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Abstract

Purpose of review Although deep learning represents an exciting platform for the devel-
opment of risk stratification models, it is challenging to evaluate these models beyond
simple statistical measures of success, which do not always provide insight into a model’s
clinical utility. Here we propose a framework for evaluating deep learning models and
discuss a number of interesting applications in light of these rubrics.
Recent findings Data scientists and clinicians alike have applied a variety of deep learning
techniques to both medical images and structured electronic medical record data. In many
cases, these methods have resulted in risk stratification models that have improved
discriminatory ability relative to more straightforward methods. Nevertheless, in many
instances, it remains unclear how useful the resulting models are to practicing clinicians.
Summary To be useful, deep learning models for cardiovascular risk stratification must not
only be accurate but they must also provide insight into when they are likely to yield
inaccurate results and be explainable in the sense that health care providers can under-
stand why the model arrives at a particular result. These additional criteria help to ensure
that the model can be faithfully applied to the demographic for which it is most accurate.
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Introduction

Accurate risk stratification remains a central theme in all
stages of the care of patients with cardiovascular disease.
Indeed, the likelihood that any patient will benefit from
a given therapeutic intervention is a function, in part, of
the risk associated with the intervention itself versus the
risk that the patient will have an adverse event if no
intervention is performed. Informed clinical decision
making necessitates gauging patient risk using available
clinical information.

A number of societal guidelines recommend the use
of validated risk scores in the initial evaluation of pa-
tients with suspected coronary disease [1–3]. The use of
accurate risk scores helps to ensure that patients who are
at high risk of adverse outcomes are quickly identified
and assigned a therapy that is appropriate for their level
of risk. Nevertheless, risk stratification is far from a
perfect science, and risk scores often fail to identify
patients at high risk of inimical outcomes. This problem
is made more apparent in light of the fact that a relative
minority of patients with cardiovascular disease experi-
ence the gravest adverse outcomes. Moreover, while the
prevalence of adverse events in high-risk populations is,
by definition, large, the absolute number of events is
also large in patients who are predicted to be low risk
using traditional risk prediction metrics. This low risk-

high number dilemma is frequently encountered in many
areas of cardiovascular clinical research [4]. As such,
adequately identifying patient subgroups who are truly
at high risk of adverse events remains a clear unmet
clinical need. Novel methods are therefore needed to
realize the full potential of clinical risk stratification
from existing clinical observations. Machine learning
and deep learning, in particular, holds the potential to
robustly identify high-risk patient subgroups, suggest
personalized interventions that can reduce a given pa-
tient’s risk, and help ensure that appropriate resources
are allocated to those patients who are in the most need.

In this review, we do not strive to review all of the
relevant literature in the area of deep learning in cardio-
vascular medicine. Indeed, this review is written for the
practicing clinician and strives to provide intuitive ex-
planations for how deep learning models actually work
and where they are most applicable. As the use of these
models becomes ubiquitous in the clinical arena, it will
be important for health care providers to critically eval-
uate them in order to determine the clinical usefulness
of any given machine learning approach. Our goal is to
provide a general framework for understanding what
advantages these models hold and what considerations
limit their broad applicability.

Conventional approaches to risk stratification

The termmachine learning is believed to have been originated by Arthur Samuel,
an engineer and scientist who pioneered artificial intelligence in 1959 [5]. He
described it as “programing computers to learn from experience.” There are diverse
examples of machine learning in the clinical literature, including straightforward
approaches like logistic regression and Cox proportional hazards modeling and
more esoteric techniques like deep learning, which is described in the next section.
Indeed, the former methods have actually been a part of the clinical literature for
some time [6–8]. Therefore, while the term machine learning has only recently
entered the medical lexicon, a number of existing clinical risk scores were devel-
oped and refined using approaches that fall under this umbrella term. The
exorbitant list of such models is too lengthy to exhaustively review here. Instead,
we focus on some approaches that are commonly used to assess patient risk.

One of the earliest models for quantifying the risk of adverse cardiovascular
outcomes was developed by Killip et al. in 1967, where 250 patients were
divided into four simple classes of increasing severity of illness, ranging from
no clinical signs of heart failure to cardiogenic shock [9]. The primary goal of
this study was to trial an improved workflow for cardiac intensive care, but the
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data collected over the course of study revealed patterns in patient survival
based on their class (now called the Killip class). The utility of these classes for
identifying high risk patients has been born out in a number of studies, and
these classes remain a part of the clinical assessment of patients who present
with an acute myocardial infarction.

Over time, more sophisticated statistical techniques have been used to
develop more sophisticated risk stratification models. Both the Framingham
risk score—which quantifies the risk of adverse events (death from coronary
heart disease, nonfatal MI, angina, stoke, transient ischemic attack, intermittent
claudication, and heart failure) in patients who had no prior history of cardiac
disease—and the Global Registry of Acute Coronary Events (GRACE)
score—which quantifies all-cause mortality in patients who present with an
ACS—were developed using Cox proportional hazards regression [10, 11].
Another class of risk scores, developed from and named for the Thrombolysis
in Myocardial Infarction (TIMI) study groups, was developed specifically for
patients who present with symptoms consistent with an acute coronary syn-
drome. Here, features that were discriminatory with respect to the combined
outcome of all-cause mortality, new or recurrent MI, or severe recurrent ischemia
in their cohort were selected using logistic regression. Seven features were selected
in the final model. To use the risk score itself, the physician simply counts the
number of features that are present to estimate the short-term risk of either
mortality after a myocardial infarction post ST segment elevation MI or a com-
bined outcome of all-cause mortality, new or recurrent MI, or severe recurrent
ischemia requiring revascularization post non-ST segment elevation ACS [12, 13].

Regression modeling has found a role for quantifying patient risk in other
disorders apart from ischemic heart disease. Pocock et al., for example, performed
a meta-analysis of heart failure patients from 30 different studies, amounting to
39,372 patients. They used multivariable piecewise Poisson regression methods
to identify features that are predictive of mortality at 3 years. These features were
then converted into an integer risk calculator, called the Meta-analysis Global
Group in Chronic Heart Failure (MAGGIC) score, with higher values correspond-
ing to greater risk [14]. Similarly, the Seattle Heart Failure Model was developed
on a cohort of 1125 patients, using a multivariate Cox proportional hazards
model. This model provides estimates for 1-, 2-, and 3-year mortalities [15, 16].

Logistic regression and proportional hazard models are advantageous because
they are easy to interpret: each clinical feature in themodel has an associatedweight
that corresponds to how important that feature is for the model arriving at a
particular result. However, suchmodels are relatively simple and cannot necessarily
capture complex mechanisms relating observations and outcomes of interest.

What is deep learning?

The diverse, nonuniform terminology in the medical literature unfortunately
tends to obfuscate the meaning of the term “deep learning.” Deep learning is a
subfield of machine learning that strives to find powerful abstract representa-
tions of data using complex artificial neural networks (ANNs) that are then used
to accomplish some prespecified task. While these abstract data representations
are powerful ways to describe clinical data, they are difficult to comprehend and
explain; that is why they are, indeed, “abstract.”
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ANNs correspond to a class of machine learning algorithms whose algorith-
mic structure is inspired by structure of the human brain and how it is believed
that humans compute [17, 18]. A neural network consists of interconnected
artificial neurons that pass information between one another. A typical ANN
contains an input layer, which contains several artificial neurons that take
clinically meaningful data as input. The input layer then passes the clinical data
to other inner, or “hidden,” layers, each of which performs a series of relatively
simple computations. At each layer, more abstract representations of the input
data are obtained. Eventually, the information is passed to an output layer that
yields a clinically meaningful quantity (Fig. 1).

Deep learning models, in practice, correspond to neural networks that
contain several hidden layers. These models, originally referred to as multilayer
perceptrons, were popularized in the early 1980s for applications such as image
and speech recognition, then receded in popularity in favor of simpler, easier to

Fig. 1. In our applications, a neural network acts as a function that takes some observations as input and produces some prediction
of outcomes as the output (a). This function is generated by adding many simple functions (represented by circular nodes that
process information), each of which takes all the outputs of the previous layer as its input, which renders a network “fully
connected” (b). These simple functions are strictly increasing and include parameters (w! ið Þ

; b ið Þ for each node), which are
chosen by training the network (c). Each layer can be though of an abstraction of the data, which is eventually
separable in the last layer if the model works well. The output of the last layer is the probability of an adverse
event, which a clinician may use to inform her clinical decisions (d).
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train, and perhaps more explainable models [19, 20]. In recent years, however,
deep neural network (DNN) learning has resurged dramatically both because of
the availability of so-called “big data” and the development of computational
methods that facilitate the training of large neural networks. In many of today’s
applications, these networks can be quite large, having on the order of 105–106

artificial neurons andmillions of modifiable parameters. Parenthetically, as the
size of clinical datasets is typically much smaller, care must be taken when
implementing these models to ensure that they are not overtrained.

While the structure of ANNs, and DNNs in particular, are inspired by the
structure of neurons in the human brain, these models are best thought of as
universal function approximators. Indeed, it has been mathematically proven
that any continuous function on compact spaces can be represented by a neural
network, under certain constraints [21, 22]. These models therefore form an
efficient platform for generating functions that model complex relationships
between patient characteristics/features and outcomes. This highlights an im-
portant difference between DNNs and simpler methods like logistic regression,
which models the relationship between outcomes (i.e., the logarithm of the
odds ratio) and patient features as a linear function. By contrast, a DNN
corresponds to a complex, highly nonlinear function that takes patient infor-
mation as input (including medical images) and outputs the corresponding
outcome. An additional advantage of DNNs is that they can use input data in
“raw” form, with little preprocessing.

Deep learning models can, in principle, capture complex, nonlinear, rela-
tionships between patient features and outcomes and therefore necessarilymeet
the first criteria. However, because these models generate abstract representa-
tions of the input data, it can be very difficult to understandwhat themodel has
learned and consequently why the model arrives at a particular result. More-
over, understanding when the model will fail—i.e., which patients are most
likely to be associated with an incorrect prediction—can be just as challenging.

Evaluating deep learning risk models

Standard performance metrics, such as the area under the receiver operating
characteristic curve (AUC), accuracy, and the sensitivity/specificity, provide
useful information for gauging how a risk model will perform, on average.
Nevertheless, these metrics do not by themselves offer any interpretative in-
sights, nor do they help the user understand how themodel will perform on any
individual patient. The upshot being that conventional statistical metrics of
success are not always sufficient to determine the clinical utility of a deep
learning model.

When evaluating applications of machine learning to medical problems,
there are particular criteria that must be considered given our current under-
standing of human physiology and the reality of medical practice (Fig. 2). In
addition to having a level of performance that ensures that it will perform well,
on average, on the population of interest, ideally a good algorithmic solution
should also:
1. Provide information about potential failure modes; i.e., indicate when it is

likely to yield a false result;
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2. Be explainable in the sense that clinicians can understand why the model
arrives at a particular result.

Although determining when amodel will fail is challenging, it is an essential
task. Formally, this can be understood as finding, a priori, patient characteristics
or subgroups that are associated with incorrect predictions. The development of
methods that identify such “failure modes” are also a nascent area of research
within the machine learning community, with most of the published research
appearing in specialized machine learning conferences or non-peer-reviewed
online printed archives, with little associated work appearing in the clinical
literature. Nevertheless, insights into when a model will fail can often be
garnered if themodel itself is explainable; i.e., understanding how/why amodel
arrives a particular result often provides clues as to how the model can yield an
incorrect result.

Recently, a new method was described for identifying when a given clinical
risk score will yield unreliable results [23••]. The approach identifies, a priori,
patient cohorts associated with reduced model accuracy, discriminatory ability,
and poor calibration. Application to the GRACE risk model correctly identifies
patient cohorts where the GRACE score has reduced performance. Advantages
of the method are that it is straightforward to implement and that it can be
applied to any risk model, regardless of how the risk model was
developed—thereby making the approach appropriate for deep learning
models. General methods along these lines will likely play an increasingly
important role in determining when complex risk models are expected to yield
useful predictions.

In addition to deciphering when a given model is likely to fail, developing
methods that “explain” what a model has learned is an important part of any
comprehensive strategy that strives to maximize clinical acceptance. Neverthe-
less, conceptions of explainability or interpretability of machine learning

Fig. 2. Issues that hinder the clinical acceptance of deep learning models.
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models are diverse, and it is difficult to determine exactly what this termmeans
in the context of machine learning models. In his article, “TheMythos of Model
Interpretability,” Zachary Lipton identifies five types of interpretability for
machine learning models: trust, causality, transferability, informativeness, and
fairness [24]. Of particular interest for medical algorithms are causality and
informativeness. Causality describes if the relationships discovered by the
model are truly causal or merely correlative. While casualty inmachine learning
is an active area of research, it is always very difficult to tease out causal
relationships from a retrospective analysis of any dataset [25]. An informative
deep learning model provides some intuition to support how it arrives at a
given result. In order to impart useful intuitions, however, one needs to trans-
late the abstract representations learned by a deep learningmodel into language
that is easily understood by the health care practitioner. In short, in the medical
context, we ideally need models that yield insights that are translatable into the
language of physiology (Fig. 2).

There are a limited number of tools that have been used to provide
interpretations/explanations of what a deep neural network has learned. Shape-
ly values, Gradient-weighted Class Activation Mapping (Grad-CAM) methods,
and saliency maps represent a class of methods that can provide insight into
what input features aremost responsible for the riskmodelmaking a prediction
[26–28]. Grad-CAM and saliency maps, in particular, are typically used with
convolutional neural networks (described below) and provide insight into the
relative importance of different parts of an image for a specific prediction [29].
For example, consider a model trained to distinguish between different objects,
such as dogs and humans. A saliency map may reveal that pixels corresponding
to the legs (four for a dog and two for a human) aremost dispositive. Hence, for
such a simple task as differentiating humans from dogs, saliency maps provide
easily understood “explanations.” However, for more complex classification
tasks, saliency maps may not yield such readily interpretable insights. Indeed,
these methods generally do not provide information about how the data in
these regions were used to arrive at a particular decision, nor do they necessarily
provide any causal insights. More generally, it has been argued that the attempts
to explain deep models are inherently flawed because such post hoc explana-
tions can never have true fidelity with respect to the original complex model
[30•]. In this vein, the use of interpretable models have an advantage in that
they are designed to yield explanations that can be understood by domain
experts. Nevertheless, it is not clear that commonly used interpretable models
can capture the complex nonlinear relationships described above in manner
that yields clear explanations. A compromise may be to build models that
combine both mechanistic/physiologic models and deep learning models to
enhance bothmodel explainability and predictive performance. This is an active
area of research.

It has been argued that clinicians should embrace black box models rather
than strive to develop explanations that provide insight into how the model
arrives at a particular result [31]. Proponents of this thesis argue that clinical
decision-making is frequently rooted in an incomplete understanding of the
disease process in question and how the potential intervention actually works.
Hence requiring deep learningmodels to be explainable holds them to a higher
standard than other methods used to inform clinical decision making and
further stymie innovation in this space.
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While there is merit to this argument, there is little doubt that clinical
decisions are grounded in some understanding of the disease process. Indeed,
it is precisely this, albeit imperfect, understanding that guides our therapeutic
choices. By contrast, deep learning models represent an unprecedented level of
opaqueness with respect to clinical understanding. In the setting of black
models and only statistical measures of the model’s overall performance,
additional information are needed to determine when a model prediction is
appropriate for a specific patient. While the identification of model failure
modes and explainability are distinct concepts, they are related. Failure mode
analyses strive to identify patient subgroups where the model has reduced
performance, and a comprehensive understanding of how a complex model
arrives at a particular result provides further assurance that the model is appro-
priate for a given patient, who has a given set of clinical characteristics. Expla-
nations that are inconsistent, for example, with our understanding of the
underlying pathophysiology should not be trusted.

In sum, it is our view that deep learning models for any clinical application
should be evaluated using these metrics, in addition to standard statistical
measures of performance. In what followswe discuss several recent applications
of deep learning methods for cardiovascular risk stratification and evaluate
them relative to the metrics discussed above.

Deep learning for risk prediction

Deep learning for image classification has a relatively extensive literature.
Indeed, the Imagenet challenge—a worldwide competition for classifying mil-
lions of curated images—has led to the development of many sophisticated
algorithms for image classification [32]. In a number of applications, these
image classification algorithms have been modified and fruitfully applied to
clinical images to quantify patient risk. However, these methods have mainly
been used for automatic disease diagnosis from pathology slides and radiolog-
ical scans [33–38]. These algorithms are usually implemented using a class of
DNNs called convolutional neural networks (CNNs). CNNs are inspired by the
structure of the mammalian visual cortex, where each neuron “sees” a small
region of the visual field, called the receptive field of that neuron [39]. In a
CNN, the information contained in adjacent groups of pixels of an image,
analogous to the receptive field, is summarized, using a mathematical opera-
tion called a convolution to create an abstraction of the information in the
image [40].

In cardiology, deep learning work has been focused on the automatic
interpretation of cardiac images, with few applications to the development of
models that directly quantify patient risk [41]. Recent studies have highlighted
the ability of CNNs to identify echocardiographic windows using the images
alone [42, 43], correctly segment the left ventricle in both cardiac CT images and
cardiac MRIs [44, 45], and accurately detect cardiac MR motion artifacts [46].
The use of CNNs to garner insights into the risk of future adverse outcomes,
however, is still a nascent area of investigation.

A recent study that purports to use medical image data for assessing cardio-
vascular risk was published by Poplin et al. [47••]. In that work, the authors
used a CNN to predict age, gender, smoking status, systolic blood pressure,
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diastolic blood pressure, and, most importantly, major adverse cardiovascular
events (MACE) within 5 years from the time that retinal fundus images were
acquired. The dataset used to develop and validate the model was obtained
from the UK Biobank and EyePACS (a retinal image database consisting of
images obtained during routine diabetic screening in clinics in the USA). They
report an AUC of 0.70 for predicting MACE after 5 years using their deep
algorithm. This performance exceeds that of predictions made based on single
risk factors such as age and systolic blood pressure. However, they do not
outperform an existing, simpler proportional hazards model, SCORE (System-
atic COronary Risk Evaluation), proposed by Conroy et al. in 2003 [48]. In
addition to predicting risk, they utilized saliency maps, described above, to
attempt to explain their algorithm. Saliency maps highlight portions of the
retinal images that contributed significantly to the predictions their models
produced. However, the usefulness of these saliency maps is limited because
they give us no information about the mechanism by which certain features of
the retina relate to cardiovascular risk and if the deep learning model has
recapitulated that mechanism.

Recently, there have been attempts to extend classification algorithms,
which were originally designed to analyze medical images, to different
types of data in the Electronic Medical Record (EMR). The EMR can be
divided into two types of data: structured data and unstructured data.
Structure medical data refers to what can be found in the pre-existing
fields with the electronic medical record; e.g., lab results, vital signs, and
demographic information. Unstructured data refers to what appears in
medical notes written by health care practitioners. In a recent study,
Mayampurath et al. assembled structured data from the electronic health
record into a visual format that could then be used to train a CNN to
predict in-hospital outcomes [49]. Essentially, the EMR is converted to a
two-dimensional medical image, which enables the use of standard
machine learning techniques appropriate for medical image processing.
The image itself maps time on one axis and 156 clinical variables
(including vital signs, laboratory results, medications, diagnostic tests,
and nurse examinations), recorded over the first 48 h of admission, on
the other axis. Overall, the discriminatory ability of the best performing
CNN (the authors considered more than one) was 0.91, suggesting that
the method holds considerable promise.

A significant advantage here is that they can leverage methods used
to “interpret” what CNNs have learned about images to help explain
why their deep learning model arrives at a particular result. In their
work, the authors used a standard method—Gradient-weighted Class
Activation Mapping or Grad-CAM—to understand what clinical features
are most important for discriminating between patients who die in-
hospital and those who do not [28]. Not surprisingly, the method finds
that vital signs, interventions (e.g., mechanical ventilation), and admin-
istered medications were important for distinguishing between those
who would have an in-hospital event and those who would not. Of
interest, the model does suggest that simple nursing examinations, rep-
resented by Morse and Braden scores, may be important for predicting
in-hospital mortality. Moreover, it is noteworthy that there are many
different ways to organize data arising from the EMR into two-
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dimensional representations and not all visual representations will have
the same prognostic information. The authors of this study only exper-
iment with three different ways to organize the data.

While these results are encouraging, the problem of predicting in-
hospital mortality using 48 h of admission data may be, relatively
speaking, not that difficult. For example, one would likely do fairly well
predicting in-hospital mortality using a simplified set of input features
that includes where the patient is admitted (ICU vs. hospital floor), vital
signs trajectories during the first 48 h (higher death rates are expected in
patients who become hypotensive soon after admission), and whether
the patient requires mechanical ventilation or inotropic support soon
after admission. As the authors do not compare their method to what
would be obtained using a simple method such as logistic regression
model using a rich set of clinical features, it is not clear whether a CNN
is truly necessary for this task.

One very popular data source for machine learning is the electrocar-
diogram because it is routinely measured, cheap to administer, and
apparently rich in information, some of which may not be easily dis-
cernable by humans. In addition, a variety of deep learning methods
exist that can effectively deal with time series data, much like that
arising from a single lead and multiple lead ECGs. Many of these
approaches have already been applied to the interpretation and classifi-
cation of electroencephalographic signals [50].

Attia et al. also mined the ECG for new information by attempting to
predict left ventricular systolic dysfunction from the 12-lead ECG and
transthoracic echocardiogram (TTE) using a convolutional neural net-
work [51]. As LV dysfunction itself is a powerful predictor of subsequent
heart failure, the resulting network indirectly identifies patients at ele-
vated risk of adverse events [52]. By traditional statistical metrics (e.g.
AUC) their classifier performed extremely well, with some exceptions
(positive predictive value). The low positive predictive value (PPV) tells
us that the model has many false positives, but, crucially, this does not
help us predict when the model will fail; i.e., for which type of patients.
The work also does not provide insights on the details of the relation-
ship between the ECG and ALVD. For example, some determination
about what segments of the ECG contribute to the prediction would
be highly informative and of scientific interest.

Myers et al. applied a recurrent neural network (RNN)—a structure
used to analyze time-series data—to continuous ECG data, along with a
set of patient features, to predict the risk of death 1 year after non-ST
segment elevation myocardial infarction (NSTEMI) [53]. For these stud-
ies, samples from the ST segments of each beat were identified and
extracted in an automated fashion and then used as input to the
RNN. The resulting neural network, which incorporates information
from approximately 1 min of continuous ECG data, had improved
predictive and discriminatory ability relative to a logistic regression
model that used the same patient features and summary information
from the admission 12-lead ECG. Nevertheless, the complexity of the
model makes it difficult to understand precisely how and why the
model arrives at a particular result. Consequently, while the model itself
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has improved performance relative to existing methods, the ultimate
clinical utility of the method remains to be determined.

“All models are wrong, but some are useful”

The recent, notable successes of deep learning approaches argue that they will
have place in the pantheon of methods used to build risk stratification models.
However, it is not always clear when these approaches should be chosen over
more standard methods such as logistic regression modeling or Cox propor-
tional hazards regression.

In general, given a powerful set of independent patient characteristics,
good results will be obtained regardless of the model used. In this
instance, simple regression models may indeed be preferred over deep
learning models as they can offer additional insights into the relative
importance of the chosen features. The main advantage of deep learning,
in terms of model performance, is that it can be used when one does
not have good insight into what clinical features have the greatest
predictive value. For example, the degree of ST segment elevation/
depression is known to have prognostic significance in patients who
present with symptoms consistent with an acute coronary syndrome.
However, there are likely other ECG characteristics that are associated
with adverse outcomes, so methods that use the entire ECG signal are
likely to capture subtle ECG features that have prognostic significance.
By design, deep learning models can utilize raw data, such as the raw
ECG signal (i.e., samples) and therefore does not require insight into
the type of features that may be important for a particular prediction
task. Hence, there is a role for deep learning when one has incomplete
knowledge of the important prognostic information that may be most
relevant for quantifying patient risk. Nevertheless, it is important to keep
in mind that the performance of deep learning models depends heavily
on the size and quality of the data set which one uses.

Data availability is a significant barrier to the deployment of the type
of models described in this review. For medical problems, data must be
fully de-identified to be shared widely, but there is no useful standard
for de-identification—given that perfection is impossible on large scale
data, what percentage of missed protected health information (PHI) is
permitted? Large scale projects like the Medical Information Mart for
Intensive Care (MIMIC) have had success with automating de-identifica-
tion, but they too expect errors and have an explicit protocol for
reporting PHI in the data [54]. In general, there are few large, general
medical datasets, and a significant fraction of studies (including many of
those discussed here) use MIMIC or the UK-Biobank dataset. Those who
do develop their own unique datasets often clutch that data close to
their chests for a variety of reasons, not the least of which is the
immense amount of work required to reliably de-identify that data.

We believe, from our own and others’ clinical experience, that deep
models will not be adopted into medical practice if they are not pow-
erful, explainable, and capable of providing detailed failure mode infor-
mation. None of the work discussed here hits all three marks, and the
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wider literature is largely barren in this regard. Future work must em-
phasis these factors should it wish to impact patient outcomes in the
clinic. Through this effort, perhaps we can design, if not “true,” then
truly useful models.
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