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Opinion statement

Dilated cardiomyopathy (DCM) is the third leading cause of heart failure in the USA. A
major gene associated with DCM with cardiac conduction system disease is lamin A/C
(LMNA) gene. Lamins are type V filaments that serve a variety of roles, including nuclear
structure support, DNA repair, cell signaling pathway mediation, and chromatin organi-
zation. In 1999, LMNA was found responsible for Emery-Dreifuss muscular dystrophy
(EDMD) and, since then, has been found in association with a wide spectrum of diseases
termed laminopathies, including LMNA cardiomyopathy. Patients with LMNA mutations
have a poor prognosis and a higher risk for sudden cardiac death, along with other cardiac
effects like dysrhythmias, development of congestive heart failure, and potential need of a
pacemaker or ICD. As of now, there is no specific treatment for laminopathies, including
LMNA cardiomyopathy, because the mechanism of LMNA mutations in humans is still
unclear. This review discusses LMNA mutations and how they relate to DCM, the necessity
for further investigation to better understand LMNA mutations, and potential treatment
options ranging from clinical and therapeutic to cellular and molecular techniques.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11936-017-0520-z&domain=pdf


Introduction

Dilated cardiomyopathy (DCM), the most common
type of cardiomyopathies, is characterized by ventricular
dilation, systolic dysfunction, and fibrosis [1–3]. DCM
can be acquired (idiopathic or environmental) or genet-
ically inherited via genetic mutations, which accounts
for approximately 40–50% of DCM [1–4]. About 30
such gene mutations have been identified and the num-
ber of genes responsible for DCM continues to increase
[1, 4, 5]. Some DCM is associated with prominent car-
diac conduction system disease, often referred to as
conduction disease associated with DCM [1, 6]. One of
the major genes accounting for approximately 6–8% of
DCM with cardiac conduction system disease is the
lamin A/C (LMNA) gene [5, 7–9]. DCM patients carry-
ing LMNA mutations have been reported to have a

worse clinical prognosis than DCM patients carrying
different pathologic DCM-associated gene mutations
[10, 11, 12•, 13]. Therefore, further investigations are
needed to understand how LMNA mutations alter sig-
naling pathways, which will then guide us to find more
specific treatments for this life-threatening disease [14–
17]. To better understand the underpinnings of genetic
mutations leading to disease manifestations and the
potential therapeutic implications, a comprehensive re-
view of recent insights into the structure and function of
LMNA genes is warranted. In this review, we discuss the
pathophysiology and clinical spectrum of LMNA muta-
tions leading to DCM and the potential therapeutic
strategies based on the recent cellular and molecular
understandings of this disorder.

Structure and genetic determinants of lamin proteins

Lamins are type V intermediate filament proteins and are known to serve as
major structural components of the nucleus [18, 19]. There are twomajor types
of lamins, A type and B type [18, 20, 21]. A-type lamins include lamins A and C,
which are alternative splice variants arising from a single gene LMNA (the gene
of our interest), while B-type lamins include lamins B1 and B2, products of two
separate genes, LMNB1 and LMNB2 [22–26]. The human LMNA gene com-
prises of 12 exons on chromosome 1q21.2–21.3 that encode A-type lamins: A,
AD10, C, and C2, via alternative splicing [21, 27]. Type A lamins are widely
expressed in all differentiated somatic cells, and their various mutations are
known to cause laminopathies [20, 22, 28, 29]. Lamin A (664 amino acids) and
lamin C (572 amino acids) proteins are structurally composed of a globular N-
terminus head domain, a central coiled-coil rod domain implicated in dimer-
ization of the proteins, and a C-terminal tail domain that includes an
immunoglobulin-like domain where various posttranslational modifications
occur [20, 22]. Most lamins undergo various posttranslational modifications
such as phosphorylation, glycosylation, prenylation, sumoylation, nethylation,
and malonylation, all affecting various downstream signaling pathways [30].
Posttranslational modification is especially important to producemature lamin
A from prelamin A [20, 30, 31].

The lamins A and C are identical in their first 566 amino acids which are
encoded by exons 1–9. Exon 1 codes for the amino terminal head domain as
well as the first part of the central rod domain; the rest of the central rod domain
is coded by exons 2–6. It is in the C-terminal tail domain where the difference
arises between the two proteins [21, 22, 28, 31–33]. The C-terminal tail domain
of lamin A is encoded by a part of exon 10 followed by full exons 11 and 12,
while the tail domain of lamin C has a full exon 10 but lacks exons 11 and 12
[21, 31]. Exon 12 in lamin A contains a CAAXmotif (C = cysteine, A = aliphatic,
X = any residue) which serves as a site for sequential posttranslational modifi-
cation processing. The process starts with cysteine undergoing isoprenylation,
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followed by the cleavage of the AAX motif. The final step is the carboxy-
methylation of the farnesylated cysteine, which is followed by the cleavage of
the last 15 amino acids (including the farnesylation) by the zinc
metalloprotease Ste24 homologue (ZMPSTE24) protease, producing mature
lamin A [34–44]. ZMPSTE24 is amembrane-associated enzyme that localizes to
both the ERmembrane and the inner nuclearmembrane [12•, 13, 34, 37, 38]. It
can farnesylate substrates such as prelamin A for proteolytic cleavage [45, 46].
Farnesylation and methylation lead to hydrophobicity, which facilitates the
localization of lamin A to the nuclear envelope [14]. Conceivably, alteration in
any step of this process may lead to functional impairment of translation at the
nuclei, partially due to the abnormal/mutated prelamin A accumulation. Dis-
ruption in these cleavage events has been associated with various diseases such
as premature aging syndrome, including Hutchinson-Gilford progeria syn-
drome, restrictive dermopathy, and lipodystrophy, including mandibuloacral
dysplasia (MAD-B) [43, 47–49]. In contrast, laminC lacks the 98 amino acids at
the C-terminus that are present in prelamin A (thereby lacking the CAAXmotif).
However, it contains a unique 6 amino acid C-terminus encoded by a part of
exon 10. Nevertheless, it contains various sites for the lamin binding proteins
that affect various downstream signaling cascades [21, 22, 28, 31–33].

Although the human LMNA gene was first identified in 1986, it was not
until 1999 that the LMNAmutation was found accountable for Emery-Dreifuss
muscular dystrophy (EDMD), suggesting its role in human disease [32, 50].
EDMD is a type of muscular dystrophy that is characterized by slowly progres-
sive muscle wasting and weakness, early tendon contractures, and dilated
cardiomyopathy with conduction system disease [51]. Since 1999, approxi-
mately 400 new gene LMNA mutations have been reported (http://www.umd.
be/LMNA/) and associated with a wide spectrum of human diseases termed
laminopathies [19, 28, 32]. Currently, laminopathies comprise four distinct
groups, depending on the affected tissue: (1) striated muscles (dystrophy,
heart), (2) adipose tissue (lipodystrophy), (3) nervous system, and (4) accel-
erated aging syndrome. LMNA mutations can manifest as a multisystem disor-
der or tissue-specific disorder affecting the four tissues listed above [28, 52–56].
Most laminopathies arise from missense mutations and disruption in post-
translational modifications that influence the function of lamins. These func-
tions range from structural support of the nucleus to various cellular processes
including gene regulations, protein-protein interactions, and DNA repair [19,
20, 22, 57, 58]. They can be autosomal dominant, autosomal recessive, or X-
linked [23, 28, 34].

Functional role of lamin proteins
Lamins are major architectural proteins located within the nuclear matrix and
provide a platform for the binding of proteins and chromatin [33]. They are
attached to the internal face of the inner nuclear membrane, thereby conferring
mechanical stability [20, 21, 33, 59]. Beyond their significant mechanical
supporting roles for nuclear structures, lamins are now known to contribute to
DNA repair/replication, transcription, mediating cellular signaling, chromatin
organization, and cytoskeletal interactions [47, 60–64]. Expression of A-type
lamins was also proposed to be developmentally regulated in a tissue-specific
manner and to be implicated in terminal tissue differentiation [65, 66].
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Therefore, new findings of distinct LMNA mutations, including laminopathies
with tissue-specific dysfunctions and distinctive phenotypes, suggest that more
than just defective nuclear stability and deformation may play a role in the
development of laminopathies from LMNAmutations [16, 50, 57, 58, 67–70].
Indeed, diverse conditions of laminopathies have been characterized with
features including not only misshapen nuclei or nucleus instability but also
disorganization of heterochromatin, DNA repair dysfunction, impaired prolif-
eration or survival, disruption of cellular signaling pathway, cell migration,
senescence, stress response, and improper interaction with cytoskeleton [23, 31,
32, 63, 71].

Nuclear envelope support
As elements of the components thatmake up the nuclear envelope, lamins were
primarily studied for their mechanical supporting roles in cells and during
mitosis [72, 73]. Studies have demonstrated that lamin A/C defects induce
changes in nuclear morphology in a subset of cells, such as misshapen nuclei,
nuclear pore clustering, mislocalization of associated proteins, and aberrant
intranuclear lamin foci [59, 61, 74]. Without lamins, assembled cell nuclei are
small and fragile. Compared with those from LMNA+/+ mice, fibroblasts from
LMNA−/− mice have more malleable and fragile nuclei that are less resistant to
physical compression in an isotropic manner [74–76]. Lamin mutants known
to have muscular phenotypes also demonstrate deformable nuclei with im-
paired stability and decreased nuclear stiffness [74]. It has been shown that cells
from LMNA mutant patients have a range of different nuclear morphological
phenotypes, suggesting lamins have a role as structural proteins [28].

Organizing chromatin
Lamins can organize and regulate chromatin position within the nuclear en-
velope [77, 78]. Studies with cardiomyocytes and MEFs derived from LMNA−/−

mice showed a partial loss of peripheral heterochromatin, ectopic chromosome
condensation, and mispositioned centromeric heterochromatin, a phenome-
non also observed in cells with mutant lamin A proteins [59, 79–83]. There are
at least two chromatin-binding regions in lamins: one is located in the tail
region and the other is within the rod domain [84, 85]. It is thought that the
interactions between chromatin and lamins are mediated through histones
and/or chromatin-associated proteins [85, 86]. Lamins associate with scaffold/
matrix attachment regions that are involved in transcription, DNA replication,
chromosome condensation, and chromatin organization [87]. The genome
regions that preferentially associate with lamins are termed lamin-A-associated
domains (LADs) [88]. The significance of their interaction and the exact mo-
lecular mechanisms leading to disease have yet to be determined, but there is
growing evidence of altered interaction between lamin and chromatin in vari-
ous laminopathies.

Participating in DNA repair
For studying the role of lamins in DNA repair, cells from Hutchinson-Gilford
progeria syndrome (HGPS) patients were found to have a delayed recruitment
of the repair factor p53-binding protein (53BP1) to damaged DNA sites. These
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cells showed increased levels of the double-stranded break marker γ-H2AX and
were more sensitive to DNA damaging agents [89]. LMNAmutant cells causing
muscular dystrophy or progeria are also shown to alter DNA damage regulators
such as ATR and ATM signaling pathways [90]. Furthermore, it is now believed
that LMNAmutations primarily affect not onlymyofibers but also the efficiency
of satellite cells in muscle repair and regeneration [91]. LMNA mutations may
therefore increase nuclear fragility by disrupting the mechanical coupling be-
tween the cytoskeleton and the nucleus and, consequently, lead to a greater
susceptibility to physical stress, especially in tissues exposed to mechanical
strain such as skeletal and cardiac muscle [61, 70, 79].

Transcription regulator
More and more evidence indicates that nuclear lamins can modulate gene
expression either by directly interacting with chromatin or by sequestering
transcriptional regulators at the nuclear periphery [60, 92, 93]. Several experi-
mental results indicated that lamins mediate transcriptional regulation [92, 94,
95]. Lamin expression coincides with RNA polymerase II activity that changes
according to the stages of development, and alteration of nuclear lamin orga-
nization can inhibit RNA polymerase II-dependent transcription [94]. A-type
lamin also associates with numerous other transcriptional regulators, such as
Rb, Gcl, Mok2, cFos, and Srebp1, affecting gene expression by sequestration of
these factors or by influencing the assembly of core transcriptional complexes
[93, 95, 96].

Mediating nucleo-cytoskeletal connections
Lamins are considered an extended part of the LINC complex, which mechan-
ically bridges nuclei with the cytoskeleton through lamin-interacting proteins
that span the nuclear envelope [97–100]. The LINC complex is composed of
two protein families—SUN (Sad1p/UNC-84) domain proteins at the inner
nuclear membrane, where they in turn interact with a member of the nesprin
family of proteins in the luminal space, and KASH domain proteins at the outer
nuclear membrane [97, 100]. With two isoforms, Sun1 and Sun2, the SUN
domains are conserved C-terminal protein regions about a few hundred amino
acids long, followed by a transmembrane domain and a less conserved region
of amino acids [101]. SUN proteins interact with the nuclear lamina, nuclear
pore proteins, and other nuclear proteins at the nuclear interior and in the
cytoplasm [102–105]. Nesprins span the outer nuclear membrane, where they
associate with various cytoskeletal elements in the cytoplasm [105]. SUN
domain proteins and nesprins together form the core of the LINC complex,
which bridges the nucleus with the cytoskeleton to regulate proper function of
transcription factors and gene expression [104, 105]. Any alteration in the LINC
complex has been implicated for various nuclear functions includingmigration,
positioning, morphology, and mechanics, and disturbed lamin function inter-
feres with nuclear stability, gene regulation, and cytoskeletal functions [33, 61,
103]. Fibroblasts from mice with LMNA mutations linked to progeria demon-
strated deformed nuclei and overaccumulation of protein Sun1, thereby nega-
tively affecting lifespan and various tissues [106]. There is also evidence show-
ing that proper expression and localization of nuclear lamin A/C and associated
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LINC complex are required for proper actin-cytoskeletal function during cell
differentiation [107]. Studies also demonstrate that mutations in lamins A and
C can disrupt LINC complex function and cause defects in skeletal and cardiac
cells [108–110]. In addition to its role in muscle, proper nucleo-cytoskeletal
coupling bridged by lamins is also essential during wound healing, inflamma-
tion, cell migration, cancer metastasis, and development [108, 111–113].
Clinical outcomes and the molecular pathology in patients with laminopathies
also indicated that the LINC complex was involved in LMNAmutations [76]. A-
type lamin defects also affect different nuclear functions such as DNA replica-
tion, RNA transcription, and maturation by interacting with chromatin and
many other transcription factors [98, 99].

Mediating cellular signaling pathway
Lamins also functionally interact with more than 30 direct and more than 100
indirect diverse proteins, indicating the function of lamins as a nuclear platform
[33, 114, 115]. Moreover, the properties of variant proteins involved in these
interactions may determine the tissue-specific roles of lamins [33, 116]. In
addition, lamin A/C is also involved in a variety of signaling pathways affecting
cell growth, survival, migration, and differentiation, including mitogen-
activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR)
pathways [60, 117–119]. Through their interactions with the LINC complexes,
cytoskeletal proteins, and chromatin, lamins regulate various signal transduc-
tion pathways that are important for diverse cellular functions [60, 120, 121].
Lamin and its associated nuclear proteins are shown to regulate the MAPK
signaling pathway and its various downstream molecules as well as
transforming growth factor-beta signaling pathways involving SMADs and
other transcription factors [96, 122, 123].

LMNA mutations causing dilated cardiomyopathy
LMNA mutations are now known to account for 6–8% of dilated cardiomy-
opathy with conduction defect, portend a poor prognosis, and are associated
with a high risk for sudden cardiac death [7, 9–11, 12•, 13, 23, 124, 125].
Patients with LMNA mutations present with cardiac symptoms by mid-age (in
their 20’s to 30’s) usually with mild low grade conduction system disease or
atrial arrhythmia [7, 13, 126]. The conduction system disease gradually worsens
and over 90% of patients develop dysrhythmia (bradyarrhythmias and tachy-
arrhythmias) with about half of patients needing either a pacemaker or ICD [7,
127]. There is a high incidence of sudden death (30%) and development of
congestive heart failure (30%) [11, 13, 124, 125]. Moreover, almost half of the
patients die suddenly before they reach the stage of overt heart failure [5, 11,
127]. A high cardiac disease penetrance and a high mortality were found in
mutation carriers [7, 124, 125]. Male mutation carriers have a worse prognosis
due to a higher prevalence of malignant ventricular arrhythmias and end-stage
heart failure [125].

In addition to DCM and conduction disease disorder, LMNAmutations are
also found in some patients with severe forms of arrhythmogenic right ven-
tricular cardiomyopathy, a pathological pattern characterized by myocyte
loss/fibro-fatty replacement, and reduction/absence of the intercalated discs of
myocardium and LV noncompaction [128–130]. LMNAmutation carriers were
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also found to be associated with an increased risk of thromboembolic com-
plications [131].

Cardiac effects of LMNA mutations have been demonstrated in a murine
model as well [59, 79, 132, 133]. Targeted disruptions in mice led to develop-
ment of cardiac and muscular dystrophy by interrupting nuclear envelope
integrity [59, 79]. Homozygous (LMNA−/−) mice were also shown to exhibit
significant growth retardation with premature death by 6–8 weeks of age with
severe dilated cardiomyopathy with conduction disorder. They also demon-
strated features similar to muscular dystrophy and suffered premature death by
6–8 weeks of age. These mice demonstrate nuclear deformation/instability as
well as transport defects [79, 132]. LMNA knock-in mice carrying the H222P
mutation, a missensemutation known to be responsible for EDMD in humans,
developed dilated cardiomyopathy with conduction defects at adulthood in
addition to muscular dystrophy. All of them died by 9 months of age with
further histological analysis demonstrating extensive fibrosis and presumed
altered gene expression from lamin mutation. Male mice had more prominent
phenotypes and suffered earlier death compared to female mice [133].

Potential treatment options for LMNA cardiomyopathy

Clinical management
Currently, there is no specific treatment for laminopathies including LMNA
cardiomyopathy. Current clinical management strategies for patients with
LMNA cardiomyopathy are identical to those for patients with other cardio-
myopathies or heart failure, which includes symptomatic and supportive
treatment with pharmacologic and ventricular device therapies (neurohor-
monal antagonists, diuretics for congestion, vasodilators for hemodynamic
unloading) [1, 3, 4]. Pacemakers can be considered in cases with the develop-
ment of progressive conduction delays [1, 4, 5]. While sudden death from
arrhythmias may be prevented by implantation of a defibrillator, progressive
heart failure eventually becomes refractory to treatment, and heart transplan-
tation is frequently necessary [1–5]. As patients with LMNA cardiomyopathy
have shown to have a worse clinical course compared to non-LMNA cardio-
myopathy, studies have tried to identify certain risk factors for sudden cardiac
death among the LMNA mutation carriers for more aggressive therapy and
earlier pacemaker/defibrillator placement [7, 124, 134]. Furthermore, in car-
diomyopathy involving an additional system of laminopathies, medication for
seizures and spasticity may be required for neuropathy, while physical therapy
and/or corrective orthopedic surgery may be helpful for patients with muscular
dystrophies [135–137].

Potential targeted pharmacologic therapies
Understanding how lamins control and alter signaling pathways holds
great potential for therapeutic application in diverse laminopathies, in-
cluding LMNA cardiomyopathy. Several mouse models have been used
to study molecular pathways affected by LMNA mutations [138]. Iden-
tified signaling pathways deregulated by LMNA mutations include the
MAPK pathway and mTOR pathway involving various downstream
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targets [118, 139, 140•, 141, 142•, 143–146]. The MAPK/extracellular
signal-regulated (ERK) pathway is activated by various stimuli that con-
trol signaling cascades that regulate cell proliferation, growth, differen-
tiation, survival, migration, and apoptosis. It is expressed in all eukary-
otic cells and disruptions in this pathway have been known to play a
role in cancer and other numerous human diseases [117, 118, 147]. The
MAPK pathway is also known to be involved in intracellular signaling of
the ventricular myocytes. The MAPK pathway works as a multitiered
pathway, involving various downstream target signaling molecules [148].
mTOR, the serine/threonine kinase, also plays an important role in
regulating growth, proliferation, survival, and protein synthesis [149,
150]. It has been found that there is often cross-talk between mTOR and
MAPK pathways [148].

LMNA knock-in mice carrying the H222P mutation, a missense mu-
tation known to be responsible for Emery-Dreifuss muscular dystrophy
and dilated cardiomyopathy in humans, are known to develop dilated
cardiomyopathy with conduction defects that lead to eventual death by
9 months of age [117, 118, 142•, 143]. In the hearts of these mice,
hyperactivation of the MAPK signaling pathway including ERK, JNK, elk,
and c-jun, which are all downstream components of MAPK cascades,
was observed [118, 141, 142•, 143]. Treatment of these mice with
various inhibitors of MAPK signaling pathways (inhibitors of
MAPK/ERK, JNK, or both) demonstrated a delay in LV dilation and
improvement of LV systolic function in mice with dilated cardiomyop-
athy [141, 142•, 143].

Moreover, it has been shown that proper interaction of A-type lamin
with activated ERK1/2 regulates activation of junction protein
connexin43 (Cx43). Without normal A-type lamins, Cx43 activation
increases due to inappropriate phosphorylation of ERK1/2, resulting in
decreased gap junction function that may decrease cell communication
and contribute to the arrhythmic pathology associated with
laminopathies [151, 152].

These results provide genetic evidence that ERK1 and ERK2 contribute
to the development of cardiomyopathy in laminopathies [146]. Hyper-
activation of the MAPK/ERK signaling pathway was observed in
explanted human hearts with LMNA cardiomyopathy, indicating that
these inhibitors hold a great therapeutic potential for human subjects
with LMNA cardiomyopathy [153, 154]. Various inhibitors of the MAPK
or mTOR pathway are already in therapeutic use to treat other patho-
logical diseases such as cancer, chronic pain, and inflammatory diseases
in humans [139, 148, 150]. Recently, a phase II trial commenced using
ARRY-797, a selective oral inhibitor of the p38 MAPK, in patients with
LMNA cardiomyopathy. The company’s phase I trial demonstrated a
favorable outcome for patients on ARRY-797, showing improved cardiac
function on an echocardiogram. The final outcome from this trial has
yet to be determined, but this trial exhibits a viable therapy for LMNA
cardiomyopathy by attenuating left ventricular dilatation and deteriora-
tion (www.ClinicalTrials.gov, Identifier NCT02057341).

LMNA mutant mice also exhibited hyperactivation of the mTOR
pathway in affected tissues such as cardiac and skeletal muscle [133,
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155, 156]. LMNA mutant mice treated with mTOR pathway inhibitors
(rapamycin or temsirolimus) showed improvement in their LV size and
cardiac function [155].

Potential cellular and molecular therapies
Identifying the precise molecular mechanisms of LMNA mutations lead-
ing to laminopathies affecting striated muscles is critical for developing
new therapeutic strategies to prevent cardiac dysfunction and sudden
death. Lamin mutations are known to alter functions of various tran-
scription factors [92]. Cells in mice with lamin mutations linked to
muscular dystrophy and DCM were shown to have altered function of
transcription factor megakaryoblastic leukemia 1 (MKL1) due to abnor-
mal nuclear-cytoskeleton dynamics. This was rescued by expression of
one of the nuclear proteins, emerin [157]. In addition, expression of
cardiac-specific lamin A transgene in LMNA−/− mice demonstrated im-
provement in cardiac function with a preservation of a functional con-
ductive system [132]. These findings indicate a novel mechanism that
could provide insight into the disease etiology for the cardiac phenotype
in laminopathies and also implies a potential therapeutic strategy for
laminopathies.

Insights from noncardiomyopathy LMNA mutations
LMNA mutations are also known to cause accelerating syndromes such
as HPGS [53, 158]. The most common mutation is due to the deletion
of the C-terminal region required for posttransitional modification [63,
159]. This leads to an increase in farnesylated lamin A which is shown
to cause mitochondrial dysfunction, abnormal chromatic interactions,
DNA damage, and cell instability in both in vitro and the mice model
[34, 63, 159, 160]. Several studies have shown that farnesyl transferase
inhibitors showed some attenuation of progeria-like symptoms as well
as restoration of nuclear morphology [161–164]. Currently, lonafarnib
(FIT inhibitor) is undergoing a clinical trial in patients with HGPS with
promising data showing improvement not only in weight gain but also
in cardiovascular stiffness, bone strength, and hearing (neuropathy)
[165].

Conclusions

Lamin A/C mutations are frequently reported as a cause of cardiomyopa-
thy, often causing sudden death at a young age before patients even reach
clinically overt heart failure. Mutations of LMNA associated with
laminopathies are only beginning to be understood. Studies have demon-
strated an intricate complexity of lamin function and how it affects a
diverse spectrum of cellular and molecular changes responsible for
laminopathies including LMNA cardiomyopathy. Further investigations are
needed to examine how alternations in the lamin structure regulate various
cellular and molecular processing such as transportation of trans-factors,
signaling pathways, and/or processes of posttranslation. Such examinations
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can facilitate rational understanding of the pathology of laminopathies in
order to design therapeutic strategies.
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