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Abstract

Purpose of review This review aims to provide a summary of the pathophysiology, clini-
cal presentation and management options for facioscapulohumeral dystrophy (FSHD).
We discuss current management options and delve into updates about developments in
targeted therapy.

Recent findings New breakthroughs in FSHD research have led to a further understanding
of aberrant DUX4 protein expression in the underlying pathophysiology of FSHD. This has
paved the way for the development of targeted therapies aimed at targeting DUX4 expres-
sion or its downstream effects. Therapeutic strategies for FSHD primarily target DUX4
through three main avenues: small molecules, antisense oligonucleotide therapeutics and
CRISPR-based approaches. This review discusses these strategies further. Presently, all
prospective targeted therapies are in the pre-clinical phase, except for losmapimod, which
is currently undergoing a phase 3 clinical trial.

Summary Given the absence of approved disease-modifying treatments for FSHD, the pri-
mary approach for management currently involves multidisciplinary supportive measures
which are limited. Recent developments in the form of targeted therapies and strategies
for the definitive treatment of FSHD indicate a promising era.
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Introduction

Facioscapulohumeral dystrophy (FSHD) is a geneti-
cally acquired condition that is characterised by
gradually progressive asymmetrical muscle weakness
of the face, scapular region, upper limbs (humeral)
and distal lower limbs (peroneal) [1]. It is the third
most common adult-onset muscular dystrophy, and
the estimated prevalence of FSHD is approximately 4
to 12 cases per 100,000 individuals [2-4]. At present,

Pathogenesis

there is no disease-modifying treatment for FSHD.
However, ongoing research in epigenetics has led to
a deeper understanding of the underlying pathogen-
esis of FSHD, spurring the identification of potential
therapeutic targets. In this article, we discuss the patho-
genesis, clinical features and diagnosis of FSHD and
review current management strategies as well as poten-
tial therapeutics for patients with FSHD.

FSHD can be classified into 2 subtypes: FSHD1 and FSHD2. FSHD1 accounts
for 95% of cases, whereas FSHD2 makes up the remaining 5% [2]. Both sub-
types are clinically indistinguishable and arise due to inappropriate expres-
sion of the double homeobox protein 4 (DUX4) gene in the skeletal muscles
[5°¢]. DUX4 encodes for a transcription factor that is involved in the regula-
tion of genes for pre- and post-implantation embryogenesis [6°]. It is typically
epigenetically suppressed in most somatic cells, except in the thymus and
testis [7, 8]. When expressed in skeletal muscles, it can induce downstream
effects like cell death, oxidative stress, inflammation and disrupted myogen-
esis, leading to the development of FSHD |[6e, 9, 10].

The DUX4 gene lies within a macrosatellite repeat array that comprises
3.3 kb D4Z4 repeat units, in the subtelomeric region of chromosome 4 at
4935 [8, 11, 12]. In healthy individuals, this array is made up of 11-100 D474
repeat units, which are normally highly methylated and exist as euchroma-
tin in most cells. In FSHD1, this array is contracted to 1-10 repeat units [8,
13-15]. Contraction of D4Z4 repeat arrays leads to hypomethylation and
chromatin relaxation, facilitating inappropriate DUX4 expression [5®e, 16].
Additionally, expression of DUX4 requires polyadenylation of the DUX4 tran-
script, which only occurs with the 4qA but not the 4gB haplotype. Hence,
FSHD is manifested in individuals with D474 repeat contractions of 1-10
units on the permissive 4qA haplotype.

FSHD1 is inherited via an autosomal dominant pattern [17], although
10 to 30% of FSHD1 cases exist due to sporadic occurrences, from de novo
pathogenic contraction of the D474 locus [18]. In FSHD1, there is an inverse
correlation between the size of the D474 repeat and the severity of the dis-
ease. Patients with 1-3 repeat units are most severely affected and have an
earlier disease onset, compared to those with 8-10 repeat units who appear
to have a milder disease which is later in onset [19, 20].

Patients with FSHD2 exhibit contraction independent, DNA hypometh-
ylation on both copies of D474, due to pathogenic variants in chromatin-
modifying genes [16, 21]. The inheritance of FSHD?2 is digenic, requiring
the inheritance of dysfunctional chromatin-modifying genes and a moderate
repeat contraction of D474 repeat number between 8 and 30 on the 4qA
permissive haplotype [21]. Eighty-five percent of patients with FSHD2 carry
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a variant in the SMCHD1 (structural maintenance of chromosomes flexible
hinge domain containing 1) gene on chromosome 18 [17, 21]. SMCHD1
serves as an epigenetic repressor that binds to the D474 repeat to maintain
arepressed chromatin state in somatic cells via methylation, and its reduced
activity in FSHD2 leads to hypomethylation of the D474 array, enabling the
aberrant expression of the DUX4 protein [22-24]. Variants in DNMT3B (de
novo DNA methyltransferase gene) and LRIF1 genes similarly lead to chroma-
tin relaxation and inappropriate DUX4 expression [15, 25, 26], manifesting
as FSHD.

Clinical characteristics

Muscle weakness

FSHD is characterised by progressive muscle weakness that develops in a
rostro-caudal pattern, involving the face, scapular stabilisers, upper arm,
abdomen, lower leg (peroneal muscles) and hip girdle [5*¢]. In contrast to
other dystrophies, FSHD often has asymmetric muscle involvement [27].
The disease onset varies from infancy to middle age, although most affected
patients develop symptoms by the second decade [28]. The clinical progres-
sion is usually slow, and patients typically have a normal or near-normal
lifespan. Disease severity is highly variable amongst individuals, and in gen-
eral, patients who develop symptoms at an earlier onset have more severe dis-
ease [1, 27, 29]. In the long run, approximately 20% of the patients become
wheelchair-dependent [30].

Weakness of the facial muscles, especially the orbicularis oculi and orbicu-
laris oris, develops in the initial stages [27, 31]. This results in difficulties with
closing the eyes tightly, smiling, pursing the lips and whistling [1]. In FSHD,
facial weakness can be absent or mild early in the course of the disease, and
may remain mild for many years [1].

Scapular winging is commonly noted early in the course of the disease.
During abduction of the arms, there is characteristic upward and lateral riding
of the scapula, due to preferential weakness of the lower trapezius muscles
[28]. The deltoid muscles typically remain largely unaffected until the later
stages of the disease. In contrast, the pectoral muscles, biceps and triceps
are often affected early on, resulting in marked weakness and atrophy of the
upper arm [32]. The forearm muscles are commonly spared, giving rise to
the appearance of a “Popeye-arm” appearance [33]. In individuals with more
severe disease, distal upper extremity weakness can be present, affecting the
wrist and finger extensors as well [33].

In the abdomen, the lower abdominal muscles are selectively involved,
resulting in a protuberant abdomen, exaggerated lumbar lordosis and a posi-
tive Beevor's sign [34, 35]. A positive Beevor’s sign is characterised by upward
movement of the umbilicus upon flexion of the neck in a supine position,
and it occurs due to lower abdominal muscle weakness [34]. It has been
extensively described in patients with FSHD and has a sensitivity and specific-
ity of approximately 90% [36].
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Lower limb weakness manifests with peroneal muscle weakness predomi-
nantly, leading to foot drop [37]. In some patients, weakness of the hip girdle
muscles may be present as well.

Other systemic manifestations

Beyond skeletal muscle manifestations, FSHD can also lead to the involve-
ment of other systems, causing respiratory dysfunction, retinal vasculopathy,
hearing loss and pain.

Respiratory insufficiency in FSHD is predominantly related to weakness
of the expiratory abdominal muscles, diaphragmatic dysfunction and chest
wall deformities [38, 39]. In 10 to 39% of the FSHD population, a restrictive
ventilatory pattern can be seen on spirometry testing [39, 40]. However, only
approximately 1 to 3% of patients require respiratory support with chronic
non-invasive ventilation [38, 41].

Retinal vasculopathy can occur in up to 50 to 75% of patients with FSHD,
resulting in increased vascular tortuosity, telangiectatic blood vessels and
microaneurysms [42]. The changes are usually bilateral and subtle and can
only be demonstrated via fluorescein angiography [43]. While vision is gen-
erally unaffected in FSHD, a small percentage of patients may experience a
Coats-like syndrome [43]. This syndrome occurs due to retinal telangiectasia
and exudative retinopathy that can progress to retinal detachment, causing
visual loss [44]. Sensorineural hearing loss may also be present in individuals
with FSHD and is usually gradual and progressive [45]. The risks of hearing
loss and/or exudative retinopathy are postulated to be higher in patients with
larger D474 repeat contraction sizes and those with early-onset disease [44,
46, 47].

Chronic pain is a significant, troubling and under-recognised symptom
in patients with FSHD and has been reported to be present in up to 82% of
patients [48-50]. It commonly affects the shoulders and lower back [51]. The
pain is likely multifactorial, stemming from factors such as hyperlordosis of
the lumbar spine, and muscle weakness and atrophy resulting in a restricted
range of motion and discomfort [51].

FSHD does not typically result in cardiomyopathy. However, cardiac
arrhythmias have been reported in patients with FSHD, though the majority
of patients are asymptomatic. An incomplete right bundle branch block is
most commonly described and was shown to be present in approximately 23
to 33% of patients [52], followed by supraventricular tachycardia in approxi-
mately 10% of patients [53].

Diagnosis

Genetic testing confirms the diagnosis of FSHD and should be obtained
in patients with typical presentations and no first-degree relatives with
genetic confirmation of the disease, or in patients with atypical presenta-
tions. First-degree relatives of a genetically confirmed proband who present
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with a classical FSHD phenotype may be diagnosed without further genetic
testing [54].

The Southern blot method is typically used for the diagnosis of FSHD1.
This procedure involves cleaving genomic DNA into specific fragments using
restriction enzymes, separation of fragments by size using gel electrophoresis
and, subsequently, hybridization with a p13E-11 probe [55, 56]. A reduction
in fragment size of less than 10 D474 repeats on the 4q35 chromosome, on
a permissive 4qA allele, is consistent with a diagnosis of FSHD1.

Despite Southern blotting being the standard diagnostic tool for FSHD1,
it has its limitations. It requires large amounts of high-quality molecular
weight DNA, is labour-intensive and time-consuming and may require the
use of radioactive material. It estimates the number of D4Z4 repeats based
on the size of detected bands, which can lead to inaccuracies [57, 58]. To dis-
tinguish between 4qA, 4qB and 10q haplotypes, multiple restriction enzymes
and probes are required [56, 59, 60]. Cases with somatic mosaicism or rear-
rangements may be undetected with standard gel electrophoresis, although
this can be mitigated by using pulsed-field gel electrophoresis (PFGE) [60].

Optical genomic mapping (OGM), which maps locations of restriction
enzymes in DNA molecules, is emerging as a valuable tool in genetic testing
of FSHD as it addresses certain limitations associated with Southern blotting.
Studies have shown that OGM can measure the number of D474 repeats with
higher precision, distinguish between DNA segments from 4q35 and 10q26
and accurately identify cases with mosaicism [58, 61-63]. In addition, it is
more cost-effective and has a shorter turnaround time [62]. However, it is
unable to detect rearrangements as it cannot differentiate the 4q35 and 10q26
D474 repeats and telomere ends [61].

In individuals who display the classical phenotype of FSHD but do not
have the D474 repeat contraction typically seen in FSHD1, FSHD2 should
be considered. The diagnosis of FSHD2 requires the identification of a path-
ogenic variant in chromatin modifier genes (SMCHD1, DNMT3B, LRIF1)
with the identification of decreased 4q35 methylation on the permissive 4qA
haplotype [64]. It is advisable to first evaluate for mutations in the SMCHD 1
gene, as they account for approximately 80-85% of all FSHD2 cases [21,
65]. If available, whole-exome sequencing (WES) should be offered, as it can
evaluate SMCHD1, DNMT3B and LRIF1 concurrently [66, 67].

It has been proposed that OGM in conjunction with WES can help pro-
vide a comprehensive approach to the detection of both FSHD1 and FSHD2.
However, it is important for healthcare providers to interpret genetic test-
ing outcomes with caution due to inherent test limitations. In addition, the
length of D474 repeat does not reliably predict the disease course or severity,
due to phenotypic variability and incomplete penetrance [68, 69].

Current management

The present approach to managing FSHD is primarily supportive in nature,
since disease-modifying therapy has not yet progressed beyond clinical trials.
This includes exercise and rehabilitation, optimization of pain control and
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conducting longitudinal surveillance for extra-skeletal systemic manifesta-
tions. Certain patients also benefit from orthopaedic interventions, such as
scapular fixation surgery.

Clinical trials have shown that aerobic exercises may help improve the
patient’s exercise performance and cardiovascular fitness, without damag-
ing muscle tissue [70-72]. The physiotherapist can tailor exercises based on
the individual’s physical status, with the aim to enhance range of motion
and alleviate pain [5ee, 54]. Orthotic devices, such as ankle-foot orthoses
and lumbar corsets, are commonly recommended. It is notable that approxi-
mately 20% of patients may require a wheelchair for mobility after reaching
the age of 50 [30, 73]. As upper limb weakness may restrict the use of a man-
ual wheelchair, a motorised wheelchair is the preferred option for patients
with FSHD. Along with exercises, nonsteroidal anti-inflammatory drugs can
be used for managing acute pain, while chronic pain can be addressed with
anti-depressants or anti-seizure medications [51, 74°¢].

All individuals with FSHD should undergo a baseline pulmonary func-
tion test, and those with kyphoscoliosis, lumbar hyperlordosis, chest wall
deformities, co-existing chronic lung or cardiac conditions, severe disease
leading to wheelchair dependence or severe proximal weakness should have
annual testing [54, 75]. Approximately 1% of FSHD patients require noctur-
nal non-invasive ventilatory support, and this usually occurs only decades
after the onset of the disease [41]. Sleep-disordered breathing such as obstruc-
tive sleep apnea and nocturnal hypoventilation can also be present in patients
with FSHD [39, 76, 77]. As such, clinicians should also screen patients for
symptoms such as early-morning headaches and non-restorative sleep and,
if present, consider polysomnography for further evaluation [76, 77]. It is
recommended to initiate nocturnal non-invasive ventilation in FSHD patients
with a forced vital capacity of less than 60% on lung function tests or those
with sleep-disordered breathing disorders [54]. Routine cardiac screen is not
required unless the patient is symptomatic [54].

In terms of surveillance for ophthalmic manifestations, all patients should
undergo a baseline fundoscopy and dilated retinal examination [54]. There
is a higher risk of retinal complications in patients with early-onset FSHD or
those with D474 repeat array fragments that are less than 15 kb in size, sug-
gesting a need for closer monitoring in these patients [44]. If signs of retinal
vasculopathy are detected, prompt intervention with photocoagulation can
help to prevent further retinal damage [78]. Additionally, some patients with
FSHD have weakness of the orbicularis oculi, resulting in difficulties with eye-
lid closure and lagophthalmos. Topical lubricants, ointments and eye patches
can be used at night to prevent exposure keratopathy from developing as a
consequence of this.

Individuals with FSHD have an increased risk of developing sensorineural
hearing loss. Much like the risk associated with retinal complications, the risk
of developing hearing loss is greater in those with shorter D474 repeat arrays
and those with FSHD characterised by an earlier onset (e.g. infantile or ado-
lescent-onset) [47]. Regular evaluations are recommended for these specific
groups [46]. In patients with adult-onset FSHD, routine hearing assessments
are not necessary unless symptoms are present [79].
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Scapular fixation surgery involves surgical fixation of the scapula to the
posterior thorax. Apart from cosmetic improvements, scapulothoracic arthro-
desis has resulted in functional improvements in shoulder flexion and abduc-
tion, for patients with severe scapular winging and preserved deltoid strength
[80, 81]. The Horwitz manoeuvre, a bedside manual scapular fixation test
which imitates the post-surgical mechanics, can help predict post-surgical
improvement [80, 81]. However, physicians should carefully evaluate the
potential complications of surgery in comparison to its benefits, taking into
consideration the patient’s disease progression rate and the need for pro-
longed post-surgical bracing [82].

Future therapies

Previously, clinical trials involving albuterol, salbutamol, diltiazem, corti-
costeroids and certain myostatin inhibitors (MYO-029 and ACE-083) did
not demonstrate clinical benefit for individuals with FSHD [74ee, 83-91].
However, recent advancements in research have provided further insight into
the fundamental pathophysiology of FSHD, particularly the aberrant expres-
sion of the DUX4 protein in skeletal muscles. This understanding has paved
the way for the development of targeted therapies directed at suppressing
DUX4 expression or mitigating its downstream effects. This is done via the
following: (i) epigenetic silencing of the D4Z4 repeats, (ii) blocking DUX4
mRNA production and (iii) targeting downstream pathways triggered by
DUX4 expression [92, 93¢¢].

In this segment, we discuss targeted therapies that are currently being
investigated in clinical and/or pre-clinical studies. The main avenues for
targeting DUX4 include small molecules, oligonucleotide therapeutics and
CRISPR-based approaches. At present, all potential therapies are in the pre-
clinical stage, with the exception of losmapimod, which is currently undergo-
ing a phase 3 clinical trial [94¢¢]. Although none of these novel therapies have
been approved yet, they represent a pivotal change in the treatment landscape
of FSHD, moving beyond traditional supportive and symptomatic therapies
to treatments that directly target the fundamental root cause.

Small molecules

Small molecule drugs are developed through chemical synthesis that bind
to cellular targets to affect disease processes [95]. In contrast to biologics,
they are non-immunogenic and have low molecular weight, allowing for
oral administration with favourable cellular uptake, and are generally more
cost-effective [95].

Losmapimod is an oral, selective, small molecular inhibitor of the P38
mitogen-activated protein kinase (MAPK) pathway, which is a modulator of
DUX4 expression and a mediator of inflammation [96]. Previous pre-clinical
studies done with mice models showed a significant reduction of DUX4 levels
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of approximately 80% with losmapimod [9, 96]. It has been shown to be well
tolerated with no serious adverse events in a phase 1 study [97¢].

A randomised, double-blind, placebo-controlled multicentre phase 2b
clinical trial on losmapimod (ReDUX4) involving 80 patients with FSHD1
was recently completed [98]. The patients were randomised 1:1 to receive
either losmapimod 15mg, twice daily or a placebo for 48 weeks. The primary
endpoint, which was a reduction in DUX4-driven gene expression in skeletal
muscle, was not achieved. However, there was a statistically significant benefit
in the secondary endpoints in terms of structural, functional and patient-
reported outcomes [98-100]. After 48 weeks of treatment, patients who
received losmapimod showed reduced progression of muscle fat infiltration
(MFI) on MRI (0.03% vs. 0.52%; disparity, - 0.49; 95% CI, - 0.86 to-0.12;
p=0.01) compared to those who received placebo [101]. Reachable workspace
(RWS), used as a performance measure of the shoulder and proximal arm
function, also showed that patients who received losmapimod performed
better than those who received a placebo in the RWS measure with weights.
Analysis of reachable surface area (RSA) showed that the annualised rate of
change (%/year) in total RSA for losmapimod versus placebo in the dominant
arm was - 0.44 versus - 8.42, p=0.07; in the non-dominant arm, this was 4.88
versus - 4.02, p=0.01 [98]. In the losmapimod group, assessment of maxi-
mum voluntary isometric contraction (MVICT) via hand-held dynamometry
also showed stabilisation across various parameters [94¢¢]. Additionally, rela-
tive to placebo, these patients also reported significant improvement in the
Patients” Global Impression of Change (PGIC) assessment as well (differ-
ence, - 0.58; p=0.02) [98].

An open-label extension of the above trial was conducted, and preliminary
data was presented at the 2023 AAN Annual Meeting [102]. Participants who
were on losmapimod continued to receive the drug (LOS/LOS) and, at week
96, were assessed for durability of treatment response, via assessment of RWS.
Participants who received a placebo were converted to losmapimod at week
48 (PBO/LOS) and received the drug for another 48 weeks. Annualised total
RSA showed stability in the LOS/LOS group in the 2nd year (0.18%)/year)
compared to the 1st (- 0.77%)/year) [102]. In the PBO/LOS group, partici-
pants exhibited trends of slowing or halting of disease progression based on
RWS, as shown by improvement in annualised total RSA in the 2nd versus the
1st year (4.07%/year versus — 9.96%/year, respectively) [102]. Throughout the
extended duration, no drug-related serious adverse events or discontinuation
due to adverse events were reported.

At present, Fulcrum Therapeutics has just completed the enrolment of 260
patients in a double-blind, multi-national, placebo-controlled phase 3 trial
(REACH) (ClinicalTrials Identifiers: NCT05397470), to further evaluate the
efficacy and safety of losmapimod for the treatment of FSHD [103, 104]. The
primary endpoint involves evaluation of change from baseline RWS, along
with secondary endpoints such as analysis of MFI using whole-body MRI,
quality of life in the neurological disorders upper extremity scale (Neuro-
QoL UE) and PGIC [104]. Preliminary data is anticipated to be reported in
the fourth quarter of 2024.
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Antisense oligonucleotides

Antisense oligonucleotides (ASOs) are modified single-stranded DNA or RNA
sequences that bind to complementary targeted mRNA sequences, thereby
preventing or altering the translation of protein. DUX4 expression can be
targeted by ASOs that bind to specific DUX4 mRNA sequences [105]. Pre-
clinical studies with ASOs have proven efficacy of reduction of DUX4 and
DUX4 target genes in cultured FSHD myocytes and FSHD mouse models
[105-109]. The drawback with ASOs, however, is limited bioavailability and
poor cellular uptake, which limits the effectiveness of delivery to the target
muscle tissue [110].

AOC 1020, developed by Avidity Biosciences, comprises a unique
monoclonal antibody that binds to the transferrin receptor 1 (TfR1)
combined with a siRNA designed to specifically target DUX4 mRNA [111,
112]. FORTITUDE, a randomised, placebo-controlled, double-blind phase
1/2 clinical trial (ClinicalTrials.gov Identifiers: NCT05747924), is currently
ongoing, to evaluate AOC 1020 in 72 participants with FSHD, with the
aim to evaluate the safety and tolerability of the drug when administered
intravenously [112, 113]. The primary objective of this study is to evaluate
the safety and tolerability of AOC 1020, whereas secondary objectives include
analysing the pharmacokinetics and pharmacodynamics of the drug. There
are three parts to this study—part A consists of dose titration to evaluate the
safety of the drug at two low doses, whereas part B involves ascending doses
of the drug to study two presumably effective doses [112]. Finally, part C aims
to evaluate clinical outcomes. The study will assess measures of mobility and
muscle strength, including the use of MRI to measure muscle volume and
composition [112]. There will also be an open-label extension study, whereby
eligible participants will be given the option to enrol in. Avidity intends to
share data from a preliminary assessment of approximately half of the study
participants in the first half of 2024.

Myostatin inhibitors

Myostatin is a growth differentiation factor that plays an essential role
in regulating skeletal muscle growth [114]. As such, myostatin inhibition
has been postulated to help increase muscle mass and, in turn, muscle
strength [115]. GYM329 (RO7204239) is an investigational monoclonal
anti-myostatin antibody which targets inactive latent myostatin, preventing
its conversion to active myostatin, thus reducing the levels of myostatin in
muscle and blood [116].

MANOEUVRE (ClinicalTrials.gov Identifiers: NCT05548556) is a multi-
centre, randomised, placebo-controlled, double-blind phase 2 trial that aims
to evaluate the safety, tolerability, efficacy, pharmacokinetics and pharmaco-
dynamics of GYM329 (RO7204239) in adult patients with genetically con-
firmed FSHD1 or FSHD2 [116, 117]. It is currently in the recruitment phase,
with the aim of enrolling 48 participants. The trial involves participants
receiving subcutaneous RO7204239 or placebo injection every 4 weeks, over
a treatment period of 52 weeks. Primary outcome measures include assessing
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percentage change from baseline in contractile muscle volume (CMV) of
quadriceps femoralis via MRI bilaterally as well as analysis of adverse effects
experienced by participants, whereas secondary outcome measures include
assessment of motor function and strength and change from baseline in
CMV in other muscle groups as assessed by MRI as well as changes in serum
myostatin levels [116]. After completion, there will be an open-label exten-
sion, and participants will be given the option to participate and receive
RO7204239 for another 52 weeks.

Gene therapy (CRISPR)

CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats/
CRISPR-associated protein 9) gene editing techniques are in development
for various genetic diseases, including FSHD. The technique involves combin-
ing a guide RNA sequence complementary to the target DNA, with the CAS9
enzyme, forming the CRISPR/CAS9 complex. The complex can target DNA
sequences complementary to the guide RNA, allowing the CAS9 enzyme to
make targeted double-stranded DNA breaks. This can be used to disrupt the
cut genes or utilise DNA repair to insert new DNA template sequences.
Applications of CRISPR/CAS9 techniques for FSHD are in various pre-
clinical stages of development. One application involves the use of an inac-
tivated form of the CAS9 enzyme (dCAS9-KRAB system) to induce epigenetic
silencing of the DUX4 gene (instead of creating double-stranded DNA cuts),
resulting in decreased production of the DUX4 transcripts and downregula-
tion of target genes [118, 119]. Other studies have targeted the DUX4 poly-
adenylation signal, required to stabilise the DUX4 transcript [120, 121¢]. In
FSHD2, a study targeted the intronic variant of the methylation regulation
gene SMCHD1 with CRISPR/CAS9 gene editing, which restored SMCHD1
expression and suppression of DUX4 [122]. There is potential progress made
towards human studies, with an announcement of plans in 2024 for a first-
in-human trial for a CRISPR/CAS9 treatment targeting epigenetic silencing
of DUX4 expression, delivered by an adeno-associated virus vector [123].

Conclusion

FSHD is one of the most common muscular dystrophies in the adult popu-
lation that manifests with disabling skeletal muscle weakness and multi-
systemic complications. At present, the mainstay of management is limited to
supportive management to preserve and optimise functional independence,
with the aim to improve quality of life. In recent years, further understanding
of the underlying molecular pathophysiology of FSHD has led to advances
in pre-clinical and clinical trials for targeted therapy. This holds a promising
potential for disease-modifying management in the foreseeable future, which
may alter the disease trajectory for this condition.
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