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Abstract

Purpose of review The goal of this review is to highlight the influence of therapeutic
maneuvers on neuro-prognostication measures administered to comatose survivors of
cardiac arrest. We focus on the effect of sedation regimens in the setting of targeted
temperature management (TTM), one of the principle interventions known to improve
neurological recovery after cardiac arrest. Further, we discuss the critical need for novel
markers, as well as refinement of existing markers, among patients receiving extracorpo-
real membrane oxygenation (ECMO) in the setting of failed conventional resuscitation,

http://crossmark.crossref.org/dialog/?doi=10.1007/s11940-019-0602-1&domain=pdf
http://dx.doi.org/10.1007/s11940-019-0602-1


known as extracorporeal cardiopulmonary resuscitation (ECPR).
Recent findings Automated pupillometry may have some advantage over standard pupillary
examination for prognostication following TTM, sedation, or the use of ECMO after cardiac
arrest. New serum biomarkers such as Neurofilament light chain have shown good
predictive abilities and need further validation in these populations. There is a high-
level uncertainty in brain death declaration protocols particularly related to apnea testing
and appropriate ancillary tests in patients receiving ECMO.
Summary Both sedation and TTM alone and in combination have been shown to affect
prognostic markers to varying degrees. The optimal approach to analog-sedation is
unknown, and requires further study. Moreover, validation of known prognostic markers,
as well as brain death declaration processes in patients receiving ECMO is warranted. Data
on the effects of TTM, sedation, and ECMO on biomarkers (e.g., neuron-specific enolase)
and electrophysiology measures (e.g., somatosensory-evoked potentials) is sparse. The
best approach may be one customized to the individual patient, a precision-medicine
approach.

Introduction

With the advent of targeted temperature management
(TTM) and extracorporeal membrane oxygenation
(ECMO), we entered a new era of therapeutics that
fundamentally altered our ability to prognosticate and
brought the well-accepted pre-TTM era guidelines into
question. Further, it has become a common practice to
prescribe analgesics and sedatives for at least the initial
24 h of TTM for the prevention and treatment of shiver-
ing and the duration of ECMO administration for safety
and comfort. The effect of TTM, ECMO, and these phar-
macologic agents on the prognostic accuracy of predic-
tors of neurologic recovery has not been systematically
evaluated. The 2006 American Academy of Neurology
(AAN) guideline for outcome prediction in comatose
survivors of cardiac arrest was published prior to the
TTM era and recommended outcome prediction within
72 h of cardiopulmonary resuscitation and return of

spontaneous circulation [1]. In 2014, the European Re-
suscitation Council’s advisory statement on outcome
pred i c t i on r e commended de l ay ing neu ro -
prognostication beyond 72 h if residual effects of seda-
tion or paralysis are suspected [2].

It is especially important to understand the accuracy
of prognostic testing in patients receiving ECMO during
cardiac arrest or for post-cardiac arrest cardiogenic
shock, as recent research shows that profound and irre-
versible neurological deficits are often the primary rea-
son that surrogate decision-makers cite for withdrawal
of ECMO support from a critically ill patient [3], and
neurological etiologies are among the most common
cause of death in ECMO patients [4]. Limited data exists
regarding the extent to which ECMO may affect the
prognosticators of patient recovery from acute brain
injury.

The impact of medical management on prognostication
Indications and implications of TTM

The 2015 American Heart Association (AHA) guideline recommends that co-
matose adult survivors of cardiac arrest undergo TTM between 32 °C and 36 °C
(class I, level of evidence (LOE) B-R for shockable rhythms with out-of-hospital
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cardiac arrest; class I, LOE C-EO for non-shockable rhythms and in-hospital
cardiac arrest) [5••]. The AHA suggests that TTM bemaintained for at least 24 h
after achieving target temperature (class IIa, LOE C-EO), but recommends
against the routine prehospital cooling of patients with rapid infusion of cold
fluids (class III, LOE A). Finally, the same AHA guideline states that it may be
reasonable to actively prevent fever in comatose patients following TTM (class
IIb, LOE C-LD) [5••]. TTM can be achieved using intravascular or surface
cooling with limited data demonstrating no clear superiority of one method
over another [6–8]. Shivering is the most common complication of TTM and
most prominent during the induction phase when target temp is 32–34 °C and
occurs regardless of target temperature chosen [9, 10]. Shivering attenuates the
benefits of TTM by increasing metabolism and lowering brain oxygenation [11,
12]. Vigilant monitoring for shivering with aggressive treatment is indicated
[13].

Understanding the pharmacokinetics and pharmacodynamics of sed-
atives and analgesics as well as the different factors that may lead to
their accumulation and prolonged elimination plays a key role in prog-
nostication in the setting of TTM. Predictors of late awakening in coma-
tose cardiac arrest survivors treated with therapeutic hypothermia and
sedation have been evaluated in a single-center observational cohort
[14•]. While the use of midazolam alone [14•] or in combination with
fentanyl [15•] has been shown to be associated with late awakening
compared with propofol. This could be explained by the differences
between midazolam and propofol pharmacokinetic properties (see sup-
plementary Table 1). Physiologic alterations impacting pharmacokinetics
have also been described during TTM. These include a decrease in the
cytochrome P450 activity, reduction in both hepatic transformation and
renal excretion, due to a decrease in hepatic and renal blood flow,
respectively [16, 17]. An excess of serum drug concentrations used for
sedation and neuromuscular blockade, a decrease in total body clear-
ance, and persistence of elevated drug levels even hours after rewarming
have been demonstrated in brain-injured patients receiving TTM to 32–
34 °C [18–20].

Neurological exam
In patients who receive TTM, the AHA guideline recommends [5••]
waiting for 72 h after return to normothermia (class IIb, LOE C-EO)
to help reduce the confounding risk of sedation and neuromuscular
blockade, especially in the context of decreased drug clearance in the
setting of TTM, liver injury, or acute kidney injury [21]. TTM either
prolongs the time to awakening or allows those who otherwise would
not regained consciousness to do so in a delayed fashion [22–27]. A
post hoc analysis of the TTM trial evaluated the time until awakening
after cardiac arrest and its association with the goal temperature of 33
versus 36 °C [28]. Despite receiving comparable cumulative doses of
sedatives in both groups, and no difference in ultimate neurological
outcome, daily awakening was delayed in patients in the 33 °C group.
This might be due to decreased clearance of sedatives and analgesics at
lower body temperature. In this trial, the false positive rate (FPR) of
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absent pupillary reflex was 2.1% (95% confidence intervals (CI) 0.3–
11.2%), and the FPR of absent corneal reflex was 2.2% (95% CI 0.3–
11.4%). Though not statistically significant, both false positives were in
patients cooled to 33 °C as opposed to 36 °C, which raises the issue of
patients cooled to 33 °C requiring more time prior to prognostication
than those cooled to 36 °C [29].

The European Resuscitation Council reported an FPR of absent pupillary
reflex of 8% (95% CI 1–25%) within the first day with an improvement of 0%
at 72 h both in patients treated with TTM and those not treated with TTM [30].
The AHA guideline likewise suggests that absence of pupillary reflex in patients
72 h post-cardiac arrest was a reasonable basis for poor outcome prediction
with a FPR of 1% (95%CI 0–3%) in patients who have undergone TTM (class I,
LOE B-NR) [5••]. However, in a subsequent study of patients receiving TTM, 5
of 78 patients (FPR 6%) with absent pupillary light reflexes on day 3 had a
favorable outcome [31••].

Overall, absence of the corneal reflex seems less specific for poor outcome
than absence of the pupillary light reflex. In patients treated with TTM to 33 °C,
absent corneal reflex at 72–120 h predicts poor outcome with a FPR of 2%
(95% CI 0–7%) [32, 33]. The FPR for absence of either pupillary or corneal
reflexes at 72 h has been reported as 4% (95% CI 1–15%) at 33 °C [34] with
similar findings at 36 °C [35].

Recently, investigators have assessed automated pupillometry as an
advance over standard pupillary examination for prognostication follow-
ing cardiac arrest. Suys et al. reported that under conditions of TTM to
33 °C with concomitant sedation, quantitative pupillometry light re-
sponse is lower than in normothermic conditions in the absence of
sedation [36]. Nonetheless, quantitative pupillometry has shown prom-
ise as a prognostic tool during TTM with sedation with a quoted FPR of
0% for quantitative pupillary light reactivity measure (expressed as the
% of pupillary response to a calibrated light stimulus) of G 7% in one
and G 13% in two other studies [36–38]. The Neurological Pupil index
(NPi) may be an even more accurate prognosticator than the quantita-
tive pupillary light reflex during the first days of TTM, as it may be more
sensitive and less influenced by opioids and ambient light [31••].

The AHA guideline recommends that motor responses alone should not
be used for predicting a poor neurologic outcome (class III harm, LOE B-
NR) [5••] due to high FPRs (10–20%) associated with it of 10% (95% CI
7–15%) [33, 34].

While the brainstem reflexes are seen to be more present upon discontinu-
ation of sedation [39], a retrospective evaluation demonstrated that while
sedation decreases the positive predictive value of the absence of corneal
reflexes and poor motor exam, it does not affect the prognostic accuracy of
the absence of pupillary responses [40].

While any myoclonus within 72 h predicts a poor outcome (5% FPR;
95% CI 3–8%) [33, 34, 41, 42], patients with myoclonus associated
with epileptiform activity on electroencephalography (EEG) seem to
have a worse prognosis than those without epileptiform activity [43].
Given the high FPRs, the AHA recommends that the presence of any
myoclonus should not be used to predict poor neurological outcome
(class III: harm, LOE B-NR). They do suggest, however, that the presence
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of status myoclonus may be used during the first 72 to 120 h after
cardiac arrest in combination with other tests to predict poor outcome
(class IIa, LOE B-NR) [5••]. In the TTM era, there has been a push
towards increasingly sophisticated classifications of myoclonus, including
consideration of the anatomical distribution, type, duration, associated
EEG findings, and response to treatment [43, 44••, 45, 46, 47••].

Electrophysiology (EEG and SSEP)

Electroencephalography
EEG background is widely used for early prognostication and risk strat-
ification, with several patterns correlating with poor outcome after CA.
These patterns include malignant features [48, 49] such as burst-
suppression pattern [50], low voltage [51, 52], status epilepticus [53–
55], stimulus-induced rhythmic, and periodic or ictal discharges [56].
Conversely, presence of continuous background during the post-
resuscitation phase, including the time from arrest to the development
of such background is associated with good outcome [52, 57]. However,
sedation is known to affect the EEG background in healthy individuals
[58], and the influence of sedation on these patterns is not routinely
reported. A single-center study showed that suppression ratio and
amplitude-integrated EEG have been changed significantly after sedation
lightening in cardiac arrest patients, with the degree of change correlat-
ing with outcome [59]. Given these factors, clinicians who attempt
interpretation without taking sedation into account may make inappro-
priate conclusions. Another EEG-based feature, reactivity to external
stimulus, has also been associated with outcome and has been reported
in several evaluations of multimodal prognostication [2, 52, 60]. The
effect of sedation on EEG reactivity has not been reported, although it is
likely there would be changes similar to those seen with EEG back-
ground. This has resulted in the most recent international consensus
for EEG reactivity reporting recommending that information on analge-
sics and sedatives be reported when testing EEG reactivity in cardiac
arrest patients [61]. A recent study showed that a routinely used seda-
tive, propofol, induces changes in the post-anoxic EEG, but does not
affect its value for the prediction of outcome [62•].

Somatosensory-evoked potentials
In patients who have undergone TTM, absent N20 responses after
rewarming may be slightly more accurate than during TTM in prediction
of a poor outcome (FPR 1%, 95% CI 0–3% vs. FPR 2%, 95% CI 0–4%)
[32–34, 42, 63, 64]. The AHA reports that it is reasonable to consider
bilaterally absent N20 responses 24 to 72 h after cardiac arrest, regard-
less of TTM, as a predictor of poor outcome (class IIa, LOE B-NR). A
caveat to that recommendation is that artifact frequently limits the
interpretability of somatosensory-evoked potentials (SSEPs), even in par-
alyzed patients [65]. Analgesics and sedatives could increase the latency
and decrease the amplitude of the SSEP response in a dose-dependent
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manner [21]. Despite evaluations reporting low FPR of 0.7% (95% CI
0–5%) for bilateral absent N20, when adjusted for early withdrawal of
life supporting therapy, the FPR increased to 7.7% [66•]. Nonetheless,
some researchers have suggested a more nuanced analysis of N20 am-
plitudes beyond the dichotomous presence versus absence distinction to
increase the sensitivity of SSEPs to predict poor outcome [67, 68].

Serum biomarkers

Neuron-specific enolase and serum S-100 β protein
Serum neuron-specific enolase (NSE), a marker of neuronal injury, is the
best-studied serum biomarker for prognostication following cardiac ar-
rest. By attenuating secondary neuronal injury, TTM may lower serum
NSE levels [69]. Serum S-100 β protein, a marker of glial injury as
opposed to neuronal injury, may be less affected by TTM than serum
NSE [69]. The depth and duration of TTM do not seem to have a
significant effect on NSE or S-100 β protein levels [70–72]. It is uncer-
tain if any definite threshold exists to predict poor outcome in patients
treated with TTM, but certainly, a serum NSE threshold of 33 μg/L
results in unacceptably high FPRs [32, 33, 70]. In one study, a cut-off
of 151 μg/L was needed to obtain an FPR of 0% [73]. Some of the
difficulty in establishing an acceptable threshold for biomarkers like NSE
or Serum S-100 β protein may be attributable to sample hemolysis,
variance in storage practices and diagnostic assays, or other laboratory-
based variations [74]. The AHA guideline recommends that NSE or
serum S-100 β protein should not be used alone to predict poor
neurologic outcome (class III harm, LOE C-LD) [5••]. If obtaining a
single serum NSE, day 3 values may be the most accurate for diagnosing
poor outcome [75]. Serial sampling may also improve accuracy [76].

Serum neurofilament light chain
The development of an ultrasensitive assay has prompted interest in
serum neurofilament light chain as a predictor of poor outcome fol-
lowing cardiac arrest. In the TTM trial, serum neurofilament light chain
was a more sensitive predictor of poor outcome than the neurological
exam or electrophysiological assessments with comparable specificity
[77••]. Target temperature may affect levels depending on the time-
point tested.

Neuroimaging

Computed tomography (CT)
Reduced gray-white ratio at the level of the basal ganglia predicts poor
outcome with variably low FPRs based on measurement technique and
threshold [78–81]. Insufficient data are available to suggest a significant
effect of TTM on CT imaging following cardiac arrest. The AHA guideline
suggests that it may be reasonable to use a marked reduction in gray-
white ratio on brain CT obtained within 2 h after cardiac arrest to
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predict poor outcome in patients not treated with TTM (class IIb, LOE
B-NR), but makes no recommendations for patients treated with TTM
[5••].

Magnetic resonance imaging (MRI)
Neuronal injury on MRI is detected by diffusion-weighted imaging
(DWI) and quantified by the apparent diffusion coefficient (ADC). Both
qualitative measures of DWI abnormalities and quantified ADC thresh-
olds have been reported as predictors of poor outcome following cardiac
arrest, in either regional or global distributions [82, 83, 84•]. Method-
ological variance is partially responsible for the wide variation of report-
ed FPRs for poor outcome. There are also concerns regarding interrater
reliability when quantitative values are not obtained [85]. In addition,
MRI changes following cardiac arrest are dynamic [86]. The preferred
timing of MRI for prognostication is uncertain, but most experts advo-
cate waiting 2–5 days following cardiac arrest. The influence of TTM on
MRI-based prognostication is unknown, but some advocate for longer
waiting periods prior to obtaining MRI in patients who undergo TTM
[87•]. The AHA guidelines suggests that it may be reasonable to consid-
er extensive restriction of diffusion 2–6 days following cardiac arrest in
combination with other predictors to predict poor outcome (class IIB,

Table 1. Suggested neuromonitoring for ECPR patients at key time-points

Timing in reference to ECMO
placement for ECPR

Purpose of assessment Recommended
measures

Pre-cannulation • To assess if there is severe anoxic brain injury (relative
contraindication)

• TTM eligibility

• *CT Head for edema
•Quantitative pupillary
exam for PLR and NPI

Post-cannulation • Monitoring for significant neurological complications
(stroke, hemorrhage, and seizures)

• Neuro-prognostication
• Brain-death declaration

•Serial neurological exam
•Continuous EEG
•CT head
•Neuron-specific enolase
•Somatosensory evoked
potentials

Post-awakening Short- and long-term screening for cognitive, functional,
neurological, and psychosocial deficits

•RBANS or TICS
•M-PSMS
•M-IADL
•mRS
•CES-D
•PCL-5
•GAD-2

CES-D Center for Epidemiological Studies-Depression, ECMO extracorporeal membrane oxygenation, ECPR extracorporeal cardiopulmonary
resuscitation, EEG Electroencephalography, GAD-2 generalized anxiety disorder, M-IADL The Lawton Instrumental Activities of Daily Living
(IADL) Scale, M-PSMS Modified Lawton Physical Self-Maintenance Scale, mRS modified Rankin Scale, NPI Neurological Pupillary index, PCL-5
post-traumatic stress disorder checklist—civilian, PLR pupillary light reflex, RBANS Repeatable Battery for Neuropsychological Status, TICS
Telephone Interview for Cognitive Status, TTM targeted temperature management
*Obtaining CT Head may not be possible due to hemodynamic instability in certain cases
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LOE B-NR) [5••]. Whether hypothermia has any effect on resting state
neural networks, fractional anisotropy on diffusion tensor imaging or
any metabolites measured via magnetic resonance spectroscopy is
unknown.

ECMO as a therapeutic agent after cardiac arrest

ECMO is an increasingly used technique providing cardiopulmonary
support to patients with severe refractory cardiac and respiratory failure.
Venoarterial ECMO in the setting of cardiac arrest is used either as
extracorporeal cardiopulmonary resuscitation (ECPR) during cardiac ar-
rest refractory to conventional cardiopulmonary resuscitation, or for
post-cardiac arrest cardiogenic shock. There is a high incidence of neu-
rological complications reported in patients requiring ECMO during or
after cardiac arrest [88, 89••, 90]. Neuromonitoring would be appropri-
ate pre-cannulation to identify the salvageable cases devoid of severe
anoxic brain injury in cases where this is feasible, and post-cannulation
to prognosticate comatose survivors and to potentially declare brain
death when there is evidence for it (Table 1). Limited data exist regard-
ing the predictive value of the different monitoring modalities in this
setting.

Neurological exam
During ECMO support, patients may undergo physical examinations per
the standard procedure, restricted only by sedation and neuromuscular
blockade. Comatose ECMO patients are thus, often-limited to pupillary
assessments, and data is conflicting at best. Maekawa et al. suggested
that pupil diameter on hospital arrival may be a key predictor of
neurologic outcome in patients who went on to receive ECMO [91].
However, another study showed no differences in pupil diameter on
arrival to the emergency room between survivors and non-survivors of
ECMO for out-of-hospital cardiac arrest [92]. The authors did observe a
positive pupillary reflex more frequently in after initiation of ECMO,
and this was seen in significantly more survivors than non-survivors.

New automatic computerized devices such as the NPi-200 Pupillometer,
which measures pupillary size and reactivity, have eliminated inaccuracies
caused by interpreter reliability. One small study (N = 28) has found the quan-
titative neurological pupillary index to be a useful early neuro-prognosticator in
venoarterial ECMO patients [93•].

Electrophysiology (EEG and SSEP)
While there is very little data in adults, studies from critically ill neo-
nates placed on ECMO post-hypoxic-ischemic encephalopathy provide
some evidences that monitoring of electrical activity via EEG and SSEP
may not be entirely accurate for patients during ECMO [94]. Data from
neonates receiving ECMO have highlighted the fact that abnormalities in
EEG background could be a result of ECMO and may resolve with time
[95, 96]. The most abnormal EEG while receiving ECMO and EEG and
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SSEP readings after decannulation have been shown to have the stron-
gest predictive value for neurological prognosis [95]. The data is sparse
in adults; there has been a recent small study examining EEG back-
ground (N = 13) and SSEPs (N = 7) in patients on VA ECMO [97•].
Only poor variability and absence of reactivity were associated with
unfavorable neurologic outcome. Of the seven patients who received
the SSEPs as well, all had poor outcomes, despite the presence of N20
response (4 normal, 3 delayed). However, based on the small sample
size and the fact that no patients had absent N20 responses and, even
when they were present, they were due to peripheral delays; the re-
searchers urge caution when using EEG and SSEPs to prognosticate in
patients receiving ECMO until the results of their study are better
understood and validated (5).

Neuroimaging
Choices for imaging techniques, as with physical examinations, are
limited during ECMO support. Due to the ferrous properties of the
ECMO pump and circuit, magnetic resonance imaging while receiving
ECMO is contraindicated. In adults, cranial computed tomography (CT)
is preferred but due to the difficulty of transporting patients receiving
ECMO support [98], some ECMO patients only undergo CT after
decannulation. Portable CT scanners have potential to make imaging
more widely available. Studies looking at the predictive ability of CT
in ECMO patients are sparse. One small study (N = 20) [92] showed that
findings on brain CT just after ECMO and subsequent images may
represent an important predictor for neurologic outcome. Further, all
patients (N = 4) who had intracranial hemorrhage due to hypoxic brain
damage on follow-up images died regardless of the initial CT findings.
Growing clinical experience with ECMO has led to greater awareness
about CT imaging pitfalls, including variable levels of flow assistance
and cannulation strategies that all may potentially affect interpretation
of imaging studies [99].

Serum biomarkers
Plasma biomarkers have the potential to emerge as a leading monitoring
tool to predict the neurological outcome for patients during ECMO. An
ideal biomarker would have high sensitivity for detection of both ische-
mic and hemorrhagic injury, provide real-time information, and allow
detection of injury at the cellular level that precedes cellular death [100].
Several biomarkers related to glial injury (glial fibrillary acidic protein
(GFAP) and serum S-100 β), neuronal injury (NSE), and other markers
of neuroinflammation (ICAM-5 and monocyte chemoattractant protein
1/chemokine (C-C motif) ligand 2 (MCP-1/CCL-2)) have been associat-
ed with a higher risk of neurological injury and death [100–102].
Similarly, serum S-100 β may serve as an early indicator of cerebral
complications, in particular, intracerebral hemorrhage [103]. In a more
recent meta-analysis (17 papers containing 903 cases), high serum lac-
tate level was associated with poor survival and poor neurological
outcome in CA patients treated with ECMO [104•]. Lastly, elevated
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concentrations of GFAP and ICAM-5 predicted abnormal neuroimaging
[101]. While validation in larger studies is still required, these prelimi-
nary findings have suggested biomarkers mentioned above as potential
indicators for obtaining further investigations (i.e., neuroimaging and
non-invasive neuromonitoring) and for initiation of neuroprotective
therapies.

Brain death declaration
The American Academy of Neurology has outlined criteria for the determina-
tion of brain death [105]. Given the high reported mortality rates—and in
particular, brain death—in patients treated with ECMO for cardiac arrest, a
thorough understanding of the definition and determinations of brain death
is critical. Despite the importance of the assessment of brain death, objective
protocols for patients receiving ECMOare clearly lacking [106•]. Unfortunately,
patients who require ECMO support often have physiologic conditions that
might further challenge apnea testing. For patients being supported with
venoarterial ECMO, pulsatile flow and blood pressures in the absence of
significant doses of vasoactive agents might be too low as mandated by the
AAN prior to attempting an apnea test. Various strategies have been proposed
but have not reached universal consensus [107, 108]. Ancillary tests including
continuous electroencephalographic (EEG) testing may be helpful when posi-
tive, but external electromagnetic energy sources like ECMOcircuitry, maymake
conclusive interpretation of results difficult. Cerebral angiography or nuclear
scanning may document the absence of cerebral blow flow, but such testing in
patients receiving ECMOmay be due to logistics [109•]. To compensate for the
confounding influence of the inherent ability of the ECMO circuit not only to
provide hemodynamic stability, but also more importantly, to maintain ade-
quate oxygenation and normal blood carbon dioxide levels; some investigators
have proposed modifications of ECMO flows and gas exchange during apnea
testing. However, such experiences are limited to small series of patients [107,
108].

Conclusion

With advances in therapeutics such as TTM and ECMO and effective
public health campaigns, survival rates after cardiac arrest have increased
significantly in the last decade. Despite such optimistic developments,
withdrawal of life-sustaining therapy because of perceived poor neuro-
logical prognosis remained the most common cause of hospital death
after cardiac arrest. Sedation continues to be the most critical confound-
er adversely affecting the reliability and the validity of measures tradi-
tionally being validated in the pre-TTM era for neuro-prognostication
after cardiac arrest. Future studies are needed to examine the value of a
multimodal prognostication scheme that includes novel biomarkers,
quantitative measures of brain stem reflexes, and point-of-care cerebral
perfusion monitors that allow optimization of blood flow after achiev-
ing a return of spontaneous circulation after cardiac arrest. Outcomes to
test predictive abilities should integrate neurocognitive, functional, and
psychological deficits along with survival.
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