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Abstract

Purpose of Review Acute spontaneous subarachnoid haemorrhage (SAH) is a severe
disease, frequently complicated by vasospasm and delayed cerebral ischaemia (DCI),
which have a negative impact on prognosis. Imaging studies are essential in the diagnosis
of SAH. In this article, we review the available imaging techniques for prediction,
monitoring and diagnosis of these complications of SAH.
Recent Findings Non-contrast computed tomography (CT) and transcranial Doppler (TCD)
have been so far the mainly used techniques to evaluate SAH patients during the acute
stage of disease and to screen for vasospasm and DCI. However, there have been new
developments of brain imaging techniques, with the introduction of automated methods
to quantify blood volume and cerebral flow velocities, and the use of perfusion studies
that could contribute to predict or diagnose such complications. Magnetic resonance (MR)
imaging studies are proving useful to evaluate early brain injury and to diagnose DCI.
Newer angiography suites have sophisticated post-processing tools that quantify cerebral
haemodynamics in SAH and may provide important clues for the diagnosis of vasospasm.
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Summary Imaging studies are part of the standard management of patients with acute
SAH. Blood quantification on CT and the evaluation of cerebral flow velocities on TCD are
known to predict and monitor the occurrence of vasospasm. DCI has increasingly been
recognized as the most clinically relevant complication of SAH but also the most difficult
to predict. MR imaging is the most sensitive tool to diagnose DCI. Future developments in
imaging are needed to predict this important complication and help to improve the
prognosis of patients with SAH.

Introduction

Spontaneous (non-traumatic) subarachnoid haemor-
rhage (SAH) is responsible for approximately 5% of
strokes, with an incidence of 7.2–10.5 per 100,000
person-years [1, 2]. It is most frequently caused by a
ruptured intracranial aneurysm and carries highmorbid-
ity and mortality [3••]. Aneurysmal SAH is associated
with significant pre-hospital mortality (reaching 50% in
some series) and overall mortality of 18–67% [4, 5].
Complications of aneurysmal SAH such as vasospasm
and delayed cerebral ischaemia (DCI) contribute for this
elevated mortality and poor clinical outcome.

Vasospasm is defined as a narrowing of cerebral
vessels, caused by contraction and hyperplasia of the
muscular layer, not attributable to atherosclerosis or
vessel hypoplasia, and can be diagnosed in angiographic
imaging studies, such as digital subtraction angiography
(DSA) [6, 7]. Angiographic vasospasm develops in up to
70% of patients after SAH, occurring most frequently at
6 to 8 days after aneurysm rupture and extending up to
14–21 days [8, 9]. The reduction of arterial diameter is
thought to reduce cerebral perfusion and cause ischae-
mia. Microvascular spasm has also been described fol-
lowing aneurysmal SAH, and is not easily identified
with current imaging techniques [10••].

DCI is defined as the development of a neurological
deficit and/or the presence of ischaemic lesions on im-
aging studies, not immediately present after SAH, not
related to treatment of the aneurysm, and not attribut-
able to other causes [6, 7]. DCI occurs in about 30% of
patients and is associated with worse clinical and cogni-
tive prognosis [6]. The pathophysiology of DCI is mul-
tifactorial, and arterial vasospasm is only one of the
contributors [10]. Angiographic vasospasm is not inva-
riably associated with ischaemia, and cerebral infarction
may originate in territories unaffected by vasospasm
[11]. Therefore, monitoring the appearance of vaso-
spasm exclusively would address only part of the prob-
lem. Nonetheless, prediction of both vasospasm and
DCI is challenging and has been the focus of several
studies, in an effort for improving the outcome of SAH
patients.

Thanks to the development of new techniques and
improvement of current imaging modalities, imaging
studies play a growing role in prediction and diagnosis
of these complications and in the management of SAH
patients. This review focused on different imaging mo-
dalities and their role in predicting and assessing vaso-
spasm and DCI.

Early imaging predictors of vasospasm and DCI
Computed tomography

Computed tomography (CT) is the first imaging study used for the diagnosis of
acute SAH. CT is a widely available technique, with short scanning times and
possibility of sequential complementary angiographic evaluation with CT an-
giography (CTA), allowing for swift diagnosis and treatment decisions. In the
first 6 h after SAH, the diagnostic sensitivity of non-contrast brain CT scan is
approximately 100% [12]. CTA has shown a sensitivity of approximately 98%
in identifying intracranial aneurysms, and when combined, CT and CTA can
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diagnose aneurysmal SAHwith greater than 99% sensitivity [13]. In addition to
diagnosing SAH and screening the presence of aneurysm, initial imaging can
provide some clues to predict the development of vasospasm and DCI
(Table 1).

Quantification of cisternal blood is an important prognostic tool, and
several scales have been developed for this purpose (Table 2). The widely used
Fisher scale [18] and modified Fisher scale [14], as well as the more complex
Hijdra scale [48], correlate the amount of blood and presence of intraventricular
haemorrhage (IVH) to the risk of vasospasm, DCI and clinical outcome (Fig. 1)
[14, 15, 18, 22, 23•, 48]. Of these rater-dependent scales, the Hijdra scale has
proven to have the best inter-observer agreement [49]. The presence of IVH
appears to be particularly relevant in predicting clinical vasospasm/DCI and
outcome. Studies have shown that the combination of IVH and SAH is associ-
ated with worst outcome compared to IVH or SAH alone [19, 24, 50]. Semi-
quantitative scores for IVHmeasurement exist, such as the Graeb score [51] and
the modified Graeb score [52]. The latter has been shown to hold similar
discrimination for DCI when compared to the modified Fisher scale, and,
interestingly, combining these two scales in a dichotomized scale seems to
improve prediction of DCI [25]. The presence of ICH is also an important
predictor of DCI and unfavourable outcome [26, 53]. Acute hydrocephalus
diagnosed in acute imaging has also been shown to associate to angiographic
vasospasm and to negatively influence outcome [30, 54••].

The density of subarachnoid haemorrhage on initial imaging, as measured
by the Hounsfield unit (HU) value of the haemorrhage, has been postulated to
predict symptomatic vasospasm [27]. A recent study found that the HU value of
blood in the inter-peduncular cistern in aneurysmal SAH patients significantly
correlated with the incidence of symptomatic vasospasm [28]. New develop-
ments in quantification of cisternal blood include automatic volume quantifi-
cation of total blood volume (TBV), calculated from admission CT. TBV auto-
matic quantification has the advantage of being rater-independent and has
been shown to predict DCI [16, 19].

Cerebral perfusion studies
Cerebral perfusion is reduced in the acute stage of SAH, especially in patients
with poor clinical grade at admission [55–57], and a few studies have addressed
the ability of admission CT perfusion to predict complications. Studies on the
value of early CT perfusion (within 72 h from SAH) to predict vasospasm or
DCI have shown inconsistent results, including large variability in perfusion
thresholds. Etminan et al. [34] showed that an early mean transit time
(MTT) 9 4,2 s combined with SAH clot volume 9 50 mL increased the risk for
cerebral infarctions and poor outcome, but showed no association with vaso-
spasm. Sanelli et al. [35] found threshold values of MTT 5,5 s and CBF 24 mL/
100 g/min to predict vasospasm. In a study where CT perfusion was performed
at G 48 h after SAH, significantly higher mean MTT values and lower mean
cerebral blood flow (CBF) values were found in patients that later developed
vasospasm [20]. Some authors found a significant association between lower
CBF values and longer MTT with DCI [32, 35–37]. Lagares and colleagues [36]
found an MTT value 9 5,9 s to have a positive predictive value (PPV) of 100%
for DCI and to be associated to a 20-fold risk increase of poor outcome. Dong
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et al. in a large prospective study used whole-brain CT perfusion, and found
early reduction of perfusion, in all parameters in patients that later developed
DCI, specifically a time-to-maximum (Tmax) cut-off value of 2.24 s for early
prediction of DCI at admission [33]. Recently, Malinova and colleagues [32]
proposed CBF G 53,93 mL/100 g/min, CBV G 3,14 mL/100 mL, MTT 9 4,25 s,
time to peak (TTP) 9 9,28 s and time to drain (TTD) 9 4,93 s as threshold values
for prediction of DCI. However, despite all available studies, data on the role of
brain perfusion at early stage of SAH are conflicting [58–62], and the evaluation
of perfusion is still not validated for the initial assessment of SAH patients, as a
tool for prediction of vasospasm or DCI.

Digital subtraction angiography
DSA is routinely performed in acute SAH patients and is the gold standard
technique for the detection of intracranial aneurysms. Since most patients
perform DSA at admission, it would be tempting to identify predictors of
vasospasm and DCI using this technique. A recently developed post-
processing software, parametric colour coding, allows the evaluation of haemo-
dynamic flow data from DSA acquisitions. Since then, some studies have ana-
lysed whether early haemodynamic changes detected on colour-coded DSA in
the setting of aneurysmal SAHmay be predictive of vasospasmorDCI. Burkhardt
et al. found that patients developing vasospasm, either symptomatic or asymp-
tomatic, had increased arterial flow velocities in the initial DSA [38••]. This
increase in flow velocity may be due to vessel diameter reduction, increase in
arterial blood pressure or both. Either way, these findings may represent early
angiographic predictors of vasospasm and DCI and help identify patients at
greater risk for these complications. An advantage of colour-coded DSA is the
evaluation of microcirculatory changes, allowed by the higher temporal and
spatial resolution of newer angiography suites. Gölitz et al. calculated cerebral
circulation time, cortical relative time to peak andmicrovascular transit time (TT)
in aneurysmal SAH patients [39]. The mean microvascular TT was significantly

Table 2. Scales for quantification of blood on admission CT after aneurysmal SAH

Fisher scale [18] Modified Fisher scale [14] Hijdra scale [48]
Grade 1: no SAH detected Grade 0: no SAH or IVH Cisternal Hijdra (range = 0–30)

Grade 2: diffuse thin (G 1 mm) SAH Grade 1: focal/diffuse thin (G 1 mm) SAH, no
IVH

No blood = 0
Small amount = 1

Grade 3: localized clot/thick (9 1 mm)
SAH

Grade 2: focal/diffuse thin (G 1 mm) SAH, and
IVH

Moderately filled = 2
Completely filled = 3

Grade 4: diffuse SAH and IVH and/or
ICH

Grade 3: focal/diffuse thick (9 1 mm) SAH, no
IVH

Ventricular Hijdra (range =
0–12)

Grade 4: focal/diffuse thick (9 1 mm) SAH, and
IVH

No blood = 0
Sedimentation = 1

Partly filled = 2
Completely filled = 3

For Hijdra score calculation, ten basal cisterns (anterior interhemispheric fissure, lateral sylvian fissure, basal sylvian fissure, suprasellar cistern,
ambient cistern and quadrigeminal cistern) and the four ventricles are considered
IVH intraventricular haemorrhage; ICH intracerebral haemorrhage
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longer in patients that later had DCI, possibly indicating an early onset of
microcirculatory injury in these patients. A threshold value of 2.69 s was sug-
gested to predict development of DCI, with a sensitivity of 71%, but a specificity
of only 54%. Angiographic vasospasm occurring within 48 h of aneurysmal
rupture, known as ultra-early angiographic vasospasm, occurs in 4.6–13% of
patients and is associated with increased risk of DCI and worse clinical outcome
[40–42].

Early brain injury: a new marker?
Increasing attention has been drawn to early brain injury (EBI), defined as
parenchymal insult occurring in the first 72 h after SAH [10••, 63, 64], thought
to contribute to the later occurrence of DCI. Pathophysiological mechanisms of
EBI are complex and still not fully understood. A recently developed score, the
“Subarachnoid Haemorrhage Early Brain Edema Score” (SEBES) [31], includes
early CT changes such as sulci effacement and disruption of the grey-whitematter
junction on admission CT, as markers of early brain injury, that predict DCI and
unfavourable outcome and associate with the occurrence of vasospasm. In line
with its superiority in evaluating brain lesions, MRI is the preferred imaging

a b c

d e f

**

Fig. 1. Admission non-contrast CT scan of acute spontaneous SAH in five different patients, illustrating different grades of the
Fisher scale: a Grade 1 in a patient with a ruptured P1 segment PCA aneurysm. b Grade 2 in a patient with a perimesencephalic
haemorrhage. c Grade 3 in a patient with a ruptured right MCA aneurysm. d Grade 4 in a patient with ruptured anterior
communicating aneurysm, with small amount of intraventricular blood. e Grade 4 in a patient with a ruptured anterior communi-
cating artery aneurysm showing frontal hematoma and blood casts in both atria (*). f Grade 4 with IVH and ICH in a patient with a
ruptured terminal segment right ICA aneurysm, showing a large intraparenchymal hematoma.
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technique to detect early parenchymal changes. Early acute ischaemic lesions on
diffusion-weighted imaging (DWI), changes in white matter integrity measured
with diffusion tensor imaging, global cerebral edema or vasogenic edema in
normal-appearing white matter [43••, 44, 46, 65, 66] can be associated with the
development of DCI in the course of SAH [43••, 45–47, 66].

Combined predictors
Imaging parameters can be used as independent predictors of vasospasm and
DCI, or they can be combined with clinical parameters to increase specificity
and sensitivity. The VASOGRADE scale is a simple 3-category grading scale that
can predict the risk of DCI, based on combining the modified Fisher scale and
the World Federation of Neurosurgical Societies (WFNS) scale [67]. The HAIR
score allows risk stratification for in-hospital mortality and is based on the four
variables that name it: Hunt and Hess score, age, IVH and re-bleed [68]. One
other recent study proposed an early score for DCI prediction that included 4
variables: WFNS scale, modified Fisher scale, SEBES and intraventricular hae-
morrhage [69]. Although VASOGRADE scale and HAIR score did not show to
be superior to clinical evaluation in prediction of cerebral infarction and
unfavourable outcome [70], they are superior to radiological scales alone [71].

In summary, the initial imaging evaluation of SAH patients provides poten-
tial predictors of vasospasm and DCI. The amount of subarachnoid blood on
non-enhanced CT has themost robust evidence as a predictor of vasospasm and
DCI. However, newer approaches, such as automaticmeasurement of subarach-
noid blood volume, and colour-coding post-processing of DSA images might
help identify patients that will develop vasospasm and DCI. Early perfusion
imaging has shown to predict vasospasm and DCI, but is not reproducible
across studies. MRI is still not routinely performed upon admission in SAH
patients; however, it is the most sensitive imaging technique for diagnosis of
early brain injury and could be an early tool for predicting DCI. Combined use
of clinical and imaging parameters might increase sensitivity and specificity in
the prediction of these complications.

Diagnosis and monitoring of vasospasm

Delayed vasospasm is a well-established complication of aneurysmal SAH
occurring in about 70% of patients, most often 6 to 8 days after aneurysm
rupture [8, 9]. About a third of patients will develop symptoms from vasospasm
and eventually ischaemic lesions. Screening of vasospasm is a standard current
practice in SAH, essential for correct management, especially in patients in poor
neurological grade that cannot be evaluated clinically. Vasospasm is potentially
reversible, both pharmacologically and by endovascular techniques. Several
techniques for diagnosis and monitoring of vasospasm have been studied,
and their main advantages and disadvantages are summarized in Table 3.

Digital subtraction angiography
At the present time, DSA still remains the gold standard for diagnosis of
radiographic vasospasm, additionally allowing for endovascular treatment.
Nonetheless, as an invasive technique which brings additional risks, requiring
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radiation exposure and contrast, DSA is not used as a monitoring technique but
is rather performed following clinical or TCD suspicion of vasospasm [72].
Newer developments, such as colour-coded DSA, described in the previous

c d

a b

e f

c d

a b

e f

Fig. 2. Thirty-six-year-old patient with a ruptured anterior communicating artery aneurysm. Admission DSA showed normal
diameter of the arteries (a, right internal carotid artery injection, AP view). Colour-coded DSA images (b) show no delay in
transit time between ICA and A1 at post-embolization period, as demonstrated by the time-contrast concentration curves with
similar times measured in the internal carotid artery (white arrow) and in the A2 segment of the anterior cerebral artery (open
arrow). At 15 days, moderate vasospasm of the A1 and A2 segments of the anterior cerebral artery are noted on DSA (c), with
corresponding delay of contrast arrival at the A2 segment on the colour coded DSA images (open arrow) (d). A CTA performed on the
same day (e, coronal; f, axial MIP reconstructions) showed similar vasospasm in the A1 segments bilaterally. Note how the presence
of metallic artefacts originated from the aneurysmal coils impairs correct assessment of adjacent arteries (f)
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section, allow the evaluation of microcirculatory changes secondary to vaso-
spasm (Fig. 2).

d e

f g

a b c

Fig. 3. Thirty-nine-year-old male with a ruptured basilar tip aneurysm that later developed vasospasm and cerebral infarct. CT scan
at admission showed a diffuse modified Fisher grade 3 SAH (a), and DSA performed at admission (b) showed normal diameter
vessels and a basilar tip aneurysm. CT scan repeated at day 7 post-SAH (c) shows an acute ischaemic infarct on the right PCA vascular
territory. Same day TCD study shows increased mFV of the right PCA P1 segment (d), 85 cm/s, left PCA P1 segment (e), 119 cm/s,
left ACA A1 segment (f), 103 cm/s, and basilar artery (g), 127 cm/s, suggestive of moderate vasospasm of the PCA P1 segments and
left ACA A1 segments, and moderate to severe vasospasm of the basilar artery
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Transcranial Doppler
Transcranial Doppler (TCD) allows dynamic monitoring of CBF velocity and
pulsatility indexes (Fig. 3). Current American Heart Association’s guidelines for
the management aneurysmal SAH indicate TCD as a reasonable tool for vaso-
spasm monitoring (class IIa, level B evidence) [3••]. In addition to mean flow
velocity (mFV), the use of indices, such as Lindegaard ratio for MCA vasospasm
and the Sviri ratio for basilar artery vasospasm, helps to distinguish increased
velocities due to haemodynamic factors from vasospasm (velocity adjustment
by calculating a ratio with the ipsilateral ICA and both the vertebral arteries,
respectively) [74, 76]. A new intracranial arteriovenous index (AVI) between
flow velocity in the MCA and the basal vein of Rosenthal has been proposed,
with slightly higher reliability for differentiating vasospasm and hyperperfusion
[75].

Over the years, several mFV threshold values for development of vasospasm
have been proposed, either regarding a relative increase ofmFV (increase of 20–
50 cm/s) or absolutemFV values (9 120–200 cm/s) [99•, 100]. In 2001, ameta-
analysis showed that TCD had higher specificity (99%) and sensitivity (67%)
for MCA vasospasm, as compared to other arteries, with a positive predictive
value (PPV) of 97% and a negative predictive value (NPV) of 78%, when
compared to DSA [73]. In 2004, a consensus statement supported that, for
MCA vasospasm, TCD is a reliable predictor for the absence of angiographic
vasospasm at mFV G 120 cm/s and for the presence of angiographic vasospasm
at mFV 9 200 cm/s [101].

There have been recent advances in TCD: image-guided TCD and TCD
automated analysis. Neulen et al. demonstrated the feasibility of image-
guided TCD, in which the ideal ultrasonic bone window regions and
ultrasonic trajectories were obtained from CTA images and uploaded on
a hand-held image-guided device [77] Although time-consuming, image-
guided TCD was feasible in aneurysmal SAH patients, with high spatial
accuracy and inter-observer reproducibility. In order to facilitate continu-
ous TCD-monitoring protocols, an automated algorithm for detection of
vasospasm based on TCD audio signal analysis was developed, with
promising results [78].

Non-invasive angiographic studies
CTA is a fast and widely available non-invasive angiographic imagingmodality.
It is considered fairly accurate for detection of radiographic proximal vaso-
spasm, with a reported sensitivity of 80% and specificity of 93% [79]. Despite
this, there is concern regarding its value to help guide clinical management, as it
has only moderate inter-rater reproducibility [102]. Recent areas of research
include volumetric analysis of the intracranial vessels, in which vessel volume of
a given arterial segment could be used as an objective parameter for identifica-
tion of vasospasm requiring endovascular treatment, as addressed in two pilot
studies [80, 81].

Although MR is not a routine imaging study in acute SAH, the various
modalities of magnetic resonance angiography (MRA) can diagnose proximal
vasospasm, although less accurately than DSA [82–84]. Recently developed
black-blood MR angiography (BBMRA) utilizes a non-T1-weighted contrast
spin-echo sequence. A small retrospective study by Takano et al. showed
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superior accuracy of BBMRA when compared to TOF-MRA and high sensitivity
and specificity in detection of vasospasm when compared to CTA or DSA [85].
Also recently described is the association between intracranial MR vessel wall
enhancement and the development of angiographic vasospasm in ruptured
aneurysm patients [86]. Although larger studies are necessary, newer vessel wall
imaging sequences may be promising in the evaluation of vasospasm.

Perfusion studies
CT perfusion studies can assess perfusion deficits secondary to vasospasm,
manifested by increased MTT and reduced CBF [55, 87–93]. A high degree of
agreement between CT perfusion and DSA has been documented [94], and a
meta-analysis showed a sensitivity of 74,1% and specificity of 93% of CT
perfusion for the diagnosis of vasospasm [79]. Various studies found MTT to
be the most sensitive parameter [88–91, 93]. MTT threshold values of 4,6–6,4 s
[88, 93] and a CBF value of 44,3 mL/100 g/min [93] have been described.
However, because of equipment and post-processing software differences be-
tween centres, validation of these values is challenging and should be inter-
preted with caution. Some authors have suggested a combined CTA and CT
perfusion approach as the preferred method in the diagnosis of vasospasm
[103, 104]. MR perfusion studies in SAH have mainly addressed prediction or
early detection of DCI, with very few having focused on prediction or diagnosis
of vasospasm. Combination of DWI and perfusion-weighted imaging (PWI) in
patients with vasospasm enabled the detection of small regions of early ischae-
mic injury within larger regions of abnormal relative CBF andMTT, compatible
with vascular supply regions of vessels with angiographically demonstrated
vasospasm [97] (Fig. 4). Diffusion-perfusion mismatch, translated by elevated
MTT and no signs of parenchymal ischaemia on DWI, has also been suggested
for early identification of vasospasm and prediction of its evolution to ischae-
mia [96, 98].

In summary, TCD is still the preferred technique for screening the appear-
ance of vasospasm. Although operator-dependent, it is a non-invasive, widely
available bedside technique that can effectively detect and monitor cerebral
artery vasospasm, with a high positive predictive value. Image-guided TCD and
TCD automated analysis are being developed and seem promising for improv-
ing monitoring accuracy and facilitate its implementation on critical care units.

Prediction and diagnosis of DCI

Delayed cerebral ischaemia is the end result of a complex cascade of events after
SAH that include early brain injury (that results from microvascular changes,
coagulation dysfunction, cortical spreading depression, activation of inflamma-
tory mediators) and delayed vasospasm [10••]. Although DCI negatively influ-
ences patient prognosis, the best method to predict this complication remains
uncertain.

Computed tomography and MR imaging
In patients that suffer neurological deterioration after SAH, non-contrast CT is a
rapid and widely available technique, allowing the exclusion of hydrocephalus,
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rebleeding or cerebral edema that may occur in the subacute stages of SAH.
CT can diagnose cerebral infarctions related to DCI in up to 35% of
patients in the course of SAH (Fig. 3); however, if MR imaging is used,
ischaemia can be detected in up to 81% of patients [105](Fig. 5). Besides
clinical and imaging predictors present at admission, there are other pos-
sible imaging predictors of DCI during the early phase of SAH and in the
period of vasospasm (Table 4).

a b

c d e

Fig. 4. Forty-one-year-old patient with a ruptured basilar tip aneurysm. a DSA at admission, after coiling of the aneurysm. Normal
diameter of basilar artery and posterior cerebral arteries (PCA) (white arrows). b DSA at day 7 post-SAH, showing reduction of the
diameter of the basilar artery and both PCAs (black arrows). MRI performed at day 4 post-SAH showed small acute ischaemic lesions
on both PCA territories, on DWI (c), and an increase of TTP on the same territory (d), reflecting hypoperfusion, with a DWI/PWI
mismatch. e CT scan at day 10 after SAH, showing an acute ischaemic lesion on the right PCA territory, and global cerebral edema,
that progressed despite aggressive treatment of vasospasm.
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Transcranial Doppler
TCD is the most used monitoring tool for vasospasm after SAH; however,
evidence of the value of TCD in predicting DCI is still conflicting. Meta-
analysis found that the diagnosis of moderate/severe vasospasm by TCD (de-
fined by mFV 9 120 cm/s) can accurately predict DCI, with high sensitivity and
high negative predictive value [106]. However, centres that routinely screened
for vasospasm using TCD did not have higher rates of DCI diagnosis compared
to non-screening centres [120].

Perfusion studies
Although CT perfusion can detect areas of cerebral hypoperfusion that correlate
with arterial vasospasm, there are conflicting results regarding its association
with DCI, which again underlines the multifactorial origin of DCI. Several CT
perfusion studies have shown significantly lower CBF and CBV values and
higher MTT values in patients with DCI, during the vasospasm window period
[88, 114, 115]. Two meta-analyses, one including 345 patients [116] and the
other including 444 patients [62], confirmed these findings. In the first one, a
23-fold increased probability of DCI was found in patients with CT perfusion
changes demonstrating perfusion deficits [116]. Different threshold values have
been proposed for diagnosis of DCI at the time window for vasospasm,

a b c

d e f

Fig. 5. Fifty-nine-year-old patient with a ruptured communicating artery aneurysm treated with coils. Follow-up CT scan at day 9
after SAH (a) shows a very subtle hypoattenuating lesion in the left insular and temporal lobes. Same day MRI, DWI (b) and ADCmap
(c), clearly depict the acute cerebral infarct, illustrating the lower sensitivity of CT in diagnosis of acute cerebral ischaemia. CT
perfusion performed 2 days earlier showed a very slight decrease in CBF (d) in the infarct area and no asymmetry on the MTT map (e).
DSA performed at day 10 (f) shows no signs of angiographic vasospasm.
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including MTT values of 5,0–5,85 s [88, 114, 115] and CBF values of 30,5–
36,3mL/100mg/min [114, 115]. The ability of CT perfusion changes to predict
DCI appears to be higher during the period of vasospasm, between 4 and
10 days after SAH. MR perfusion imaging is much less used in SAH patients,
and therefore, less studies have focused on this technique. Positron emission
tomography (PET) studies have also shown that hypoperfused and oligemic
areas of the brain frequently occur in regions without vasospasm, and these
physiologic parameters might better predict DCI [121].

Future research: autoregulation and permeability
Failure of autoregulatory mechanisms is one possible mechanism in the devel-
opment of vasospasm and DCI. A few studies have suggested the utility of a
transient hyperemic response test (THRT) in the early phase to predict cerebral
autoregulation failure and development of clinical vasospasm [107, 108, 110].
This test is based on temporary compression of the common carotid artery
while insonating the ipsilateral MCA. Upon decompression, an increase of
more than 9% of the baseline systolic velocity is expected, when autoregulation
is normal. A negative THRT was associated to development of symptomatic
vasospasm and DCI [109]. A reduced cerebrovascular reactivity (CVR) assessed
by carbon dioxide or acetazolamide TCD was also associated with DCI [111–
113]. In a small pilot study, blood oxygenation level-dependent (BOLD) tech-
nique functional MRI measurements of CVR, by means of carbon dioxide
challenge, seemed to have good spatial correlation with areas of future ischae-
mic events, in the context of DCI [117]. Assessment of cerebral autoregulation
or CVR is still not used in clinical practice.

Finally, blood-brain barrier (BBB) dysfunction has been implicated as one of
themany contributors to DCI. Its assessment bymeans of permeability imaging
(through CT or MR perfusion techniques) might add as a tool for predicting
DCI. Two recent studies have found an association between increased BBB
permeability and DCI [118, 119]; however, permeability imaging is still not
used in the clinical setting.

In summary, although DCI is one of the most important complications of
SAH, it is very difficult to predict. TCD, although useful in the diagnosis of
vasospasm, has questionable value in predicting DCI. CT perfusion performed
during the period of vasospasmmight help identify patients that will have DCI.
Diagnosis of DCI relies on non-contrast imaging, andMRI is the best technique,
with higher sensitivity than the most commonly performed CT studies. Re-
search is ongoing on other techniques, such as the evaluation of autoregulatory
mechanisms and BBB dysfunction, andmight add as future tools for prediction
of this important complication of SAH.

Conclusion

Imaging studies have been traditionally used to diagnose acute spontaneous
SAH and to investigate the presence of a ruptured aneurysm. However,
imaging studies performed early in the course of SAH also provide clues
for prediction of its major complications: vasospasm and DCI. The volume
of subarachnoid blood is a strong predictor of both these complications, but
recent technical improvements such as automatized quantification of blood
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on CT, and colour-coding post-processing of DSA images, have added value
in identifying patients that will develop vasospasm and DCI. MRI, still not
routinely performed in SAH patients, has the potential to diagnose early
brain injury and help predict DCI.

Monitoring of vasospasm is still important in SAH patients, and TCD is still
the preferred technique for this purpose inmost centres. Patients with suspected
symptomatic vasospasm on TCD will undergo DSA, the gold standard tech-
nique to confirm vasospasm, offering the possibility of endovascular treatment.

The occurrence of DCI has significant impact on the outcome of patients
with SAH; however, and despite extensive research, it is very difficult to predict.
Of all imaging methods, CT perfusion performed during the period of vaso-
spasm, at 7–10 days, might help identify patients that will have DCI. However,
CT perfusion thresholds are still not validated across centres. Other techniques,
such as the evaluation of autoregulatory mechanisms and BBB dysfunction, are
under research and might be future tools to help predict of this important
complication of SAH. Combining clinical and imaging parameters might in-
crease sensitivity and specificity in the prediction of vasospasm and DCI after
SAH.
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