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Opinion statement

New neuroprotective treatments aimed at preventing or minimizing Bdelayed brain
injury^ are attractive areas of investigation and hold the potential to have substan-
tial beneficial effects on aneurysmal subarachnoid hemorrhage (aSAH) survivors. The
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underlying mechanisms for this Bdelayed brain injury^ are multi-factorial and not
fully understood. The most ideal treatment strategies would have the potential for a
pleotropic effect positively modulating multiple implicated pathophysiological
mechanisms at once. My personal management (RFJ) of patients with aneurysmal
subarachnoid hemorrhage closely follows those treatment recommendations
contained in modern published guidelines. However, over the last 5 years, I have
also utilized a novel treatment strategy, originally developed at the University of
Maryland, which consists of a 14-day continuous low-dose intravenous heparin
infusion (LDIVH) beginning 12 h after securing the ruptured aneurysm. In addition
to its well-known anti-coagulant properties, unfractionated heparin has potent anti-
inflammatory effects and through multiple mechanisms may favorably modulate the
neurotoxic and neuroinflammatory processes prominent in aneurysmal subarachnoid
hemorrhage. In my personal series of patients treated with LDIVH, I have found
significant preservation of neurocognitive function as measured by the Montreal
Cognitive Assessment (MoCA) compared to a control cohort of my patients treated
without LDIVH (RFJ unpublished data presented at the 2015 AHA/ASA International
Stroke Conference symposium on neuroinflammation in aSAH and in abstract format
at the 2015 AANS/CNS Joint Cerebrovascular Section Annual Meeting). It is impor-
tant for academic physicians involved in the management of these complex patients
to continue to explore new treatment options that may be protective against the
potentially devastating Bdelayed brain injury^ following cerebral aneurysm rupture.
Several of the treatment options included in this review show promise and could be
carefully adopted as the level of evidence for each improves. Other proposed
neuroprotective treatments like statins and magnesium sulfate were previously
thought to be very promising and to varying degrees were adopted at numerous
institutions based on somewhat limited human evidence. Recent clinical trials and
meta-analysis have shown no benefit for these treatments, and I currently no longer
utilize either treatment as prophylaxis in my practice.

Introduction

The modern treatment of aneurysmal subarachnoid
hemorrhage has resulted in a decline in the rate of
physical disability and case fatality over the last
20 years [1]. These improvements have correlated
with early treatment of the aneurysm to prevent re-
bleeding, along with improved critical care manage-
ment of cerebral vasospasm and other derangements
by neurointensivists in dedicated neurocritical care
units [2]. Unfortunately, in spite of these advances,
those fortunate patients with minimal Bearly brain
injury^ are still at significant risk for other types of
Bdelayed brain injury^ often attributable to the direct
neurotoxic and neuroinflammatory processes sec-
ondary to breakdown products from the initial

hemorrhage burden. This direct hemorrhage toxicity
to the surrounding brain can result in global brain
atrophy, which is commonly manifested as new cog-
nitive disability including difficulties with memory,
executive function and language [3•, 4–7]. These
problems can lead to serious difficulty for patients
to re-integrate into their previous lives including the
inability to return to work, school, or previous pro-
ductivity [8]. New neuroprotective treatments aimed
at preventing or minimizing various types of
Bdelayed brain injury^ are attractive areas of investi-
gation and hold the potential to have substantial
beneficial effects on aneurysmal subarachnoid hem-
orrhage survivors.
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Novel treatments

& Here, we will review promising treatment options for aneurysmal sub-
arachnoid hemorrhage that have yet to be widely accepted or adopted.

& Some treatments may not meet a minimum threshold of evidence to
currently support their use in patients outside of clinical trials.

Pharmacological neuroprotectants

Modulation of neuroinflammation

Unfractionated heparin

Unfractionated heparin (UFH) is a well-known anti-coagulant and most
commonly utilized to treat deep venous thrombosis, pulmonary embo-
lism, and other conditions requiring anti-coagulation. UFH has other
biological effects that are much less appreciated and it has recently been
proposed as a prophylactic neuroprotection treatment for aSAH patients [9,
10]. UFH is a highly sulfated glycosaminoglycan polymer of varying chain
lengths and carries the highest negative charge of any endogenously pro-
duced biological molecule. This allows it to bind to many positively
charged biological molecules [11, 12]. These interactions can result in a
wide range of physiological effects, of which many can be linked to the
multiple pathophysiological mechanisms implicated as potential contrib-
utors to Bdelayed brain injury^ in aSAH patients [10, 13–15]. UFH can exert
a potent anti-inflammatory effect. It binds and deactivates several positively
charged inflammatory mediators e.g. (cytokines, chemokines, and other
endothelial and platelet-related proteins) [10, 16–18]. Heparin interacts
with free hemoglobin and forms a complex that neutralizes the irritative
effects of oxyhemoglobin [10, 19]. It can also act as a scavenger for delete-
rious oxygen free radicals [10, 20]. UFH has also been shown to counteract
the effects of endothelin which is a potent vasoconstrictor implicated in
aSAH-induced cerebral vasospasm by inhibiting endothelin receptor
transactivation and additionally reducing endothelin transcription [10, 21–
26].
The neuroprotective effects of heparin in SAH have been investigated with
animal and human studies. In one study, adult male rats underwent
bilateral stereotactic injections of autologous blood (50 μL) into the sub-
arachnoid space of the entorhinal cortex. The rats received either vehicle or
unfractionated heparin (10 u/kg/h IV) 12 h after SAH through mini-
osmotic pumps. In controls assessed at 48 h, SAH was associated with
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robust neuroinflammation in the adjacent cortex and neurodegeneration.
In the hippocampus, a neuroinflammatory response was indicated by Iba1-
positive, ED1-negative microglia exhibiting an activated morphology. The
perforant pathway showed Fluoro-Jade C staining and demyelination, and
granule cells of the dentate gyrus showed upregulation of cleaved caspase-3,
consistent with transsynaptic apoptosis. The study showed that the ad-
ministration of heparin significantly reduced neuroinflammation, demye-
lination, and transsynaptic apoptosis [27].
Enoxaparin (low-molecular weight fractionated heparin) has been investi-
gated in aSAH patients. A group of 57 patients received 20 mg of
enoxaparin (treatment). A second group of 60 patients received isotonic
saline (placebo). There was a statistically significant reduction in the rate of
delayed ischemic deficit and vasospasm-related cerebral infarctions be-
tween the heparin group and the control group (8.8 vs. 66.7 % and 3.5 vs.
28.3 %, respectively; p G 0.001). They also reported better overall outcomes
at 1-year follow-up among the heparin group [28]. However, another
randomized clinical trial reported conflicting results [29].
A recent human retrospective cohort study at the University of Maryland
compared patients with Fisher grade 3 aSAH due to a ruptured
supratentorial aneurysm that presented within 36 h and were treated by
surgical clipping within 48 h of their ictus. Forty-three patients were man-
aged postoperatively with a low-dose intravenous heparin (LDIVH) infu-
sion (8 u/kg/h progressing over 36 h to 10–12 U/kg/h) starting 12 h after
surgery and continuing until day 14 after the ictus. Forty-three control
patients received conventional subcutaneous heparin (5000 U) twice daily
as deep vein thrombosis prophylaxis. In the LDIVH group, there were no
clinically significant hemorrhages, instances of heparin-induced thrombo-
cytopenia, or deep vein thrombosis encountered. Results showed that the
frequency of clinical vasospasm was 47 % in the control group and only
9 % in the LDIVH group (p = 0.0002). Likewise, vasospasm-related infarc-
tion on CT was higher in the control group compared to the heparin group
(21 vs. 0 %, p = 0.003). Additionally, the rate of patients discharged to
home vs. to rehabilitation facility was higher in the heparin group com-
pared to the control group (62.8 vs. 39.5 % (n = 43) and 40.4 vs. 59.5 %,
respectively (n = 42), p = 0.05) [30••].
Heparin may also help prevent potentially devastating neurocognitive
dysfunction after subarachnoid hemorrhage. In a retrospective cohort
study, cognition was studied using the Montreal Cognitive Assessment
(MoCA) at the 90-day follow-up or later. The MoCA was previously vali-
dated in aSAH, and scores can range from0 to 30with Bnormal^ designated
as a score of 26 or greater [31•, 32]. Twenty-two SAH control patients had a
mean MoCA score of 22.7 ± 7.0 compared to 25 patients treated with the
LDIVH protocol (up to 12 U/kg/h) over 14 days resulting in a mean MoCA
score of 26.4 ± 2.3 (p = 0.013;one-tailed unequal variance independent t
test). Importantly, univariate and multivariate linear regressions confirmed
that LDIVH treatment significantly influenced MoCA scores in a favorable
manner while simultaneously controlling for factors which can negatively
influence cognition such as fever and aneurysm location (RFJ unpublished
data, presented at a 2015 AHA/ASA International Stroke Conference sym-
posium session and in abstract form at the 2015 AANS/CNS
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Cerebrovascular Section Annual Meeting).
So far, studies that investigated the role of heparin as a neuroprotective
agent in SAH have shown encouraging results in preventing the undesirable
sequelae of cognitive impairment and focal neurological deficits. Further
study of heparin in aSAH is ongoing. A multi-center randomized phase II
clinical trial, comparing LDIVH-treated patients to controls, the Aneurys-
mal Subarachnoid hemorrhage Trial RandOmizing Heparin (ASTROH) is
actively enrolling with plans to enroll 88 patients. Enrollment is estimated
to be complete byMarch 2018 with the 90-day primary outcomes available
soon thereafter (NCT02501434).

Standard dosage Continuous intravenous infusion (no bolus) starting 12 h after securing aneu-
rysm at 8 u/kg/h and increasing every 12 h up to approximately 12 u/kg/h for a
duration of 14 days

Contraindications History of heparin-induced thrombocytopenia (HIT) or other heparin insensi-
tivity, incompletely secured aneurysm, any known and significant risk of
bleeding complications

Main side effects Risk of bleeding and HIT

Special points No study has yet shown any serious safety concerns. Nevertheless, cerebrovas-
cular specialistsmay be concerned about administering heparin to patients with
a recently ruptured aneurysm. Non-anti-coagulating heparins are being de-
signed which may retain the anti-inflammatory and other salutary effects of
heparin, offering the potential for even safer therapies.

Glyburide/(aka Glibenclamide)

Glyburide, a well-known oral anti-diabetic medication, recently has been
studied for a possible neuroprotective effect. The theorized mechanism for
this effect is through selective inhibition of SUR1, which is a membrane
protein that co-associates with heterologous pore-forming subunits to form
ion channels. Following injury in neurons and endothelium, SUR1 binds
with an ATP- and Ca2+-sensitive nonselective cat-ion-channel, known as
transient receptor potential melastatin 4 (Trpm4), to form Sur1-Trpm4
channels. Opening of SUR1-Trpm4 channels is associated with excess
influx of Na+, which is accompanied by influx of Cl− andH2O, resulting in
oncotic cell swelling (cytotoxic edema) and necrotic cell death [33•, 34].
Sur1–Trpm4 channels are upregulated in neurons, astrocytes, oligoden-
drocytes, and microvascular endothelial cells after hemorrhagic CNS insult
[35–37]. Depletion of ATP, as occurs in ischemia and hemorrhage, can
result in persistent activation of Sur1–Trpm4 channels leading to excessive
influx of Na+, Cl−, and water, ensuing cytotoxic edema and necrotic
(oncotic) cell death in the CNS [37].
SUR1 blockade by glibenclamide is associated with a significant reduction
in several markers of neuroinflammation in a SAH rat model and human
tissue. Förster resonance energy transfer (FRET) was used to detect co-
associated Sur1 and Trpm4 in human autopsy brains with SAH and rat
models of SAH involving entorhinal cortex. Sur1-Trpm4 channels were
upregulated in humans and rats with SAH. In rats, inhibiting Sur1 using the
selective Sur1 inhibitor glibenclamide reduced SAH-induced immuno-
globulin G extravasation and TNFα overexpression. In models with ento-
rhinal SAH, rats treated with glibenclamide for 7 days after SAH exhibited
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better platform search strategies and better performance on incremental
and rapid spatial learning than control animals [38••].
Simard et al. demonstrated in animal studies and in in vitro experiments
that SUR1which is encoded by Abcc8 gene is upregulated in cortex adjacent
to SAH. This upregulation was attributed to prominent TNFa and (NF)kB
signaling in areas of SAH. In vitro experiments showed that TNFa/(NF)kB
resulted in increased transcription of Abcc8 gene. They studied the effects of
SUR1 inhibitor (glibenclamide) on blood brain barrier permeability, in-
flammation, and cell death. They found that inhibiting SUR1 using low-
dose glibenclamide after SAH resulted in a significant attenuation in the
SAH-induced alteration in barrier permeability. They also demonstrated
that in rats treated with glibenclamide after SAH, local inflammation
reflected by levels of TNFa/(NF)kB and reactive astrocytosis were signifi-
cantly reduced. Additionally, in animals treated with glibenclamide,
caspase-3 activation was absent in four of five rats and was minimal in the
fifth [39].
Patients with type 2 diabetes taking a sulfonylurea drug for glycemic control
and patients with type 2 diabetes who are not taking a sulfonylurea were
studied to determine whether sulfonylureas are protective against ischemic
edema and its associated sequelae. Kunte et al. conducted a retrospective
study to determine whether sulfonylurea therapy conferred protection
against symptomatic hemorrhagic transformation in patients with type 2
diabetes. The authors compared 43 patients taking a sulfonylurea drug
before and during hospital admission for ischemic stroke with 177 controls
not taking a sulfonylurea drug. They found that the patients receiving
sulfonylureas had significantly fewer deaths (0 vs 10 % of controls) and a
significantly lower rate of symptomatic hemorrhagic transformation (0 vs
11 % of controls) [40].
A recent pilot study [41], and a multicenter, randomized, double-blind,
phase II trial examined the efficacy of RP-1127 (Glyburide for injection/
Cirara; Remedy Pharmaceuticals, Inc) in the prevention of malignant ede-
ma in severe anterior circulation ischemic stroke (Glyburide Advantage in
Malignant Edema and Stroke–Remedy Pharmaceuticals [GAMES-RP],
NCT01794182, ClinicalTrials.gov) [42]. Preliminary results were presented
in abstract form at the 2016 American Heart Association, International
Stroke Conference in Los Angeles, CA. While there were no safety concerns,
the study did not show significance of the primary endpoint, avoidance of
decompressive craniectomy, and 0–4 mRS. However, the study did dem-
onstrate strong trends towards decreased mortality in the glyburide group
and highly significant reduction inmidline shift andMMP-9 levels. A phase
III study for ischemic stroke is actively being planned. While direct corre-
lation to aSAH patients is not possible, animal models support consider-
ation of future studies in aSAH and we expect that human trials of intra-
venous glyburide in aSAH may be planned shortly.

Standard dosage Glyburide for Injection (Cirara): 24 ml bolus (5.4 ug/ml) given over 2 min
followed by a daily infusion at a rate of 31 mL/h for the first 6 h and then
21 mL/h for 66 h for a total of 72 h (GAMES-RP Protocol).

Contraindications No insulin when blood glucose G120 mg/dL; no BTight^ blood glucose control
(80–110 mg/dL) during infusion
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Main side effects Hypoglycemia

Special points Not FDA approved, available only through investigational use (IND held by
Remedy Pharmaceuticals, Inc.)

Ibuprofen

The anti-inflammatory effect of ibuprofen is well known and specific to
fever. The application of ibuprofen to in vitro models of thermal stress has
been shown to be a potent inhibitor of ICAM expression for a sustained
period of up to 36 h [43]. ICAM-1 is located on the vascular endothelium
and binds the CD18 complex on circulating leukocytes [44, 45]. Studies in
animal models of cerebral infarction and SAH have implicated ICAM
expression in the development of postischemic microvascular failure, de-
layed tissue injury, and delayed arterial spasm following SAH [44–49]. In
addition, ICAM-1 expression is elevated in human stroke and aneurysmal
SAH [50, 51]. In a clinical study, serial serum assessments of soluble ICAM
levels were performed in aneurysmal SAH (N = 80) compared with levels in
patients without SAH, to determine whether degree of elevation was pre-
dictive of outcome independent of the initial clinical grade [52, 53]. The
timeline for ICAM elevation closely corresponded with that observed for
fever after SAH. When compared with non-SAH controls, early soluble
ICAM levels were elevated in the entire SAH cohort. Further analysis across
Hunt Hess grades found a linear relationship with higher levels in patients
with Hunt Hess grade 5 as compared to grade 1 and ICAM mean levels in
the acute setting to be significantly associated with vasospasm (p G 0.01)
and outcome (p G 0.05) after SAH.
In experimental SAH, the use of ibuprofen has been studied in multiple
species, including primates. The first studies to establish the central biologic
impact of systemic intravenous ibuprofen infusion after SAH was con-
ducted in a double hemorrhage dog model. Ibuprofen was injected
12.5 mg/kg and every 8 h during the study at a dose of 12.5 mg/kg and
compared to controls as well as animals that did not receive any treatment
after injury for 8 days after hemorrhage. The animals treated with ibuprofen
demonstrated marked reduction in inflammation and angiographic evi-
dence of arterial vasoconstriction [54, 55]. This dose of ibuprofen was not
associated with any adverse bleeding complications in the brain or sys-
temically. Further validation of the biologic effect of ibuprofen has been
demonstrated utilizing a locally implanted ibuprofen loaded polymer. The
first studies were performed in a rat model of SAH, found an inhibition of
cerebral vasospasm associated with a decreased concentration of extrava-
sated macrophages and granulocytes in the periadventitial space of
ibuprofen-treated vessels [56]. A subsequent study with sham controls
conducted inNew ZealandWhite rabbits, the intracranial controlled release
of ibuprofen resulted in a significant inhibition of vasospasm when treat-
ment was initiated acutely [57]. A third study was conducted in cynomol-
gus monkeys and found that animals implanted with ibuprofen polymers
showed no signs of local or systemic toxicity. Further, those treated with
ibuprofen polymers significantly higher patency of the middle cerebral
artery, compared with animals treated with blank polymers [58].
These experimental studies demonstrate a reliable and reproducible specific
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anti-inflammatory impact of ibuprofen in wide range of experimental
models of SAH, including primate models, and not a single study reported
any intracranial bleeding associated with the administration of ibuprofen.
The administration of intracranial implanted polymers is not feasible in
subjects who have their ruptured aneurysm secured by endovascular
coiling. However, with the availability of an intravenous preparation, a
continuous infusion of ibuprofen is an approach that may allow for more
widespread use [59].

Standard dosage 2.0 to 2.8 g/day continuous infusion for 7 days

Contraindications Patients with significant bleeding risk

Main side effects Acute kidney injury; Bleeding

Special points In 2009, the FDA-approved Calador (first injectable dosage form of ibuprofen)
manufactured by Cumberland Pharmaceuticals, Inc. Nashville, TN

Cilostazol

Cilostazol, a phosphodiesterase (PDE) 3 inhibitor, has been evaluated for
treatment of SAH after success as a treatment for cardiac complications [60].
Mechanistically, PDE inhibition increases the cellular concentration of
3′,5′-cyclic adenosine monophosphate (cAMP) which has been linked to
decreased platelet aggregation, increased smooth muscle relaxation, re-
duced inflammation, prevention of endothelial damage, and alteration in
the phenotypic changes observed in vessels following SAH [60–62].
After success in animal studies, a preliminary randomized controlled trial
was conducted in aSAH patients. The treatment group received 100 mg of
cilostazol twice daily for 14 days. Although no difference was found in the
incidence of symptomatic vasospasm (37.3% control vs. 22.4% treatment,
p = 0.18) and infarct (27.5 % control vs. 10.2 % treatment, p = 0.09), mRS
scores were significantly decreased (2.6 control vs. 1.5 treatment, p = 0.04)
with anORof 5.52 (95%CI = 1.61–18.9) seen for improved outcome [62].
Further randomized or quasi-randomized controlled trials were done with
multiple exhibiting positive effects on symptomatic vasospasm, severe
vasospasm, infarction, and poor outcome [62, 63•, 64, 65•, 66]. Given the
small size of the trials, a meta-analysis was conducted involving four
controlled trials with similar protocols, resulting in a total of 340 patients.
With 2 weeks of treatment of cilostazol, significant improvement was seen
in symptomatic vasospasm (RR = 0.47; 95%CI 0.31–0.72; p G 0.01), severe
vasospasm (RR = 0.48; 95 % CI 0.28–0.82; p G 0.01), and vasospasm-
related infarct (RR = 0.38; 95 % CI 0.22–0.67; p G 0.01). Most impressively,
cilostazol also showed a reduction in poor outcome (RR = 0.57; 95 % CI
0.37–0.88; p = 0.011), providing a remarkably low number needed to treat
(5.4), making it one of the few agents that effectively alters clinical out-
come. Importantly, it did not show a benefit in mortality (p = 0.552)
[67••].

Standard dosage 100 mg twice daily or 200 mg daily, enterally for 14 days total

Main side effects 11 % adverse events (one GI bleed, two intracerebral hemorrhage, three non-
life threatening arrhythmias); No difference in adverse events between groups.

Special points In non-SAH trials, cilostazol has been shown to be safer than aspirin.
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Other pharmacological neuroprotectants

Free fatty acids

The role of lipid peroxidation after SAH has been recognized in both
laboratory and clinical settings [68, 69]. This process directly stimulates
smooth muscle contraction by exerting cytotoxic effects on the vessel wall
and by generating an inflammatory response involving omega 6 fatty acid
metabolites. These metabolites may be the trigger for a cascade of delete-
rious events that follows SAH by causing the destruction of the electro-
chemical potential in mitochondria and resultant mitochondrial dysfunc-
tion, contributing to cellular edema, inhibiting transmitter and amino acid
uptake and/or ion channel activity, releasing intracellular calcium from the
endoplasmic reticulum, and/or by acting as detergents and/or ionophores
[69, 70]. Specifically, linoleic acid metabolites decrease nitric oxide syn-
thase activity through a PKC-dependent mechanism in endothelial cells
and increase endothelin binding and constriction in vascular smooth
muscle cells [69]. Tirilazad, a non-glucocorticoid 21 amino-steroid free
radical scavenger with a mechanism of action, believed to be an inhibition
of iron-dependent lipid peroxidation was studied in several controlled
trials [71] following promising results in primate vasospasm models [72].
While it had an inconsistent effect on overall outcome, possibly related to
gender differences in drugmetabolism and an adverse effects profile related
to its steroid properties, a consistent reduction in symptomatic vasospasm
was observed in a recent meta-analysis of five randomized controlled trials
involving 3821 SAH patients [71, 73].
Much of the secondary injury in SAH that occurs in relation to vasospasm
may be related to the accumulation of omega 6 fatty acids. In a prospective
cohort study, the omega 6: omega 3 fatty acid ratio was elevated in those
patients who developed DCI [74]. Omega 3 fatty acids have been shown to
be anti-inflammatory, and commercially available formulations with omega
3 fatty acids have already been shown to modulate the inflammatory re-
sponse and improve physiologic profiles in ARDS and septic patients [75,
76]. In SAH, the evidence is limited to a singular pilot randomized clinical
trial where eicosapentaenoic acid, a n-3 fatty acid, was orally administered at
a daily dose of 1800 mg between day 4 and day 14 and compared with
placebo in terms of the frequency of symptomatic vasospasm and cerebral
infarction [77]. Serum levels of eicosapentaenoic acid increased significantly
and were associated with a decreased frequency of symptomatic vasospasm-
related deterioration and infarcts. Findings of this pilot study need further
confirmation with additional data regarding systemic oxygen consumption
(VO2) [78] as well as eicosapentaenoic acid levels and n-6 FFA levels to better
understand the mechanism by which n-3 FFAs may reduce the occurrence of
DCI and improve outcome after SAH. The administration of omega 3 fatty
acidsmay help establish a causal link in SAH patients bymodulating of both
responses given their competition for lipoxygenase and cyclooxygenase and
resultant reduction and opposing effect on the inflammatory modulators
which are the metabolic products of arachidonic acid (omega 6 fatty acid)
when acted on by these enzymes [79, 80].
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Standard dosage 1800 mg of n-3 fatty acid, orally administered between day 4 and 14.

Molsidomine

The role of NO in vasospasm andDCI has been well documentedmaking it
a principal therapeutic target [81–85]. Molsidomine is an NO donating
agent with a well-tolerated side effect profile and success in the cardiac
literature. Recently, molsidomine was used as a rescue therapy in patients
with known vasospasm following SAH. Twenty-nine patients with aSAH-
associated vasospasm received moslidomine and compared to controls of
25 aSAH patients with vasospasm and 20 patients with aSAH and no
vasospasm. Dosing was 20–40mg/24 h IV andwas titrated tomean arterial
pressure goals [86•].
In the treatment group, there was significantly less vasospasm-related ce-
rebral infarcts vs. the control group (13.8 vs 48 %, p G 0.01) and the
modified National Institute of Health Stroke Scale (mNIHSS) scores and
modified Rankin Scale (mRS) scores were also significantly less (mNIHSS
3.0, mRS 2.5 vs. 11.5, 5.0, p G 0.001). Mortality also differed between the
groups with one death in the treatment group and 12 deaths in the standard
group (p G 0.01). Although these results are promising, this study was
observational in nature. Additionally, the 25 patients with vasospasm used
as controls had refused molsidomine therapy, and patients that died of
causes not related to vasospasm were excluded (nine patients). All three
groups were well matched except for age, where the treatment group was
significantly younger [86•]. Still, these results warrant further investigation
with a randomized controlled, prospective trial.

Standard dosage 20–40 mg every 24 h intravenously, titrated to mean arterial pressure goals of
965 mm Hg; weaned slowly after resolution of hypotension. Transitioned to
8 mg slow release oral tablets four times a day for 14–28 days.

Contraindications Hypotension

Main side effects Hypotension, some requiring low-dose norepinephrine

Inhibition of cortical spreading depolarization/cortical
spreading ischemia

Cortical spreading depolarization (CSD) describes the phenomenon of com-
plete loss of ion homeostasis in neurons, and subsequent spreading to nearby
areas, resulting in loss of neurocommunication and depression of electric
activity [87–89]. After an inciting neurotoxic event (e.g. blunt trauma, seizure,
sah), neurons are exposed to an altered microenvironment (likely from blood
brain barrier disruption), which leads to an opening of N-methyl-D-aspartate
(NMDA) receptors and other cation channels resulting in a disorganized
depolarization and swelling of the neuron [89, 90]. The depolarization spreads
at a slow rate of around 2–6 mm per minute [89, 91].
To restore homeostasis, the neurons require increased blood flow. In
healthy tissue, a characteristic vascular pattern is seen on the arteriolar level.
First, oligemia is noted with vasoconstriction. Subsequently, over the
course of minutes, this changes to a hyperemic response with vasodilation,
likely mediated by increased nitric oxide (NO) [89, 92, 93]. The tissue then
restores hyperpolarization and recovers. In damaged tissue, the hyperemic
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response does not occur and the tissue is left with a high energy demand
and no substrate to help recover. A state of ischemia develops, referred to as
cortical spreading ischemia (CSI), which can lead to infarcts when severe
[89, 94–99].
Aneurysmal SAH is a particularly potent environment forCSDandCSI [94, 96,
98]. It has been proposed that the presence of SAH and breakdown of blood
products result in release of arachidonic acid metabolites and NO scavengers
leading to a paucity of vasodilatory substances [89]. Evidence supports the role
of CSD in DCI in a number of ways. (1) Both CSD and CSI have both been
described in humans following aSAH asmeasured by cortical electrodes [100].
(2) In rats, CSD-induced oligemic response and subsequent ischemia in a SAH
model were reduced with the addition of both nimodipine, and increased
fluids, indicating that the mechanism of protection may be similar [101]. (3)
The concordance of DCI with angiographic vasospasm is poor, around
50 %[102], and CSD-directed vasospasm occurs on the angiographically
occult arteriolar level [92]. Humans implanted with cortical electrodes
following aSAH showed a correlation between CSD events and DCI, which
was not correlated with angiographic vasospasm [100], indicating an
independent association. (4) The microenvironments conducive to CSD,
decreased NO and increased extracellular potassium, are also seen in
non-CSD-induced DCI [103–106]. (5) Endothelin-1, a powerful
vasoconstrictive peptide seen in aSAH-induced vasospasm, was shown to
result in CSD and ischemia, without SAH in animal models [107–110].
Taken in aggregate, the strength of evidence indicating that CSD plays a role in
DCI is high. This presents a novel target for DCI treatment. Although few
treatments have been attempted direct reduction of CSD-induced DCI,
many treatments used for aSAH-induced vasospasm have an affect on CSD.
Following stroke in rat cortex, reduction of CSD and cortical infarct size (which
may be the correlate to DCI in stroke) was seen with NMDA-receptor
antagonists [106, 111, 112]. Sodium channel blockade has also been effective
at reducing CSD; tetrodotoxin, a voltage-gated sodium channel inhibitor, and
topiramate, an anti-epileptic that has at least moderate sodium channel
inhibitory action, both reduced CSD in rats [90]. Calcitonin gene-related
peptide, seen in CSD-inducedmigraine, showed dose-dependent reduction in
CSD with inhibition [90]. Reduction of Endothelin-1 receptor activation also
exhibited reduction inCSD [109, 110]. Papaverine and aNOdonor have been
tried to directly reduce CSD-induced ischemia, both with some success in rat
cortex [95].

Non-Pharmacological neuroprotectants

Ischemic preconditioning

Ischemic conditioning is the application of transient sublethal ischemia to
induce endogenous defense mechanisms to protect the tissue from further
insult [113]. Varieties of ischemic conditioning include classic (tissue of
interest is conditioned) and remote in which periods of mild ischemia in
the extremities convey similar defense mechanisms to organs far from the
initial ischemia [114–116]. Both classic and remote conditioning can be
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done before (preconditioning) [117] or after (postconditioning) [118] the
concerning event occurs.
Transient ischemia and reperfusion causes substantial change in genomic
expression. The effect of ischemic conditioning on tissue ismultifactorial and
involves a complex interaction of signaling mechanisms [114, 119, 120,
121••]. An important mediator of the effects is the protein hypoxia-
inducible factor (HIF). Under normal oxygenation, the HIFα subunit is
hydroxylated and tagged for proteosomal degradation. When a tissue is
hypoxic, hydroxylation does not occur and HIF rapidly accumulates, sig-
naling activation of genes related to adaptive cell survival, including pH
regulation, angiogenesis, oxygen transport, and vasomotor control. In addi-
tion to this increase in protective factors, conditioning also causes suppres-
sion of inflammation and cell activity. Microarray analysis of mice under-
going middle cerebral artery preconditioning and subsequent MCA occlu-
sion showed downregulation of expression of some genes, resulting in
decreased activity of metabolic pathways, ion channel activity, coagulation
factors, and immune responses [122, 123]. The net effect of the change in
genomic expression is to increase substrate delivery while simultaneously
improving the cell’s ability to function with decreased substrate.
Both classic and remote ischemic conditioning were first described in myo-
cardium [115, 124] and continue to be studied in cardiac surgery [125]. The
principles have since been validated in the brain, with the first in vivo
demonstration of neuroprotection after ischemic conditioning by Kitagawa
et al. in 1990 [126]. Several investigators have demonstrated the feasibility of
ischemic conditioning in the brain and have used animal models to eluci-
date themechanismof the induced neuroprotection [118, 122, 127–131]. In
humans, evidence of ischemic tolerance in the brain is suggested by studies
that show that stroke patients with previous transient ischemic attacks fare
better than patients without previous insult [132, 133], although one large
retrospective study had contradictory results [134].
Subarachnoid hemorrhage presents a clinical scenario ideal for application
of ischemic conditioning [135, 136], as patients often suffer delayed cerebral
infarction due to vasospasm after their initial bleeds. This is a major cause of
morbidity and mortality in SAH patients [137]. Remote ischemic precondi-
tioning has the advantage of being noninvasive and practical, simply re-
quiring the application of a blood pressure cuff to an extremity [135]. Recent
studies of patients with aneurysmal SAH tested remote limb preconditioning
to determine safety of the protocol. All studies found the method safe and
tolerable with some preliminary evidence of efficacy [138••, 139, 140•].
Another study in patients with recent SAH examined gene expression and
methylation changes after remote ischemic conditioning, with results sug-
gesting thatmethylation alters gene expression in humans, playing some role
in subsequent neuroprotection [141]. Because of these promising prelimi-
nary reports, teams continue to investigate the efficacy of RIPC in SAH [142].
Currently, two large-scale prospective trials on remote ischemic precondi-
tioning in patients with SAH are underway (NCT02411266,
NCT02381522).

Standard procedure In one study [138••], four sessions of remote ischemic conditioning with each
session having 4 cycles of ischemia/reperfusion were performed. The leg that
did not receive catheter treatments (angiography/coiling) had the dorsalis pedis
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artery identified and marked using a pulsed Doppler. A large blood pressure
cuff was inflated to 20 mm Hg above systolic pressure and inflated further if
needed to have cessation of flow in the dorsalis pedis by Doppler. This was
maintained for 5min. Then, the cuff was deflated and 5min of reperfusion was
allowed. This was repeated three more times (four total cycles or ischemia/
reperfusion) to complete a session. Sessions were performed on non-
consecutive days.

Contraindications Current or history of deep venous thrombosis (DVT); History of peripheral
vascular disease; Lower-extremity bypass; History of peripheral neuropathy

Complications Risk of new DVT or bruising

Special points Promising treatment that would be very cost-effective and take advantage of the
body’s endogenous ischemic neuroprotection machinery. Limited data on
clinical effectiveness in aSAH patients at this time.

Partial aortic occlusion (NeuroFlo™)

The CoAxia NeuroFlo™ system is approved by the FDA under the Human-
itarian Device Exemption (HDE) pathway and is authorized for use in the
treatment of cerebral ischemia resulting from symptomatic vasospasm
following aneurysmal subarachnoid hemorrhage for patients who have
failed maximal medical management [143]. While the exact mechanism of
action is unclear and likely to be multifactorial [144], it has been shown to
enhance cerebral blood flow even after removal of the device [145]. It is
theorized that much of the effect is mediated by increased collateral blood
flow through leptomeningeal vessels [146•]. There are reports of significant
clinical improvement after use in aSAHpatients [147]. In a study sponsored
by the company for FDA submission, 50%of treated patients had a 3-point
or greater decrease in NIH Stroke Scale scores upon completion of treat-
ment with that improvement being sustained for at least 24 h [143]. In
another study, it was shown to increase middle cerebral artery mean ve-
locities in 20 of 24 patients [145]. Additionally, it has been studied for use
in ischemic stroke in patients not eligible for tPA or who are non-
responders [148, 149]. Safety has been demonstrated most robustly
through the SENTIS trial funded by the manufacturer [149]. Utilization of
the device has no requirements for ongoing anti-coagulation.

Standard procedure The device is deployed through a 9F femoral artery access typically with the aid
of fluoroscopy, but bedside introduction with ultrasound guidance has also
been described [150]. The device is then advanced retrograde into the de-
scending aorta. The device is a multilumen device with two independent
balloons, which are positioned so that one is proximal and the other is distal to
the renal arteries. The infrarenal balloon is inflated first to a diameter sufficient
to occlude 70% of the aortic cross sectional area for 5min. Next, the suprarenal
balloon is inflated in the samemanner and this configuration is left to partially
occlude the descending aorta and renal arteries for an additional 40 min for a
total of 45min [143, 145]. This partial aortic occlusion is sufficient to create the
recommended 10–20 mm Hg decrease in mean arterial pressure between the
upper abdominal aorta and the iliac artery. The balloons are then deflated. The
device allows for pressure monitoring at both the supra and infrarenal loca-
tions. The central lumen is large enough to allow for contemporaneous
intraarterial thrombolysis or thrombectomy treatments although this proce-
dural combination has not been studied in depth.
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Contraindications Patients with significant left ventricular dysfunction
Patients with aortic aneurysm including those which have been treated with
endovascular grafts
Patients with a history of bleeding disorders
Pregnant women

Complications Standard femoral arterial access complications, potential for increased intra-
cranial pressure, renal dysfunction secondary to hypoperfusion, or IV contrast

Limited efficacy of previously promising treatments

& The summed evidence for these treatments no longer supports their
clinical efficacy in aneurysmal SAH, and we no longer recommend
them as prophylactic neuroprotective treatment options.

Magnesium sulfate

Magnesium sulfate is a voltage-gated calcium channel antagonist and
decreases NMDA-receptor activity through co-binding [151]. It also
may act as a neuroprotective and vasodilatory agent [151]. Although
most studies have been small, a RCT of 327 patients was conducted
and showed no difference in long-term outcomes (OR 1.0, 95 % CI
0.7–1.6) [152]. A meta-analysis was recently conducted and showed a
reduction in DCI (RR 0.54, 95 % CI 0.38–0.75). However, no differ-
ence was seen in delayed ischemic neurologic deficit (RR 0.93, 95 % CI
0.62–1.39) outcome as measured by the Glasgow Outcome Scale and
mRS (RR 0.93, 95 % CI 0.82–1.06) or mortality (RR 0.95, 95 % CI
0.76–1.17) [153••]. Thus far, no benefit has been shown from ad-
ministration of magnesium sulfate.

Special points It is reasonable to infuse magnesium sulfate to maintain normal serum mag-
nesium levels, however prophylactic administration ofmagnesium sulfate is no
longer recommended.

Statins

>Statins inhibit the enzyme 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase and are used primarily in the reduction of cho-
lesterol, however they have also been implicated in upregulating endo-
thelial NO production, inhibiting vascular smooth muscle proliferation,
altering platelet function, and reducing vascular inflammation [154, 155].
Statins have thus been used in several studies for the treatment of aSAH
and DCI, with mixed results [154, 156, 157]. An early RCT with 39
patients showed a trend towards reduction in ischemic deficits (RR 0.44,
95 % CI 0.19 to 1.01, p = 0.05). More recently, the Simvastatin in Aneu-
rysmal Subrachnoid Hemorrhage (STASH) trial was undertaken. A mul-
ticenter effort included 803 patients with aSAH and administered sim-
vastatin 40 mg or placebo for 21 days; outcome was mRS at 6 months.
No difference in outcome at 6 months was noted (OR 0.97, 95 % CI
0.75–1.25, p = 0.803). Mortality and adverse events were similar in the
two groups [158••]. Although statins carry a low risk, no benefit has been
established in any RCT.
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Special points It is reasonable to continue statin therapy on patients who take a statin as a
home medicine prior to admission for their SAH. We do not recommend
starting new statin therapy as a neuroprotectant for aneurysmal SAH.
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