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Opinion statement

Cell therapy can be administered via injections delivered directly into the myocardium or
as engineered cardiac tissue patches, which are the subject of this review. Engineered
cardiac patches can be created from sheets of interconnected cells or by suspending the
cells in a scaffold of material that is designed to mimic the native extracellular matrix. The
sheet-based approach produces patches with well-aligned and electronically coupled
cardiomyocytes, but cell-containing scaffolds are more readily vascularized by the host’s
circulatory system and, consequently, are currently more suitable for applications that
require a thicker patch. Cell patches can also be modified for the co-delivery of peptides
that may promote cell survival and activate endogenous repair mechanisms; nevertheless,
techniques for controlling inflammation, limiting apoptosis, and improving vascular
growth need continue to be developed to make it a therapeutic modality for patients
with myocardial infarction.

Introduction

Although coronary interventions and associated med-
ical therapies have improved care in patients with
coronary artery disease, a significant portion of these
patients still progress to end-stage heart failure [1].
To date, heart transplantation remains the only de-
finitive therapy for restoring cardiac function in pa-
tients with end-stage heart failure. However, the
availability of donor hearts is inadequate, and even
when a suitable heart can be obtained, the patient’s
lifespan is typically extended by just ~10 years [2].
Thus, therapies that can effectively limit adverse

cardiac remodeling and regenerate or replace myocar-
dial tissues that are lost to an ischemic event are
urgently needed.

Tissue engineering was first introduced as a
method for rebuilding organs in the early 1990s
[3], and the first investigations of engineered myo-
cardial tissues began around the start of the new
millennium [4–10]. The benefits associated with the
transplantation of tissue-engineered cardiac patches
have been observed in both small- and large-animal
models of myocardial injury [8, 10], and the
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effectiveness of this therapeutic approach will con-
tinue to improve as researchers seek to identify the
optimal combination of cell types and to refine the
methods used for patch creation and delivery. In
this review, we summarize the progress in cardiac

patch engineering by focusing on recent discoveries
that may influence decisions on cell selection and
on other components and techniques used to man-
ufacture engineered cardiac patches for the treat-
ment of myocardial disease.

Cell types

The human heart contains billions of cells of multiple lineages [11]; thus,
effective methods for generating an engineered cardiac patch will require access
to suitably large and pure populations of at least three distinct cell types:
endothelial cells (ECs), smooth muscle cells (SMCs), and cardiomyocytes
(CMs). Human-induced pluripotent stem cells (hiPSCs) are perhaps the most
promising source of cells for patch creation because they can self-replicate an
unlimited number of times, can differentiate into cells of any lineage, and can
be created from each individual patient’s own somatic cells, thereby minimiz-
ing the immune/inflammatory response to implantation. However, their ca-
pacity for self-replication and differentiation can also lead to tumor formation
and, consequently, hiPSCs need to be pre-differentiated before administration.
Protocols for differentiating hiPSCs into SMCs are well-established [12•], and
effectivemethods for generating ECs and CMs fromhiPSCs (i.e., hiPSC-ECs and
hiPSC-CMs, respectively) have recently been introduced.

Differentiating hiPSCs into endothelial cells

The most common methods used to generate ECs from hiPSCs (or human
embryonic stem cells [hESCs]) have been based on co-culturing with murine
stromal cells [13, 14] or the formation of embryoid bodies (EB) [15, 16] and
typically involve growing the cells in a two-dimensional layer. However, the co-
culture method can leave a small number of murine cells in the hiPSC-EC
population [14, 15], while the efficiency of the EB protocol (i.e., the proportion
of hiPSCs or hESCs that acquire an EC-like phenotype) is just 15 % [14–16].
Recent work suggests that the differentiation efficiency can be increased to
~44 % via a two-stage protocol performed with hiPSCs that are suspended in a
three-dimensional fibrin scaffold [17]. In stage 1, the hiPSCs were cultured with
activin A and BMP-4, which have been shown to direct hiPSCs toward the
mesodermal lineage [18]; then, in stage 2, the cells were cultured with vascular
endothelial growth factor (VEGF) [19], transforming growth factor β1 (TGFβ1)
[20], and erythropoietin (EPO) [21], which are known to participate in hESC-
EC differentiation or in the differentiation of endothelial progenitor cells. After
purification to 995 % (based on expression of the EC marker CD31), the EC
phenotype remained stable for 4 weeks, which is approximately 2 weeks longer
than has been achieved with other methods [14, 15], and engineered cardiac
patches created from the hiPSC-ECs, hiPSC-derived CMs, and smooth muscle
cells began to contract just 3 days after synthesis, compared to 7 days afterward
for patches that were created without hiPSC-ECs.
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Differentiating hiPSCs into cardiomyocytes

Embryonic or induced pluripotent stem cells were first differentiated into CMs
by culturing them with endodermal cells [22], but the efficiency of the differ-
entiation protocol can be increased by culturing the cells as monolayers or
embryoid bodies. Like hiPSC-EC differentiation, the differentiation of hiPSC-
CMs begins by committing the cells to the mesodermal lineage with factors
such as BMP4, activin A, and/or WNT3A [23, 24]; then, the cells are directed
toward a cardiac lineage via the addition of BMP inhibitors and/or Wnt inhib-
itors such as Noggin and DKK1 [25, 26]. However, when hESC-CMs were
obtained and purified via EB formation and Percoll separation, only 35–66 %
of the isolated cells expressed slow myosin heavy chain or cardiac troponin T
[27], which suggests that the population may have contained a substantial
number of residual partially differentiated cells. When differentiated via the
sandwich method [28•] and isolated via micro-dissection and preplating, the
purity was as high as 93 % [12•, 18].

Methods of patch creation

In general, engineered cardiac patches can be classified into one of two categories,
cell sheets or cell-containing scaffolds, both of which are summarized below.

Cell sheets
Cell sheets are created by culturing cells on dishes until confluent, and if the dish
is coated with a temperature-sensitive polymer, poly(N-isopropylacrylamide)
(PIPAAm) [29], the sheets can be released intact by reducing the culture tem-
perature from 37 to 32 °C, thereby preserving the extracellular matrix, the cells’
alignment, and intercellular connections, including the gap junctions necessary
for electronic signal transduction between neighboring CMs [30]. Individual
sheets can be stacked to form three-dimensional engineered cardiac grafts [4],
and the CMs in adjacent layers can become fully electrically coupledwithin 1 h of
layering [31]. However, grafts constructed with four or more layers resist vascu-
larization, and vascularization can also be impeded by the epicardium after the
sheet is applied to the surface of the heart.

Techniques for producing adequately large and pure populations of hiPSC-CMs
were unavailable until recently, so studies performed with hiPSC-CM sheets are
relatively rare [10, 32]. Nevertheless, hiPSC-CM sheets have been shown to beat
spontaneously [33], conduct action potentials [34], and become electronically
coupled when layered [35, 36], and are associated with improvements in cardiac
function, vascularity, and fibrosis [37]. After transplantation, the contractile activity
of CM sheets is expected to contribute directly to myocardial performance. How-
ever, the transplanted sheet may remain electronically isolated from the native
myocardium; if so, any observed improvements are likely to have evolved primarily
through the release of cytokines that promote angiogenesis, activate endogenous
progenitor cells [38, 39•], or stimulate other beneficial paracrine pathways.

Because inadequate perfusion is the primary cause of attrition in
transplanted cells [40], researchers have attempted to improve the vascularity

Curr Treat Options Cardio Med (2015) 17: 37 Page 3 of 10 37



of CM sheets by adding other cell types [41, 42]. The inclusion of human
umbilical vein endothelial cells (HUVECs) and primary human bone marrow
stromal cells significantly increased the vascularity of cultured hESC-CM sheets
[42], and the stromal cells also produced an abundance of matrix components,
including fibrillar collagen, hyaluronan, and versican. Sheets composed of
hESC-CMs, ECs (HUVECs or hESC-derived ECs), and mouse embryonic fibro-
blasts also formed vascular networks in culture, and after the sheets were
transplanted into rats, the preformed vessels integrated with the host animal’s
circulation and the engrafted sheets were approximately tenfold larger than the
grafts of sheets created from hESC-CMs alone [41].

Studies with skeletal myocytes (SkMs) suggest that vascularization can also
be induced in multilayered, CM sheet patches by sandwiching ECs between the
sheets. Patches composed of human SkMs and HUVECs were penetrated by
capillary-like structures in vitro, and the preformed endothelial network be-
came connected to the host animal’s circulation after subcutaneous transplan-
tation into nude rats [40]. SkM sheets have also been prevascularized by
wrapping them with omentum [43]; in porcine [44] and rodent [40] MI
models, measurements of vascularity, cell survival, cardiac function, and infarct
size improved significantly when SkM sheets were wrapped and cultured with
omentum before transplantation.

Collectively, these observations suggest that patches composed of CM sheets
need to contain supporting cells for optimal vascularity and perfusion. How-
ever, capillary density was significantly better in mice transplanted with patches
containing ESC-derived CMs, ECs, and vascular mural cells than when the ESC-
derived CMs were omitted; thus, CMs also appear to contribute to vascular
growth. Cardiac functional parameters were also significantly better in animals
treated with patches containing all three cell types [38].

Scaffolds and decellularized tissues
Scaffold-based engineered cardiac patches are created by suspending cells in a
matrix of biomaterial, and because the matrix is less resistant than sheets to
infiltration by the vascular network of the native myocardium, patches made
with this technique are generally more suitable for applications that require
thicker engineered cardiac patches. The matrix of the scaffold is usually com-
posed of naturally occurring biomaterials such as collagen and fibrin [45], but
can also be created from synthetic polymers [46–49], and the scaffold can be
modified for delivery of growth factors and other cytokines that may further
improve angiogenesis, impede apoptosis, and activate endogenous repair
mechanisms. However, scaffolds do not produce patches with well-aligned
CMs, and the scaffold material may interfere with electronic signal transduc-
tion. Thus, a number of strategies, including electrical field stimulation [50] and
chronic mechanical stretching [51, 52], have been used to promote cell align-
ment and the synchronization of contractile activity.

Collagen
Collagen is the most prevalent extracellular component of the myocardium and
can be molded into a variety of shapes. The first mammalian engineered cardiac
patch was created by suspending neonatal rat heart cells in a collagen scaffold [53],
and patches composed of collagen, ECs, stromal cells, and hESC-CMs or hiPSC-
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CMs contained vascular structures of human origin and were perfused by the host
circulation just 1 week after transplantation onto uninjured rat hearts [54]. Colla-
gen has also been combined with Matrigel and neonatal rat CMs to form rings of
engineered cardiac tissue that were maintained with phasic mechanical stretching.
The rings can be cut to form strips of engineered cardiac tissue [51, 55], which
survived, matured, and continued to beat after transplantation into healthy hearts
[5], or left intact to generatemore complex structures; for example, the rings can be
stacked to form asterisk-shaped patches, which improved contractile function in a
rat MI model [8], or fused on edge to create pouches of cardiac tissue, which may
be used to encase and support the function of failing hearts [56].

Fibrinogen/fibrin
In response to wounding, individual monomers of fibrinogen are converted to
fibrin by exposure to thrombin; then, the fibrin molecules cross-link to form an
insolublemesh that traps blood cells to form a clot. Thus, fibrin scaffolds can be
incorporated into engineered cardiac patches by mixing a cell-containing solu-
tion of fibrinogen with thrombin, and because themixture typically solidifies in
less than 1 min, the patch can be created in situ by injecting the two solutions
into a mold placed over the infarct site. This method has been used to deliver
hESC-derived smooth muscle cells and endothelial cells to the infarcted hearts
of both swine and mice [10, 39, 57•]; the treatment was associated with
improvements in myocardial function, perfusion, energy metabolism, left
ventricular wall stress, and remodeling [58]. Fibrin scaffolds can also be mod-
ified with polyethylene glycol (i.e., PEGylated) and used to deliver growth
factors and other beneficial proteins [59].

Therapeutic benefits and mechanisms of action

After a patient recovers from an acute infarct event, myocardial tissue in the
injured region of the compensated heart may have been replaced by a thin,
fibrotic scar, which bulges during systole and increases wall stress in the sur-
rounding tissues. This increase in wall stress is believed to trigger metabolic
changes in nearby cells, such as declines in the ATP turnover rate and in the ratio
of phosphocreatine to ATP (i.e., the PCr/ATP ratio) [57•, 60–62], which cause the
region of dysfunction and adverse cardiac remodeling to grow and encompass a
progressively larger proportion of myocardial tissue. Thus, the additional thick-
ness and rigidity provided by an engineered cardiac patch may improve myocar-
dial performance or impede disease progression by preventing the infarct from
bulging, which could explain, at least in part, why implanted patches have been
associated with improvements in infarct size, even when the patches did not
contain CMs [63]. However, the CM-free patches did not improve myocardial
function, whereasmeasurements of left ventricular ejection fraction and fractional
shortening in rats that were treated with CM-containing patches were similar to
measurements in sham-operated animals [63]. Furthermore, transplanted hiPSC-
ECs and hiPSC-SMCs, when administered via an in situ fibrin patch over the site
of infarction in swine hearts, were associated with improvements in indices of
cellular ATP metabolism, wall stress, infarct size, and contractile function at the
border of the infarction, and the transplanted cells also secreted cytokines that
promote vascular growth, impede apoptosis, and induce cell migration (Fig. 1)
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[12•]. Thus, much of the benefit associated with an implanted engineered cardiac
patch may evolve from the structural support of the patch or from the cytokines
produced by the transplanted cells, rather than from direct remuscularization of
the injured region.

Fig. 1. The working hypothesis of the mechanism of action using a cardiac patch. A circular, three-dimensional, porous,
biodegradable engineered cardiac patch (blue) can be created over the infarcted region by mixing thrombin and fibrinogen
solutions containing a variety of cell types, including adult stem/progenitor cells (e.g., mesenchymal stem cells, endothelial
progenitor cells), hESC- or hiPSC-derived cardiomyocytes and vascular cells, or combinations of multiple cell types. The fibrinogen
can also be modified to bind peptides that guide differentiation, impede apoptosis, or promote other beneficial paracrine
mechanisms. After mixing, the solution typically solidifies in less than 1 min, forming a semi-solid matrix that not only serves as a
delivery vehicle for the transplanted cells but may also increase the cell engraftment rate and provide structural support for the
weakened myocardium that is exposed to myocardial infarction or ischemia reperfusion, while the transplanted cells release growth
factors and other cytokines that reduce apoptosis, promote angiogenesis, and activate endogenous mechanisms for cardiomyocyte
renewal. Furthermore, perhaps by reducing LV wall stress and bulging at the site of the infarction, the in vivo measurements of
myocardial bioenergetics and the ATP hydrolysis rate (via [31] P magnetization-saturation transfer) suggest that the patch also
protects against adverse changes in myocardial energy metabolism. Collectively, these benefits may reduce infarct size; improve
myocardial perfusion, metabolism, and contractile function; and consequently impede the progression of LV dilatation (panels b
and k courtesy of Xiong Q et al. [39]; panels f, g, i, j, and l courtesy of Xiong Q et al. [57]).
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Conclusion

The beneficial effects of engineered cardiac patches have been clearly demonstrated
in animal models, and their clinical feasibility is supported by the successful
transplantation of sheets of skeletal myoblasts [64] and of collagen sponges that
contained bone marrow cells [65, 66] in patients. hiPSCs are perhaps a promising
source of cells for patch creation because their capacity for self-renewal and differ-
entiation is (theoretically) unlimited, and they can be created from each individual
patient’s own somatic cells, thereby minimizing the immune/inflammatory re-
sponse to implantation. Effective methods for differentiating hiPSCs into SMCs,
ECs, and CMs are now available, and techniques for creating engineered cardiac
patches from sheets of hiPSC-derived cells or by suspending the cells in a biocom-
patible scaffold continue to be refined. Cell sheet technology produces patches with
well-aligned and electronically coupled CMs, but grafts composed of more than
three sheets resist vascularization, so scaffold-based approaches are currently more
suitable for applications that require thicker patches. Regardless of the technique
used for patchmanufacture, strategies for controlling inflammation and improving
vascular growth will be needed to optimize this therapeutic approach.
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