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Abstract
Purpose of review  Identifying the risk for and addressing bias in clinical machine learning 
models is essential to reap its full benefits and ensure health equity. We provide a review 
of the machine learning landscape in clinical medicine, highlight ethical concerns with a 
particular focus on algorithmic bias, and offer a framework for mitigating bias.
Recent findings  Machine learning, the computational framework that supports artificial 
intelligence, now plays a significant role in everyday life and its potential role in clini-
cal medicine continues to increase exponentially. Multiple machine learning models have 
demonstrated outstanding performance, surpassing human abilities with specific tasks, 
and are poised to revolutionize clinical research and practice over the next few years. 
While machine learning can augment clinician’s diagnostic capabilities, support clinical 
decision-making, and improve health care efficiency, they are not infallible. One key con-
cern with the use of machine learning models is algorithmic bias, which if present poses a 
non-trivial risk to patient care particularly if algorithms are used in a population different 
from that used to create the algorithm. Recommendations and methods to identify and 
mitigate algorithmic bias to ensure responsible development of machine learning models 
are summarized.
Summary  With the anticipated widespread adoption of machine learning in medicine, 
significant ethical concerns remain, particularly the risk for bias. Researchers, model 
developers, and end users need to be aware of the potential for bias, its associated risk, 
and methods to guard against it prior to deploying it for clinical use.

Opinion statement

This review article summarizes the use of machine 
learning in clinical medicine and evaluates bias in 
this context. We also discuss existing mechanisms and 

systems geared towards mitigating bias and propose 
additional recommendations to ensure responsible 
model development and deployment.

Introduction

With technological advancements over the last decade, artificial intelligence 
(AI) and machine learning (ML) are increasingly prevalent in everyday life 
[1] and will continue to play an important and expanding role in the way 
we live, work, and play. Advancements in AI technology were facilitated by 
the availability of large amounts of digital data and contemporary computer 
chip processors with more efficient computing capabilities [2]. In today’s 
landscape, advanced AI/ML models can analyze, synthesize, and generate 
solutions to common problems that exceed human-level performance. The 
development of ML models in the field of medicine continues to expand, as 
evidenced by the exponential increase in the number of scientific publications 
on this topic [3]. Applications include the ability to predict the likelihood of 
cardiac dysfunction using data from an electrocardiogram [4] to rapid detec-
tion of cancer from radiographic images [5].
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A key drawback of ML models in medicine for biomedical research and 
in clinical care algorithms is the potential to introduce biases reflective of 
data used to train the model in what has been referred to as algorithmic 
bias [6••]. Algorithmic bias may go unrecognized if inappropriate metrics 
of success are chosen, such as model validation only in populations similar 
to the training sample. Another form of bias can occur when ML models 
are trained to answer the wrong question, where training endpoints do not 
accurately match the intended prediction or outcome. The reality of the risk 
associated with biased models has been demonstrated with facial recognition 
algorithms [7–9] performing poorly among dark skinned females and the  
use of commercially developed and marketed recidivism prediction models 
by law enforcement agencies which have repeatedly overestimated threats 
for adults of African descent living in the USA [10, 11]. Algorithmic bias has 
also been observed with ML models in clinical medicine with poorer perfor-
mance noted among women and patients from racial and ethnic minority 
groups [12•, 13•]. In this review article, we provide a brief overview of ML 
and AI models, review various uses in clinical research and healthcare, discuss 
algorithmic bias, and offer potential solutions to addressing bias with ML  
models intended for use in medicine. 

Machine learning in clinical research and medicine

AI is a broad term used to describe the ability of machines or computers 
to perform functions that typically require human intelligence. AI relies 
on machine learning to develop generalized algorithms that enable near 
human, or in some cases super-human, levels of performance on these tasks. 
Machine learning refers to a class of methods that enable machines to learn 
generalized, specific, and or complex associations from data. Frequently in 
medicine, this learning process enables artificial intelligence algorithms that 
were trained on large datasets to make predictions or classifications through 
learned patterns or features in data [14]. There are various types of ML which 
can be coarsely differentiated by how they are trained with respect to informa-
tion about the “truth” and the complexity of the model architecture used in 
the algorithm. For the training aspects, approaches are generally defined as 
either supervised or unsupervised. Supervised learning presents to the algo-
rithm not only the data intended to make the prediction but also information 
about the true status of the individual case, which is often referred to as the 
“label.” Unsupervised approaches withhold the label and instead ask the 
algorithm to identify combinations or profiles of data that are similar within 
the profile yet distinct across profiles effectively generating empirical labels 
for the data without human guidance.

In terms of machine learning architectures, ordinary logistic regression 
is an example of a very simple model architecture whereas a convolutional 
neural network may have a very complex architecture. With the advent of 
high-performance computing, utilizing graphical processing units (GPUs), 
advances in how models are optimized (“trained”) have been accomplished 
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that have facilitated training models with thousands (in some cases hundreds 
of thousands) of model parameters. In the case of neural networks, as the 
model architecture grows in complexity and the number of successive layers 
(chained calculations defined by the network) increases within the model 
architecture, the modeling framework takes on the name deep learning to 
try to express the scale of the model’s computational framework [15]. Some 
examples of these ML types are discussed later in this article.

AI use in medicine is often classified as augmented/assistive intelligence 
and autonomous intelligence. The former encompasses task-specific and 
domain-specific AI systems developed to assist clinicians with clinical deci-
sions and patient care whereas the latter refers to an AI system that does 
not require clinician interpretation to make patient care recommendations 
[16]. It is believed that fully autonomous algorithms are unlikely to replace 
health care providers, but rather clinicians will interact with these across a 
continuum of automation [16, 17]. Generalized autonomous intelligence for 
broad use in medical settings, with no input from a managing physician in 
all phases of patient care, currently does not exist.

Current applications of machine learning in clinical medicine
Physiologic signals

This involves analyzing biological signals and using these to predict spe-
cific outcomes. Examples of these signals include surface electrocardiograms 
(ECG) and intracardiac electrograms (EGM) which capture cardiac electrical 
activity from outside and within the heart, respectively, electroencephalo-
grams (electrical activity from the brain) (EEG), electromyogram (muscle 
electrical activity) (EMG), and actimetry (limb activity/displacement) [18]. 
Of these, ECGs have been extensively studied. Using deep learning, several 
studies have demonstrated the ECG’s ability to detect multiple cardiovascular 
pathologies which supersedes human interpretation of the ECG signals. These 
include detection of left ventricular dysfunction [4, 19, 20], pregnancy-related 
cardiomyopathy [21], silent atrial fibrillation [22, 23], hypertrophic cardio-
myopathy [24], cardiac amyloidosis [25], valvular heart disease [26, 27], and 
cardiac allograft rejection [28].

Medical images

Human interpretation of medical images is a deeply embedded practice in 
multiple medical specialties. The use of AI to aid in the extraction of useful 
information from medical images for localization, segmentation, registration, 
classification and prediction purposes, or image refinement to augment clini-
cal interpretation is emerging in importance [29]. Its use cuts across several 
medical fields and subspecialties. In the field of cardiology, this technique has 
been demonstrated with AI-generated cardiac ultrasound image annotations 
for assessment of left ventricular ejection fraction [30, 31].
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In the field of diagnostic radiology, ML algorithms, specifically deep learn-
ing, have been extensively utilized to help improve diagnostic accuracy and 
efficiency, with brain, breast, eye, chest, musculoskeletal, and abdominal 
imaging [29]. For example, during the coronavirus-19 (COVID-19) pan-
demic prior to the development of a rapid reverse transcriptase polymerase 
chain reaction (RT-PCR) test, deep learning was used to analyze computed 
tomography (CT) images of the chest in patients with suspected COVID-19 
[17]. This model had an accuracy of 96%, AUC of 0.95, and sensitivity of 
89% to accurately differentiate COVID-19 from other pneumonias [17]. A 
revolutionary utilization of AI has emerged in the field of breast imaging, 
where computer-aided diagnosis is utilized as standard of care to facilitate 
improvement of cancer detection rates at earlier stages than previously done 
[32]. Additional applications include efficient triaging of studies that neces-
sitate prompt evaluation, improvement of image quality which facilitates 
diagnoses, and potentially enabling a more accurate assessment of disease 
progression [5, 33].

In the field of dermatology, a specialty that relies heavily on pattern recog-
nition, ML is playing a groundbreaking role in diagnostics and assessments. 
The large clinical, dermatoscopic, and histopathologic image databases have 
enabled dermatologic studies focusing on early diagnosis of cutaneous dis-
orders. A landmark study in the use of ML in dermatology demonstrated 
competence comparable to board-certified dermatologists in identifying most 
common skin cancers and in identifying the deadliest skin cancer, malignant 
melanoma [34]. Although there is enormous potential for ML to expand the 
reach of dermatologic care access, the lack of enough images with diverse skin 
tones limits the accurate training of algorithms and represents a substantial 
bias in available datasets. A recent systematic review of publicly available skin 
cancer image datasets revealed both poor reporting and poor representation 
of Fitzpatrick skin type. In a review with available skin type information 
from three datasets with 2436 images, only ten images were Fitzpatrick skin 
type V and only a single image was from skin type VI [35]. Similarly, in the 
International Skin Imaging Collaboration: Melanoma Project, which is one of 
the largest and often-used, open-source, public-access archives of pigmented 
lesions, the patient data comprise predominantly fair-skinned individuals 
in the USA, Europe, and Australia [36, 37]. This bias is of significance espe-
cially when considering the varied presentation of skin cancer in skin of color 
populations. For instance, although cutaneous melanoma incidence is high-
est among non-Hispanic White persons, non-White individuals have been 
observed to present with later stage melanoma at diagnosis and have lower 
overall survival outcomes emphasizing the need for early detection through 
ML in non-White persons [38]. If ML models are inadequately trained on 
darker skin types, even the most advanced algorithm will likely perform poorly 
with images in skin of color [39]. Aware of this limitation, there is ongoing 
intentional effort for image repositories around the world to include photos 
of darker skin types to ensure algorithms are trained to meet the dermatologic 
needs of all patients while avoiding the exacerbation of existing disparities in 
dermatologic care for patients with skin of color.

The potential applications of machine learning in digital pathology 
(DP) are extensive with research and industry applications already showing 
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promising results in spatial analysis and immuno-oncology [40]. Clinically, 
there are many opportunities for semi-automated workflows to provide more 
consistent pathology results; however, DP remains a young field and clinical 
deployments are currently limited to early adopters [41–43]. The global regu-
latory environment has also played a role in the adoption and penetration 
of DP with European DP regulatory approvals occurring a few years before 
the USA [43]. Multiple factors including economic, regulatory, and technical 
difficulties limit slide scanning and digitization in specialties such as hema-
tology and cytology. Consequently, available digitized slides for ML model 
development only represent a small fraction of pathology slides worldwide 
with the potential for bias in the datasets. While this is unintentional, ML 
algorithms developed with these limited datasets may face challenges with 
scalability. In addition, algorithms developed from images scanned by one 
DP vendor may not perform well when presented with images from another 
DP vendor. Over time, we believe widespread adoption of DP and curation of 
joint data repositories will enrich DP datasets by increasing absolute numbers 
available for training, case variety, and diversity to support development of 
robust ML models.

Acoustic signals

This involves the analysis of sounds for diagnostic purposes. Examples in 
medicine include the use of heart sounds (phonocardiograms), lung sounds, 
and voice-based sounds. This has been demonstrated with automated detec-
tion of valvular heart disease [44, 45], improved classification of lung aus-
cultatory sounds [46], and non-invasive diagnosis of COVID-19 from cough 
recordings [47].

Text processing

One of the more common examples in clinical and non-clinical environ-
ments is text processing, and it refers to the analysis and interpretation of text 
(numeric and words) and speech with ML where model outputs are either 
used to augment diagnostic capacity or assist with patient care by answering 
medical questions. These types of models have demonstrated utility with 
disease or clinical outcome prediction [48–50] and identification of disease 
phenotypes [51, 52].

More recently, significant advancements have been made with generative 
AI to produce human-like responses to text or speech-based inputs. Genera-
tive AI algorithms have been trained on data that are largely found openly 
available online. The training of these models extends the concepts of natu-
ral language processing to learn not only the basic elements of speech but 
also the predictable patterns of word usage in the context of how a topic is 
summarized or reported on. In general, there is a predictable flow for how  
a recipe is written online or a scientific article is composed. Generative AI 
learns these structures and can assemble new works based on the underlying 
probability structure estimated from many examples. ChatGPT (Chat Gen-
erative Pre-trained Transformer) is an example of this, released by OpenAI 

34



Curr Treat Options Cardio Med (2024) 26:29–45

in November 2022 with a refined version GPT-4 released in March 2023 
[53]. In one study, ChatGPT was shown to provide higher quality and more 
empathetic responses to patient questions when compared to physicians [54]. 
While impressive, the sources of data used to train the model are not always 
accurate. The saying “do not believe everything you read online” is taking on 
new meaning in the era of generative AI. Furthermore, at least in the context 
of science, there are some notable differences present in text generated by 
generative AI [55]. Another concern is that the performance of large lan-
guage models (LLMs) like ChatGPT seems to decrease or decay with time. It 
is unclear whether this is due to changes made in the algorithm to speed up 
convergence since there are a large number of users or whether this is related 
to the training of the model on progressively less accurate data [56].

Algorithmic bias

A commonly cited limitation with deep learning, is its “black box” nature. 
The complexity in the model architecture and the long series of internal cal-
culations make it challenging to clearly identify which specific features in an 
input (image, signal, or dataset) are being used for model prediction. While 
there are tools such as saliency maps, gradient-weighted class activation maps 
(Grad-CAMS) [57], and Shapley Additive explanations (SHAP explainers) that 
help identify components of the input data, these are often approximations 
of the entire modeling process. Furthermore, the algorithms can only learn 
from what they are given. As a result, these systems are highly dependent on 
the training datasets from which it learns to make predictions. ML models 
may demonstrate bias inherent in the underlying dataset, resulting in pre-
dictions that may contribute to healthcare disparities related to race, sex, or 
socioeconomic status [58]. In a classical statistical context, “extrapolation” 
of the model beyond the data was a common warning given to all people 
learning modeling. This same warning applies to ML; however, the concept 
of extrapolation is far more nuanced given the complexity of the data and the 
resulting algorithm. Another challenge with newly created ML models using 
contemporary or retrospective data is that the model is trained to recapitulate 
the outcomes seen during the time period when the data was obtained. For 
example, a model trained to predict college acceptance using data from the 
1960s would very likely show that male sex is a strong predictor of accept-
ance. These ML models are therefore at risk of encrusting temporal societal 
biases in their predictions. Bias can also occur when ML models are trained 
to answer the wrong question, i.e., predicting a biased proxy variable believed 
to represent the actual outcome of interest. These types of bias are collectively 
referred to as algorithmic bias [6••]. Examples of bias inherent in training 
datasets include specific variables or features that favor a specific racial group 
based on past discriminatory practices [59] or underrepresentation of certain 
groups or individuals as demonstrated with commercial facial recognition 
algorithms, which showed near perfect discrimination among light skinned 
males but high error rates among dark skinned females [8].
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The high cost of algorithmic bias has been demonstrated multiple times 
in non-healthcare domains which have led to unfair hiring practices [60, 61] 
and erroneous identification or penalization of individuals by the criminal 
justice system [10, 11]. Due to the potential for serious adverse health care 
consequences, it is critical that ML models developed for use in clinical care 
are thoroughly evaluated for bias and intentional steps taken to mitigate it 
in a systematic fashion.

Mitigating bias and responsible artificial intelligence
Ethics in machine learning

Addressing ethical issues surrounding the clinical integration of AI/ML is 
essential to ensuring that these technologies are translated into broader use 
in a just manner. Multiple ethical challenges have been identified with the 
use of AI/ML for health care: algorithmic bias, privacy, cybersecurity, data 
ownership, accountability, autonomous systems, the digital divide, impact 
on labor and employment, commercialization, governance, and impact on 
climate change (Fig. 1). In this article, our discussions will focus on mitigat-
ing algorithmic bias.

Efforts directed towards mitigating bias in AI and ML models are often 
referred to as responsible artificial intelligence. This broadly encompasses the 
following domains: inclusivity—ensuring women and racial/ethnic minority 
groups are adequately represented in training datasets; specificity—ensuring 
that appropriate and specific training targets are selected when developing 
ML models; transparency—ensuring standard reporting to include informa-
tion regarding training data, model annotation, and interpretability; and 

Fig. 1   Ethical challenges in machine learning for clinical research and practice. This figure illustrates four key overarching 
ethical issues in machine learning—data, socioeconomic, methodology, and environment-related challenges. It also lists 
examples within each category that machine learning model developers and end-users need to be aware of to adequately 
evaluate bias and establish steps to mitigate it. Illustration created with Biore​nder.​com.
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validation—conducting rigorous testing/auditing, validation studies (internal 
and external), and clinical trials as appropriate prior to deploying ML models 
for use in clinical care [62, 63] (Fig. 2).

There are a few governing organizations that have provided legal frame-
works to regulate ML models and ensure ethical concerns are addressed. The 
European Union’s AI act aims to stratify AI applications by levels of risk and 
accordingly, either ban or regulate by conformity assessment [64]. To date, 
there are proposed bills introduced in the US congress to address the utiliza-
tion and implementation of AI [65]. While this national legislation is debated 
and modified, there is a patchwork of state and local legislation addressing 
this gap. New York City’s Local Law 144 [66] (which requires bias audits 
of AI-enabled tools used for employment decisions) is an example of this 
[60, 67]. In addition, the Blueprint for an AI Bill of Rights, a non-binding 
framework released by the White House in October 2022, details five prin-
ciples that seek to guide the design and implementation of AI, including (1) 
safe and effective systems, (2) algorithmic discrimination practices, (3) data 
privacy, (4) notice and explanation, and (5) human alternatives, considera-
tion, and fallback [60]. Other proposed ethical guardrails include UNESCO’s 
Recommendation on the Ethics of Artificial Intelligence and the United States 
Intelligence Community’s Artificial Intelligence Ethics Framework [68, 69].

Guidelines and recommendations
Guidelines are essential to facilitate equitable development and validation 
of ML models and inform developers in promoting transparency in the 
design and reporting of AI algorithms [1–3]. As the role of AI/ML in clinical 

Fig. 2   Framework for mitigating bias in clinical machine learning models. Illustration created with Biore​nder.​com.
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medicine continues to expand, it is critical that human autonomy is preserved 
and that appropriate guidelines are developed and adopted for responsible 
utilization of this emerging technology. As of July 2022, 521 AI/ML-enabled 
devices had received US FDA approval with the majority being in the fields 
of radiology and cardiology [60, 70, 71]. At this time, many regulatory guide-
lines remain in development by a number of governmental authorities which 
aim to critically evaluate applications of AI/ML in medicine and ensure its 
trustworthiness [60, 66]. One challenge is that the stewards—governmental 
authorities, and regulatory staff often lack the technical expertise to evaluate 
these models adequately and appropriately.

The World Health Organization (WHO) is among the first to develop 
and publish a guidance document and propose a framework for governance 
of AI/ML for health [72]. It highlights the following 6 ethical principles: (1) 
protecting autonomy, (2) promoting human well-being, human safety, and 
the public interest, (3) ensuring transparency, explainability, and intelligibil-
ity, (4) fostering responsibility and accountability, (5) ensuring inclusiveness 
and equity, and (6) promoting artificial intelligence that is responsive and 
sustainable [72, 73].

Framework for addressing bias and ensuring responsible AI
Researchers and ML model developers

Intentional efforts to ensure responsible AI at the model development phase 
(inclusivity, specificity, transparency, and validation) often lie with researchers 
and developers of ML models.

To address inclusivity, a few use cases are described. For example, while 
AI/ML holds promise in improving healthcare delivery and lowering costs in 
low-middle income countries (LMIC), one key limitation is the unavailability 
of high-quality data, from LMIC countries, needed to train AI/ML models in 
an equitable manner that represents the characteristics and unique aspects 
of the population [74, 75]. It is important for researchers, AI developers, and 
local health systems to invest in curating digital training datasets for this 
purpose, especially if these models are intended for LMIC use. In the USA, 
these translate to ensuring inclusion of diverse racial backgrounds and in 
some cases consider oversampling of racial and ethnic minority groups and 
patient populations for which these models are intended for use [74–76]. 
Questions to consider include the following:

•	 Will this study include the appropriate population that would be repre-
sentative of the target population (i.e., avoid sampling bias)?

•	 Will AI/ML model development utilize techniques and methods to mini-
mize overfitting and other potential programming-related biases?

Fundamentally, researchers must first ask the right question and design a 
study that is appropriate to answer the question, i.e., specificity. During model 
development and in the study design phase, the potential for bias must be 
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meticulously considered and pre-emptively addressed. Relevant questions to 
consider here are as follows:

•	 Will the study design be adequate to address the clinical question (e.g., 
inclusion of the appropriate spectrum of disease severity, i.e., spectrum 
bias)?

•	 Is the model being used and applied in an appropriate population for 
which it was developed?

•	 Will the model be useful in a different setting, e.g., LMICs and poor 
resource settings with limited access to technology (contextual bias) [77]?

•	 Will there be equitable access to the model by all populations?

With regard to transparency, two different guidelines for AI related study 
protocols and reporting AI clinical trial interventions have been developed. 
These are based on the 2013 Standard Protocol Items: Recommendations 
for Interventional Trials (SPIRIT 2013) and the Consolidated Standards of 
Reporting Trials (CONSORT 2010) statements. These updated guidelines are 
referred to as SPIRIT-AI and CONSORT-AI. Additional questions for develop-
ers to consider are the following:

•	 How will financial incentives influence the implementation of the model?
•	 How can we balance financial and clinical considerations when marketing 

an AI/ML-derived product?

Finally with validation, this must include internal and external validation. 
External validation should include evaluation in multiple health systems and 
settings (inpatient vs. outpatient for example), diverse patient populations, 
retrospective and prospective evaluations. Implementation studies are also 
crucial in evaluating the feasibility of incorporating ML tools into current 
clinical practice and lastly clinical trials which allows the objective evaluation 
of the ML model’s impact on clinical outcomes.

Funding agencies

In September of 2022, the National Institute of Health (NIH) announced it 
will invest $130 million USD to expand the use of AI/ML in biomedical and 
behavioral research, the bridge to artificial intelligence (Bridge2AI) program 
[78]. As part of this effort, the NIH will support ethical data curation and 
use, build diverse teams/workforce with AI/ML expertise, as well as efforts to 
reduce bias. It is important to consider the training of individuals from racial 
and ethnic minority groups to perform AI and ML research. These researchers 
may be able to detect nuanced biases in the AI/ML models because of cul-
tural differences. This will encourage racial and ethnic minority researchers 
to contribute to the narrative around the research and how it affects their 
community.

Additional NIH-related efforts include specific funding opportunities 
to support the ethical development of AI/ML models in biomedicine [79], 
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the health equity and researcher diversity program (AIM-AHEAD) [80], the 
Science Collaborative for Health disparities and Artificial intelligence bias 
Reduction (ScHARe) platform [81], and the launch of a prize competition 
titled “bias detection tools in health care challenge” which concluded in 
March 2023 [82]. It is imperative that the NIH and other research funding 
agencies continue to support these programs, in addition to promoting and 
funding efforts to evaluate existing models for bias through validation stud-
ies, and the development of novel tools to mitigate bias in AI/ML [81, 82].

Government and regulatory organizations

The national artificial intelligence initiative (NAII) [83] established in 2021 
has been tasked with the developing guidance for regulating AI. While this 
and a bill of rights are still in progress, some US agencies have adopted some 
guidelines and principles for AI/ML use developed by the department of 
defense and the office of the director of national intelligence in 2020 to 
promote trustworthy use of AI in the federal government. In April 2023, four 
government agencies also released a joint statement on guarding against dis-
crimination and bias in AI systems [68] with plans to use existing civil and 
consumer rights laws to enforce this.

The American College of Cardiology Innovation Council developed the 
PRIME checklist for AI/ML-derived algorithms [84] in which one critical com-
ponent is the requirement to report model-related bias. These are part of 
the efforts seeking to standardize scientific reporting and evaluation of AI/
ML algorithms and systematically evaluate bias. In addition to these efforts, 
government agencies, policymakers, and regulating bodies need to establish 
clear regulations and guidelines to ensure that consumer protection standards 
are in place and that bias and conflicts of interest are adequately addressed.

Conclusion

As novel machine learning algorithms are developed and refined, their use 
will become increasingly integrated into our daily lives. Its role in medicine 
will continue to expand by facilitating personalized and precision medicine, 
holding promise for earlier diagnosis, improved treatment of disease, and 
health promotion [85]. It is imperative that these systems are developed, uti-
lized, and implemented in a manner that ensures everyone will benefit from 
the use of these technologies for healthcare. The words of Martin Luther King 
Jr. could not be more relevant at this time: “Of all the forms of inequality, 
injustice in health is the most shocking and the most inhuman”, as such, it 
is critical that we are all aware of the significant risk algorithmic bias poses 
to healthcare and that intentional efforts are put in place to guard against it. 
Recognizing and addressing bias will not only ensure equitable use of AI/ML 
models but more importantly facilitate optimal, safe, and efficient health 
care for all people.
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