
and the response variable and should be taken into account when interpreting the
results (Strobl et al. 2007). By considering multiple perspectives on variable impor-
tance, it becomes possible to gain a more nuanced understanding of the relationships
in the data.

After standardization we resort to various R packages. For Elastic net estimation
the glmnet-package (Friedman et al. 2010) provides many setting options for the
above-mentioned control and penalty parameters. As hyperparameter, we set both
' D 0:0 for ridge penalized estimation and ' D 1:0 for the Lasso penalty and
additionally ' D 0:5. The strength of penalty is controlled by the tuning parameter
	 which can also be set before estimation or via cross-validation which is most
widely used and implemented (Friedman et al. 2010). The k-fold cross-validation
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is used with k D 10 folds and a squared loss to use for cross-validation by mean
squared error. The shrinkage parameter 	 is picked up out of the sequence of possible
parameters as the within one standard error of the minimum mean cross-validated
error value, so that the most regularized model is given. After chosen the shrinkage
parameter the Elastic net is finally estimated with the set control and the cross-
validated shrinkage parameter for each m data set. Then, the presented results are
averaged over the M datasets.

However, the methods are typically discussed and evaluated under the assumption
of fully observed covariate data, so that missing values can be handled in a variety of
ways beyond the automated Bayesian approach. First, the data augmentation method
within Gibbs sampling is particularly well suited to dealing with missing data prob-
lems, since the inclusion of missing values in the parameter vector results in the
treatment of all other model quantities as if the data were fully observed. In addi-
tion, adding the data augmentation step to the Bayesian estimation routine allows
for the avoidance of combination rules (Tanner and Wong 1987). Second, to cope
with missing values in covariate data in the other above-mentioned approaches, we
make use of multiple imputation, see Rubin (1976), where we use the multiple im-
putation via chained equations (MICE) approach, following Buuren and Groothuis-
Oudshoorn (2011). Within the MICE approach, for each variable showing missing
values, a full conditional model is specified, where imputations are generated via
sampling from these full conditional distributions. Given an appropriate implemen-
tation scheme, the MICE algorithm repeatedly iterates over the sequence of assumed
full conditional distributions, generates imputations via sampling, and hence updates
the data. After an appropriately chosen burn-in phase, obtained draws can be used
to build an imputed data set that can be used in subsequent analyses. Repeating the
MICE algorithm M times provides M imputed data sets given those the shrinkage
estimation routines are performed for each of the imputed data sets.

Furthermore, the treatment of missing values leads to further considerations re-
garding the evaluation of the quality aspects of the different selection and estimation
procedures. The issues and challenges associated with multiple imputation appear
widely, in some cases, as convergence issues, imputations model mis-specification,
imputation of rare events, large amounts of missing data, challenges while report-
ing and interpreting or issues while pooling the results. Following Buuren (2018)
the general routine associated with MICE of imputing data, analyzing results and
pooling results across all M imputed datasets becomes difficult in variable selection
because the set of selected variables will differ more or less. In the literature of sta-
tistical and machine learning context exists no standard method to pool the results
and to combine the information provided by the M different model results. Even for
complete datasets, the likelihood-based variable selection methods reach to several
limitations (Miller 2019). In the literature different methods are discussed and for
a current overview see Du et al. (2022). Brand (1999) presents a two-step solution
which pools the results based on the pooled likelihood ratio p-values selecting in-
significant variables after applying stepwise regression to each M imputed dataset
and exclude variables from a combined supermodel if they have been selected at
least less than half of the runs. Otherwise, (Bayesian) model averaging can be re-
sorted to in order to account for the variability of the selected variables across all
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imputed data sets (Yang et al. 2005). Buuren (2018) distinguishes the literature into
three general approaches, referring to Wood et al. (2008) and Vergouwe et al. (2010):
the Majority approach counting how often a variable is selected (at least half of the
models applied to the imputed datasets), and the Stack approach, so that all imputed
datasets are stacked into a single dataset applying variable selection methods with
weights, and the Wald approach, especially for stepwise selection, pooling based on
the Wald statistics.

Considering the above-mentioned variable selection approaches while handling
missing data, we present the following routines. First, we present an average-based
approach (Average), where the final shrinkage estimator is obtained as the arithmetic
mean of the M estimators obtained for each imputed data set and the combined
variance estimator is given as the sum of within and between variance of the M
estimators obtained from the imputed data sets.15 Hence, this procedure is a rough
way of pooling estimates, but common in daily practice. As a second approach
(Majority), we set up an imputation based on the above-mentioned MICE settings,
where we perform variable selection techniques on each imputed dataset m resulting
to M different selection models with partly different selected variables. For pooling,
we extract the selected variables from each model and sum across the imputations to
identify variables that were selected in at least half of the imputed datasets. Then, we
estimate a probit model as supermodel with the mostly selected variables and pool
results according to the Rubin’s rules for generalized linear models. However, this
procedure implicitly involves a loss of information. Finally, following Buuren (2018)
we implement a pooling approach based on the Wald test (Wald) and expand the
Majority-approach by extracting the redundant variable by testing. After counting
who often a variable is selected in the M imputed datasets, we compare the variable
appearing in more than 50% of the M models and apply a Wald test to determine
which variable of the sorted counts.

4 Quality assessments of variable selection while handling missing
values

Value of data is in general linked to the ability to form informed decisions based
on the available data information. This value depends on the quality of statistical or
machine learning algorithms to use the available data information thoroughly. The
proposed Bayesian approach illustrates in the context of a binary regression model
the possibilities to integrate all available information into the analysis of factors
influencing the binary dependent variable. The proposed method covers the data
constellation with many although incompletely observed variables and relatively
few observations. The proposed algorithm learns in a machine learning like man-
ner the best combination of covariate variables explaining the dependent variable
thereby addressing the entailed problem to decide for a subset of variables and their
corresponding influence. To assess the quality in terms of the statistical efficiency
of the proposed method, we present a couple of statistical measures typically used

15 Typically rules for asymptotically normally distributed estimators are considered.
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to compare different statistical approaches. In the context of variable selection and
missing value imputation, the quality aspects refer to the indicators used to assess the
performance of different approaches in selecting the correct variables and handling
missing values. These quality aspects are typically related to the prediction perfor-
mance and accuracy of the model. This means that the quality of the approaches is
evaluated based on how well they can identify the correct variables while imputing
missing values. First, a common quality aspect is to evaluate the performance of
variable selection approaches including the accuracy of selection in both model and
variable, i.e. the ability of the approach to select the correct variables and exclude
irrelevant ones. The following criteria are used to assess the performance of the
different strategies within the different scenarios. For evaluation diagnostics of the
different approaches, we use the precision rate (PR), the recall rate (RR), and the
F-measure assessing the number of covariate variables (in-)correctly identified as
(false) true, i.e., whether the decision to incorporate them in the model is in line
with the DGP or not. A true positive (TP ) is a correctly selected positive, in our
case correctly selecting a variable which is indeed part of the assumed DGP. A true
negative (TN ) is a correctly non-selected non-important one. A false positive (FP )
is an incorrect selection that a variable is important, when in fact, was non-impor-
tant. Finally, false negative (FN ) is an incorrect selection that a variable is non-
important, when in fact is important. Based on these definitions the above-mentioned
performance measurements are defined as

PR D TP

TP C FP
; RR D TP

TP C FN
; and

F D 2 � PR � RR

PR C RR
D 2TP

2TP C FP C FN
:

(13)

Note that the F-measure is given as the weighted harmonic mean of the precision
and sensitivity. The F-measure balances hence both and is useful if the recall RR

has large values, but the precision PR has small ones.
In addition to the aforementioned considerations, the consistency of variable se-

lection across different iterations in the case of M imputed datasets represents a fur-
ther quality aspect in shrinkage estimation approaches. But as above mentioned the
calculus of counting the selected variables seems not to be a suitable quality aspect.
Due to space limitations only the average estimates over the M D 100 datasets are
reported, thn the biases are straightforward. Note that the number of estimators per
shrinkage approaches varies. For instance, the ridge regression providesM estimates
even for redundant variables because estimates are shrunk to zero. In contrast, the
Elastic net and the Lasso set the impact of variables to zero. The Bayesian spike-
and-slab approach, on the other hand, provides M estimates for all variables.
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Generally, the root mean square error (RMSE) over the results from theM datasets
is an quality indicator for the robustness not only in the complete cases, but also in
the handling of missing values. For a parameter O�p the RMSE is calculated

RMSE. O�p/ D
q
MSE. O�p/ D

s
E

��
ˇtrue

p � O�p

�2
�

D
vuut 1

D

DX
dD1

�
ˇtrue

p � O� .d/
p

�2

;

(14)

where MSE denotes the mean square error. In the context of ridge regression and
the Bayesian approach, the value of D is equal to M. However, in the case of the
Elastic net, Lasso, and stepwise regression, the value of D differs from M for each
variable. In these approaches, redundant variables are typically excluded from the
model, and in a few datasets, important variables are attenuated, thus D varies.

5 Simulation study

The following simulation experiments aim at a comparison of different strategies
to achieve variable selection within a binary probit regression framework. The sim-
ulations were implemented in R (R Core Team. 2020) and Julia (Bezanson et al.
2017) and compare the performance of the Bayesian variable selection approach –
hereafter referred to as Bayesian Spike-and-Slab (SnS) – with the stepwise regres-
sion (SR) strategy as implemented in the MASS R package (Venables and Ripley
2002)) and different variations of Elastic net (EN) like Lasso and ridge regression
as available within the R package glmnet (Friedman et al. 2010). For the shrink-
age estimators, we consider for the Elastic net setup different control parameter
' D 0:0 for ridge regression (EN.0), ' D 0:5 for a variation of Elastic net (EN.5),
and ' D 1:0 for Lasso (EN1.). Via cross-validation 	 is chosen such that the error
is within one standard error of the minimum shrinkage parameter (Friedman et al.
2010). Thereby, stepwise regression strategy depends on the choice of the selec-
tion criterion, where we opt for the Bayesian information criterion (BIC). For the
Bayesian estimation approach, estimates are each based on MCMC chains of length
40,000. After discarding the first 10,000 iterations as burn-in, inference is based on
the remaining 30,000 simulated draws from the joint posterior distribution. Con-
vergence is monitored via Geweke statistics, the Gelman-Rubin statistics, and the
effective sample size, see Geweke (1991); Gelman et al. (2023). The convergence
diagnostics indicate overall convergence.

The simulated data is generated to follow a probit regression model with N D
1000 and P D 10. The considered data generating process satisfies the following
conditions. Next to a constant, the covariate data X.p/ with 1; : : : ; 9 is generated
from standard normal distributions in each variable. Only the first five out of the
total ten parameters are set to a non-zero value by setting the indicator vector,
accordingly, including the intercept. The signs of the 10 parameters are chosen
to alternate. For the sake of variation, X1 to X4 are drawn from a multivariate
normal distribution with expectation � D .0; 0; 0; 0/0 and covariance vech.†/ D
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Table 2 Overview of the missing design of the experimental studies

Design Missing mechanism Total missing rate (%) Results

Ex 1 Pr.X2;i D missing/ D 0:2 35:991 Table 3

Pr.X3;i D missing/ D 0:2

Ex 2 Pr.X2;i D missing/ D 0:2 49:511 Table 4

Pr.X3;i D missing/ D 0:3

Pr.X4;i D missing/ D 0:1

Ex 3 X2;i D missing if 1=.1 C exp.�!2;i // 25.00 Table 5

w2;i D 0:2X2;i C �i and �i
i.i.d.� N.0; 1/

The experimental studies Ex 1 and Ex 2 can be characterized as missing completely at random (MCAR)
and experimental study Ex 3, where the missing probability depends on the variable itself as missing at
random (MAR). All simulation runs have been performed with 40,000 Gibbs iterations with the first 10,000
iterations as burn-in. 1 Average over M=100 datasets.

.1; 0:85; 0:65; 0:45; 1; 0:45; 0:35; 1; 0:25; 1/0 mimicking a situation with correlated
covariate data.16 Finally, a total of 100 simulated data sets are generated through
replication.

Based on this data generating process, we consider two different variations for
missingness in the covariate data: missing completely at random (MCAR) and miss-
ing at random (MAR). Simulating missing values as MCAR, we randomly set 20%
of the values in the covariates X2 and X3 to missing later named as experimental
study 1 (Ex 1) and we randomly set 20% in X2, 30% in X3 and 10% in X3 to
missing as experimental study 2 (Ex 2). For the MAR variation (Ex 3), we consider
a missing generating mechanism for X2;i where X2;i is missing if FU .Ui / > 0:75,
where FU .Ui / denotes the empirical distribution function of the random variable Ui

which is

Ui D 1

1 C expf!2;ig i D 1; : : : ; N;

with !2;i D 0:2X2;i C�i and �i being standard normally distributed. Thus, a missing
rate of 25% for X2 is generated. For further details on the described missing designs,
see Table 2.

To assess the different estimation strategies in case of missing values, we designed
a comprehensive simulation study which is split in different scenarios. First, we
consider a benchmark estimation without missing values labeled as before deletion
(BD), followed by estimation of complete cases (CC) only, and finally a scenario
with missing values (MIS), where missing values are handled either via multiple
imputation before estimation as for the shrinkage estimators or embedded within
the MCMC algorithm as for the Bayesian approach.

Regarding estimation results, we provide the true parameter values used in the
DGP, mean posterior medians and averaged estimates, respectively over the 100
replications obtained for the BD, CC, MIS scenarios. We report on both the regres-
sion coefficients and conditional variance parameters. Beside the averaged estimates,

16 Note that vech.�/ denotes the half-vectorization operator as defined in Lütkepohl (1996).
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Table 7 Model estimating the individual participation propensity for students in Wave 12 of SC 4 used to
derive adjustment factors for adjusted wave-specific cross-sectional and longitudinal weights. From left-to-
right the estimates for stepwise regression backwards, Elastic net with control mixing parameter ˛ D 1:0,
i.e., Lasso penalty, and Bayesian Variable selection (BVS) with spike-and-slab prior. Additionally, the BVS
estimates Ǒ are completed by the corresponding inclusion probabilities O�
Variables Stepwise regression Elastic net Bayesian SnS

Ǒ O�
Intercept –1.452*** –0.638 � 1.571 1.000

(0.096)

Migration Background –0.013*** –0.017 –0.037 0.227

Yes (0.035)

Student participated in –0.121*** –0.004 � 0.129 0.693

wave 6 (0.031)

Student participated in 0.218*** – 0.129 0.560

wave 8 (0.056)

Student participated in 0.371*** 0.069 0.343 1.000

wave 9 (0.053)

Student participated in 0.356*** 0.001 0.251 0.973

wave 10 (0.056)

Student participated in 1.278*** 1.159 1.214 1.000

wave 11 (0.036)

Reference categories are: Migration background no. To model individual participation, for the stepwise
regression the glm-function with a probit link provided in R (R Core Team. 2020) was used. ***, **, and
* denote significance at the 0.1%, 1%, and 5% level, respectively. Standard errors are given in parentheses.
BIC based backward selection was used, and only significant coefficients are reported. BIC for the final
model with selected variables: BIC D 9; 454:741. For Elastic net only non-negligible variables are
reported. The shrinkage parameter 	 is set to the largest value such that the error is 1 standard error of the
minimum: 	min D 0:015 obtained with the cv.glmnet-function in R. The bold results in the last two
columns show variables with an inclusion probability higher than 50%. The other two variables are not
selected by the Bayesian approach, but are reported for the sake of completeness. The prior setting for the
spike-and-slab were set to �2 D 1 � �1 D 0:015 and controlling the number of selecting variables with
w D 0:1.

simulation results are also evaluated in terms of the root mean square error (RMSE)
and the inclusion probabilities where possible. Therefore, it is important to bear in
mind that we assess the models’ performance on two levels. Firstly, the model selec-
tion, that is, regardless of the classification rule, how well do the different routines
predict the initial model parameter based on the DGP. And secondly, how exactly
the parameters underlying the data generating process are estimated.

The results of the different variations are presented in Tables 3 for experimental
study 1 (Ex 1), Table 4 for experimental study 2 (Ex 2), and Table 5 for experimental
study 3 (Ex 3) summarizing the three scenarios BD, CC, and MIS with results as
average estimates and root mean square errors (RMSEs). Looking on Ex 1, the
tables differ only in the results of estimation and pooling of the treatment of missing
values, which are examined under quality aspects. As benchmark we report results
for a simple probit model covering all important variables .˛; ˇ1; : : : ; ˇ4/ for the
three different experimental studies. In the BD scenario we find overall unbiased
results for all parameters, therefore we can assume that the considered routines
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are implemented correctly. The different pooling approaches produce very different
results in terms of accuracy and variation in the estimation results. It is surprising that
the results of simple averaging come to significant improvements in the estimation
results compared to the before deletion values, which is set as a benchmark for
the three pooling strategies. It seems that the majority method tends to over-fit,
as the estimation results are clearly too unbiased. This can be seen in all three
experimental studies. Compared to our Bayesian spike-and-slab approach, which
also treats missing values, there are sometimes large differences in the estimation
results compared to the respective pooling approaches. However, the average and
Wald methods show comparable patterns in that the RMSEs are better compared to
the complete cases, whereas they are in part more distorted compared to the before
deletion results. When data sets with many of missing values in several variables
are available, the Bayesian spike-and-slab method shows its strengths. The RMSE
increases slightly for all methods in the CC scenario, whereas the absolute estimation
bias decrease for the three Elastic net methods. The bias of the estimators increases
for the stepwise regression method and for the Spike-and-Slab approach. In contrast,
imputation shows that performance decreases for all five approaches measured with
the RSME. With the Bayesian Spike-and-Slab, the inclusion probability for X2

increases again, so that the variables are selected with a very high probability, but
the bias increases so that the RSME is high compared to the stepwise regression.
Interestingly, all three Elastic net approaches do not show altogether large deviations
in the imputation scenario due to the combining rules. Thus, the results of stepwise
regression and Bayesian Spike-and-Slab are quite similar. The experimental study
2 shows similar results, but due to the higher missing dropout, more biased results
are to be expected. This shows the strength of our Bayesian approach, which does
not only treat the missing values in the run-up to selection and estimation, making
the estimation and selection results more precise and the selection of variables more
correct in terms of precision, recall and F-measure. Experimental Study 3 shows
less precise results in estimation and selection due to the MAR failure of data for all
presented selection strategies, however, the Bayesian spike-and-slab approach can
score here by having precision ahead of the other methods.

However, it must be noted that the estimation accuracy is more accurate with
stepwise regression (SR) and Bayesian Spike-and-Slab (SnS), and thus the bias is
small and the RMSE is half towards the Elastic net (EN) approaches. Table 6 shows
the results of the calculations of Accuracy: precision, recall, and F-measure for
before deletion, complete case and imputation obtained with Elastic net, stepwise
regression, and Bayesian Spike-and-Slab. Looking on the important measurement,
e.g., F-measure, shows in principle the same result. Accuracy, as measured for
ridge regression (EN.00), always yields the same results because all variables are
always included in the model and no selection is made, only shrinkage. The spike-
and-slab is almost among the top performers in terms of F-measure. This shows
that the ridge approach does not perform selection in the strict sense, but merely
shrinks the values close to zero. Thus, the values for the ridge results never reach
the accuracy of the other estimation methods. On the other hand, it is striking
that the accuracy values of the Lasso estimates do not approach those of stepwise
regression or our Bayesian approach. However, stepwise regression also shows its
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strengths in correctly selecting appropriate variables that were involved in the data
generating process. In general, the accuracy decreases when estimating the complete
cases compared to the before deletion values and then increases when dealing with
missing values, as intended. Here, it is also shown that the average and the Wald
method of pooling yields comparable results to the Bayesian approach and provides
the intended accuracy gain of handling missing values compared to the complete
cases.

6 Empirical illustration

In order to illustrate the usefulness of the suggested Bayesian spike and slab ap-
proach in empirical analysis, we provide exemplary applications using the scientific
data use file of the German National Educational Panel Study (NEPS), Starting Co-
hort Grade 9, see NEPS (2021) and Blossfeld and Roßbach (2019). For this purpose,
a random sample of schools, stratified by school type, was drawn throughout Ger-
many. Within the schools, all students of two randomly selected ninth grades were
invited to participate in the survey. The technical details on weighting are reported
for each wave, see e.g., Bergrab (2020). Here, variable selection finds its applica-
tion in selecting the appropriate variables that describe a student’s probability of
participation in a specific wave, where we analyze wave twelve here. From the set
of available covariate variables (P D 16), only a few have to be selected in order to
determine the participation probabilities and subsequently prepare suitable weights
for further analyses. In the starting cohort considered here all students, regardless
of whether in vocational education or academic track, willing to participate in the
NEPS are followed up over time. The students entering the academic track usually
remain within their school context. In contrast, students entering the vocational ed-
ucation leave school for a vocational training. In wave twelve all students left their
school context and are surveyed individually. To account for the wave-specific par-
ticipation decision of students’ response propensity re-weighting is used to provide
corresponding weights. To model binary participation decisions a model with probit
link function is used for all three variable selection methods: backward selection,
Elastic net, Bayesian spike-and-slab. By wave twelve, the panel cohort has reduced
to n D 7; 911 students in the age of mean 26.76 (standard deviation 0.73). For our
analysis, we included all students and p D 16 variables. In contrast to the weighting
report, all variables were standardized before selection to show comparability with
the above-mentioned experimental studies.

Table 7 summarizes the results for stepwise regression, Elastic net, and Bayesian
spike-and-slab (Bayesian SnS) approach. To model individual participation, for the
stepwise regression the glm-function with a probit link provided in R (R Core
Team. 2020) was used. BIC based backward selection was used and only significant
coefficients are reported. For Elastic net only non-negligible variables are reported.
The dash indicates that this variable was not included in the estimation model. The
shrinkage parameter of Elastic net 	 is set to the largest value such that the error is 1
standard error of the minimum: 	min D 0:015 obtained with the cv.glmnet-function
in R. The Elastic net represents a Lasso selection with a control parameter of 1.0.
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For the results of our Bayesian approach both, the estimates Ǒ as median of posterior
and the corresponding marginal posterior inclusion probabilities O� , are presented.
The bold results in the last two columns show variables with an inclusion probability
higher than 50%, where the other results are listed for the sake of completeness.
The prior setting for the spike-and-slab were set to �2 D 1 � �1 D 0:015 and
the shrinkage w D 0:015. The posterior estimates are based on MCMC chains of
length 20,000. After discarding the first 5,000 iterations as burn-in, inference is
based on the remaining 15,000 simulated draws from the joint posterior distribution.
The convergence diagnostics indicate overall convergence.

Table 7 show less differences among the three approaches. Participation in the
last waves is selected according to all three approaches, except for participation in
wave 6, which is not selected by Elastic net. The total estimate and the selection of
migration background vary across the three models. The most parsimonious model is
determined by Elastic net and our spike-and-slab approach, which includes a total of
six variables. In contrast, stepwise regression only includes one additional variable
in the model. The selection of stepwise regression shows overall significant results,
whereas the Bayesian spike-and-slab approach extracts migration background as
a redundant variable with an inclusion probability of O� D 0:227. The remaining
inclusion probabilities indicate a markedly distinct decision to include. The model
based on elastic net does not consider participation in Wave 6. However, it includes
all other variables that are also selected by stepwise regression and the Bayesian
approach. An analysis of the inclusion probabilities reveals that, in addition to the
intercept, positive participation in the surveys in waves 9, 10, and 11 also strongly
influences the probability of participating in wave 12. The inclusion probabilities are
1 or nearly 1 for all four variables. This demonstrates that stepwise regression and
the Bayesian approach yield nearly identical outcomes, as the most crucial variables
are selected in a comparable sequence. The advantage of the Bayesian approach
is that, in addition to the assessment based on the significance level in stepwise
regression, the inclusion probability offers a more direct approach to the evaluation.

It is important to recognize that the Bayesian approach is susceptible to the
influence of prior beliefs, which requires further investigation. The impact of the
variance priors on the values of ˇ and � is negligible, as well as the starting values.
However, when holding �2 D 1, the exploration of the gradual adjustment of the
hyperparameter �1 from 0.050 to 0.200 in steps of 0.0.025 reveals sensitive changes.
The results of this can be found in Table 8. The Bayesian spike-and-slab algorithm is
sensitive to the specific choice of spike, i.e., �2; in detail, climbing up the increments
on �2 keeps the variables participation in the last wave and migration background in
the model with constant high inclusion probabilities. Furthermore, the estimates of
the latter two variables alternate, but the estimate for participation in the previous
wave is extremely constant. The other selected variables vanish out gradually. It
is noteworthy that a similar outcome is achieved when the shrinkage parameter of
Elastic net, defined as 	min D 0:015, is employed in conjunction with the Bayesian
spike-and-slab approach.

As previously discussed, these methods will set regression coefficients to zero,
if necessary. The three approaches compared provide results that are essentially
similar, although differences in depth are apparent. The results offer an intriguing

K



M. Bergrab, C. Aßmann

perspective on the Bayesian approach to handling missing values, as well as variable
selection and its performance relative to established methods for variable selection.
Further investigations regarding the weights calculated with the models were not
carried out.

7 Conclusion

This paper provides assessment of different strategies, i.e., applying statistical as
well as machine learning algorithms, for variable selection in the context of binary
regression models with missing values in the covariate variables. We show how our
algorithmic strategies can be combined and how they can accommodate inference
over the prior inclusion probability and which prior settings affect the posterior
estimates. To handle missing values within the Bayesian estimation paradigm, the
device of data augmentation can be used. The discussion of the various strategies
highlights similarities and differences between shrinkage estimators and Bayesian
estimation approaches. The choice of hyperparameters is in all methods a sensitive
issue. The tuning parameter for using shrinkage estimators is typically estimated
by cross-validation, whereas the hyperparameters in Bayesian estimation are fixed
a priori.

From a methodological view, the conceptual strengths of the Bayesian spike-
and-slab model and the ridge regression are revealed in the sense that they do not
exhaust predictive information in trying to determine which variables have exactly
zero effect. Any attempt to select variables after the fact, as is done in Lasso or
Elastic net, does not lead to the loss of information to worse predictions. Therefore,
in the Bayesian setting it is important to understand that the set of selected variables
that have no predictive effect has a probability of (approximately) zero. Whereas
all variables that have an inclusion probability that is above a certain threshold can
be considered truly predictive. The evidence provided in the empirical illustration
suggests that for the purposes of weighting in the N > P setting, all strategies work
well, but with small advantages of the Bayesian approach, especially when missing
values occur in the covariate data. As discussed in Du et al. (2022) our Bayesian ap-
proach, simultaneously imputing the missing values, selecting and estimating jointly
the model parameters, is time-consuming and computationally intensive not only for
a large amount of missingness. Therefore, we show that dealing with missing values
in the context of statistics and machine learning requires a convincing strategy for
imputing the missing values. Not considering the missing data pattern as well as the
averaging of imputed estimation results without taking pooling rules into account
leads to a loss of quality, which can be seen e.g., in biased estimation results or lower
variances of the estimators. Hence, case-deletion or complete-case strategies are fre-
quently used when individuals are excluded from the analysis, if they are missing
any of the variables or items. whereas the quality of the data analysis suffers as a re-
sult. As shown, non-Bayesian variable selection approaches cannot be easily applied
within the framework of multiple imputation. The difficulty lies in how to combine
the selection results across the multiply imputed data sets, because non-Bayesian
variable selection approaches would commonly identify different redundant coeffi-
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cients for the various imputed data sets and thus will lead to different numbers of
coefficients to compare. In conclusion, we present a strategy clearly combining esti-
mation, shrinkage and handling of missing values. The Bayesian holistic method for
combining variable selection and imputation of missing values in covariates offers
several advantages over traditional methods. By treating missing values as parame-
ters and assigning priors to them, this approach provides a more accurate and reliable
estimation of regression coefficients. While it may appear to users that the Elastic
net and stepwise regression approaches are assumption-free, there are nevertheless
assumptions involved regarding the setting of the control and shrinkage parameters,
which are set via the priors in the Bayesian approach. Likewise, the pooling step
based on chained equation is non-trivial, while in the Bayesian approach this can be
implemented as an additional step in the iterative Gibbs sampler.

There are several approaches in the literature for imputing missing values and
selecting variables. Note that Heymans et al. (2007) suggest a boot-strapped variable
selection under multiple imputation to overcome the pitfalls of applying the com-
bining rules to stepwise regression and Panken and Heymans (2022) provide similar
frameworks for the logistic setup based on the majority based approach dividing the
imputed datasets in test and train data. Chen and Wang (2013) extend the Lasso to
multiple imputation with grouping the imputed data, combining multiple imputation
and random Lasso see Liu et al. (2016), and combining Lasso with the Expecta-
tion-Maximization algorithm (Sabbe et al. 2013). The presented Bayesian holistic
method highlights the potential of combining imputation with advanced techniques
with accuracy and reliability in statistical results and offers promising avenues for
future research.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11943-
024-00345-1) contains supplementary material, which is available to authorized users.

Acknowledgements This paper utilizes data from the German National Educational Panel Study (NEPS),
as detailed in Blossfeld and Roßbach (2019). The NEPS is conducted by the Leibniz Institute for Educa-
tional Trajectories (LIfBi, Germany) in collaboration with a nationwide network. Additionally, we would
like to express our gratitude to the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences
and Humanities for providing the necessary system resources for the simulation studies.

Funding Open Access funding enabled and organized by Projekt DEAL.

Conflicts of interest The authors declare to have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

K

https://doi.org/10.1007/s11943-024-00345-1
https://doi.org/10.1007/s11943-024-00345-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


M. Bergrab, C. Aßmann

References

Albert JH (1992) Bayesian estimation of normal ogive item response curves using Gibbs sampling. J Educ
Stat 17(3):251–269. https://doi.org/10.2307/1165149

Albert JH, Chib S (1993) Bayesian analysis of binary and polychotomous response data. J Am Stat Assoc
88(422):669–679. https://doi.org/10.1080/01621459.1993.10476321

Aßmann C (2012) Determinants and costs of current account reversals under heterogeneity and serial
correlation. Appl Econ 44(13):1685–1700. https://doi.org/10.1080/00036846.2011.554370

Aßmann C, Boysen-Hogrefe J (2011) A Bayesian approach to model-based clustering for binary panel
probit models. Comput Stat Data Anal 55(1):261–279. https://doi.org/10.1016/j.csda.2010.04.016

Aßmann C, Gaasch JC, Stingl D (2023) A Bayesian approach towards missing covariate data in multilevel
latent regression models. Psychometrika 88:1495–1528. https://doi.org/10.1007/s11336-022-09888-
0

Aßmann C, Preising M (2020) Bayesian estimation and model comparison for linear dynamic panel models
with missing values. Aust N Z J Stat 62(4):536–557. https://doi.org/10.1111/anzs.12316

Bergrab M (2020) Samples, weights, and nonresponse: The sample of starting cohort 4 of the national
educational panel study (wave 12) (tech. rep.). Leibniz Institute for Eduational Trajectories, Na-
tional Educational Panel Study, Bamberg (https://www.neps-data.de/Portals/0/NEPS/Datenzentrum/
Forschungsdaten/SC4/12-0-0/SC4_12-0-0_W.pdf)

Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a fresh approach to numerical computing.
SIAM Rev 59(1):65–98. https://doi.org/10.1137/141000671

Bhattacharya A, Chakraborty A, Mallick BK (2016) Fast sampling with gaussian scale mixture priors in
high-dimensional regression. Biometrika 103(4):985–991. https://doi.org/10.1093/biomet/asw042

Biswas N, Mackey L, Meng XL (2022) Scalable spike-and-slab. In: Chaudhuri K, Jegelka S, Song L,
Szepesvari C, Niu G, Sabato S (eds) Proceedings of the 39th international conference on machine
learning. PMLR, pp 2021–2040 (https://proceedings.mlr.press/v162/biswas22a.html)

Blossfeld HP, Roßbach HG (eds) (2019) Education as a lifelong process. Springer https://doi.org/10.1007/
978-3-658-23162-0

Bottolo L, Richardson S (2010) Evolutionary stochastic search for Bayesian model exploration. Bayesian
Anal https://doi.org/10.1214/10-BA523

Brand J (1999) Development, implementation and evaluation of multiple imputation strategies for the
statistical analysis of incomplete data sets. TNO Prevention; Health (Erasmus University Rotterdam)
(ph.d. thesis)

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman &
Hall CRC

Burgette LF, Reiter JP (2010) Multiple imputation for missing data via sequential regression trees. Epi-
demiol Rev 172(9):1070–1076. https://doi.org/10.1093/aje/kwq260

van Buuren S (2018) Flexible imputation of missing data, second edition. Chapman Hall CRC https://doi.
org/10.1201/9780429492259

van Buuren S, Groothuis-Oudshoorn K (2011) Mice: Multivariate imputation by chained equations in R.
J Stat Soft 45(3):1–67. https://doi.org/10.18637/jss.v045.i03

Carvalho CM, Polson NG, Scott JG (2010) The horseshoe estimator for sparse signals. Biometrika
97(2):465–480. https://doi.org/10.1093/biomet/asq017

Chen Q, Wang S (2013) Variable selection for multiply-imputed data with application to dioxin exposure
study. Statist Med 32(21):3646–3659. https://doi.org/10.1002/sim.5783

Clyde M, George EI (2004) Model uncertainty. Stat Sci 19(1):81–94.
https://doi.org/10.1214/088342304000000035

Dobra A (2009) Variable selection and dependency networks for genomewide data. Biostatistics
10(4):621–639.https://doi.org/10.1093/biostatistics/kxp018

Doove LL, van Buuren S, Dusseldorp E (2014) Recursive partitioning for missing data imputation in
the presence of interaction effects. Comput Stat Data Anal 72:92–104. https://doi.org/10.1016/j.csda.
2013.10.025

Du J, Boss J, Han P, Beesley LJ, Kleinsasser M, Goutman SA, Batterman S, Feldman EL, Mukherjee B
(2022) Variable selection with multiply-imputed datasets: Choosing between stacked and grouped
methods. J Comput Graph Stat 31(4):1063–1075. https://doi.org/10.1080/10618600.2022.2035739

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate
descent. J Stat Soft 33(1):1–22. https://doi.org/10.18637/jss.v033.i01

Frühwirth-Schnatter S (2010) Finite mixture and markov switching models. Springer

K

https://doi.org/10.2307/1165149
https://doi.org/10.1080/01621459.1993.10476321
https://doi.org/10.1080/00036846.2011.554370
https://doi.org/10.1016/j.csda.2010.04.016
https://doi.org/10.1007/s11336-022-09888-0
https://doi.org/10.1007/s11336-022-09888-0
https://doi.org/10.1111/anzs.12316
https://www.neps-data.de/Portals/0/NEPS/Datenzentrum/Forschungsdaten/SC4/12-0-0/SC4_12-0-0_W.pdf
https://www.neps-data.de/Portals/0/NEPS/Datenzentrum/Forschungsdaten/SC4/12-0-0/SC4_12-0-0_W.pdf
https://doi.org/10.1137/141000671
https://doi.org/10.1093/biomet/asw042
https://proceedings.mlr.press/v162/biswas22a.html
https://doi.org/10.1007/978-3-658-23162-0
https://doi.org/10.1007/978-3-658-23162-0
https://doi.org/10.1214/10-BA523
https://doi.org/10.1093/aje/kwq260
https://doi.org/10.1201/9780429492259
https://doi.org/10.1201/9780429492259
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1093/biomet/asq017
https://doi.org/10.1002/sim.5783
https://doi.org/10.1214/088342304000000035
https://doi.org/10.1093/biostatistics/kxp018
https://doi.org/10.1016/j.csda.2013.10.025
https://doi.org/10.1016/j.csda.2013.10.025
https://doi.org/10.1080/10618600.2022.2035739
https://doi.org/10.18637/jss.v033.i01


Automated Bayesian variable selection methods for binary regression models with missing...

Frühwirth-Schnatter S, Kaufmann S (2008) Model-based clustering of multiple time series. J Bus Econ
Stat 26(1):78–89. https://doi.org/10.1198/073500107000000106

Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat
Assoc 85(410):398–409. https://doi.org/10.1080/01621459.1990.10476213

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2023) Bayesian data analysis. Chap-
man Hall, CRC https://doi.org/10.1201/b16018

Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the Bayesian restoration of
images. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, vol 6, pp
721–741. https://doi.org/10.1109/tpami.1984.4767596

George EI (2000) The variable selection problem. J Am Stat Assoc 95(452):1304–1308. https://doi.org/10.
1080/01621459.2000.10474336

George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88(423):881–889.
https://doi.org/10.1080/01621459.1993.10476353

George EI, McCulloch RE (1997) Approaches to Bayesian variable selection. Stat Sinica 7(2):339–373
Geweke J (1991) Evaluating the accuracy of sampling-based approaches to the calculation of posterior

moments. Staff report (Federal Reserve Bank of Minneapolis. Research Department) 148. https://doi.
org/10.21034/sr.148

Gneiting T (2011) Making and evaluating point forecasts. J Am Stat Assoc 106(494):746–762. https://doi.
org/10.1198/jasa.2011.r10138

Hans C, Dobra A, West M (2007) Shotgun stochastic search for ”large p” regression. J Am Stat Assoc
102(478):507–516. https://doi.org/10.1198/016214507000000121

Hansen BE (2007) Least squares model averaging. Econometrica 75(4):1175–1189. https://doi.org/10.
1111/j.1468-0262.2007.00785.x

Heymans MW, van Buuren S, Knol DL, van Mechelen W, de Vet HC (2007) Variable selection under
multiple imputation using the bootstrap in a prognostic study. BMC Med Res Methodol. https://doi.
org/10.1186/1471-2288-7-33

Hoerl AE, Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal problems. Techno-
metrics 12(1):55–67. https://doi.org/10.1080/00401706.1970.10488634

Ishwaran H, Rao JS (2005) Spike and slab variable selection: Frequentist and Bayesian strategies. Ann Stat
33(2):730–773. https://doi.org/10.1214/009053604000001147

Jackman S (2009) Bayesian analysis for the social sciences. Wiley
Kohn R, Smith M, Chan D (2001) Nonparametric regression using linear combinations of basis functions.

Stat Comput 11(4):313–322. https://doi.org/10.1023/a:1011916902934
Korobilis D, Shimizu K (2022) Bayesian approaches to shrinkage and sparse estimation. Found Trends

Econom 11(4):230–354. https://doi.org/10.1561/0800000041
Kyung M, Gill J, Ghosh M, Casella G (2010) Penalized regression, standard errors, and bayesian lassos.

Bayesian Anal 5(2):369–411. https://doi.org/10.1214/10-ba607
Lamnisos D, Griffin JE, Steel MFJ (2009) Transdimensional sampling algorithms for Bayesian variable

selection in classification problems with many more variables than observations. J Comput Graph
Stat 18(3):592–612. https://doi.org/10.1198/jcgs.2009.08027

Lee KE, Sha N, Dougherty ER, Vannucci M, Mallick BK (2003) Gene selection: a Bayesian variable
selection approach. Bioinformatics 19(1):90–97. https://doi.org/10.1093/bioinformatics/19.1.90

Liu Y, Wang Y, Feng Y, Wall MM (2016) Variable selection and prediction with incomplete high-dimen-
sional data. Ann Appl Stat 10(1):418–450. https://doi.org/10.1214/15-AOAS899

Lütkepohl H (1996) Handbook of matrices. Wiley
Mallows CL (1973) Some comments on cp. Technometrics 15(4):661–675. https://doi.org/10.1080/

00401706.1973.10489103
Marill T, Green D (1963) On the effectiveness of receptors in recognition systems. IEEE Trans Inf Theory

9(1):11–17. https://doi.org/10.1109/tit.1963.1057810
Miller A (2019) Subset selection in regression. Taylor & Francis
Mitchell TJ, Beauchamp JJ (1988) Bayesian variable selection in linear regression. J Am Stat Assoc

83(404):1023–1032. https://doi.org/10.1080/01621459.1988.10478694
Mood AM, Graybill FA, Boes DC (1974) Introduction to the theory of statistics. McGraw-Hill
NEPS, National Educational Panel Study (2021) Neps-startkohorte 4: Klasse 9 (sc4 12.0.0) https://doi.org/

10.5157/NEPS:SC4:12.0.0
O’Hara RB, Sillanpää MJ (2009) A review of Bayesian variable selection methods: What, how and which.

Bayesian Anal 4(1):85–117. https://doi.org/10.1214/09-BA403

K

https://doi.org/10.1198/073500107000000106
https://doi.org/10.1080/01621459.1990.10476213
https://doi.org/10.1201/b16018
https://doi.org/10.1109/tpami.1984.4767596
https://doi.org/10.1080/01621459.2000.10474336
https://doi.org/10.1080/01621459.2000.10474336
https://doi.org/10.1080/01621459.1993.10476353
https://doi.org/10.21034/sr.148
https://doi.org/10.21034/sr.148
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1198/016214507000000121
https://doi.org/10.1111/j.1468-0262.2007.00785.x
https://doi.org/10.1111/j.1468-0262.2007.00785.x
https://doi.org/10.1186/1471-2288-7-33
https://doi.org/10.1186/1471-2288-7-33
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1214/009053604000001147
https://doi.org/10.1023/a:1011916902934
https://doi.org/10.1561/0800000041
https://doi.org/10.1214/10-ba607
https://doi.org/10.1198/jcgs.2009.08027
https://doi.org/10.1093/bioinformatics/19.1.90
https://doi.org/10.1214/15-AOAS899
https://doi.org/10.1080/00401706.1973.10489103
https://doi.org/10.1080/00401706.1973.10489103
https://doi.org/10.1109/tit.1963.1057810
https://doi.org/10.1080/01621459.1988.10478694
https://doi.org/10.5157/NEPS:SC4:12.0.0
https://doi.org/10.5157/NEPS:SC4:12.0.0
https://doi.org/10.1214/09-BA403


M. Bergrab, C. Aßmann

Panken AM, Heymans MW (2022) A simple pooling method for variable selection in multiply imputed
datasets outperformed complex methods. BMC Med Res Methodol. https://doi.org/10.1186/s12874-
022-01693-8

Park MY, Hastie T (2007) L1-regularization path algorithm for generalized linear models. J Royal Stat Soc
Ser B (statistical Methodol 69(4):659–677. https://doi.org/10.1111/j.1467-9868.2007.00607.x

R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna (https://www.R-project.org/)

Raftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25:111–163. https://doi.
org/10.2307/271063
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