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Opinion statement

Owing to the prevalence of heart disease and the lack of effective long-term solutions
for managing cardiac injury, research has turned to cell therapy as a potential mech-
anism for myocardial repair. Mesenchymal stem cells (MSC) in particular have become
popular because their differentiative ability and their angiogenic and immunomodula-
tory properties make them attractive candidates for transplantation. However, there is
still debate regarding the optimal strategy for the delivery of these cells. Recent clin-
ical studies have isolated MSCs from a variety of tissue origins and have also tested the
benefits of pretreatment with cardiogenic growth factors. Meanwhile, a newer school of
thought instead supports the utilization of cardiomyocytes generated from MSC-de-
rived induced pluripotent stem cells. This review will examine the promise of MSC ther-
apy, discuss the results of past work, and propose steps that must be taken in the
future.

Introduction
Approximately every 34 seconds, an American suffers a
coronary event [1]. These events typically result in
myocardial infarction (MI), which is characterized by
myocyte necrosis because of oxygen deprivation and
leads, subsequently, to the formation of a fibrous scar
in the heart [2]. The loss of cardiac muscle can lead to
ventricular remodeling in response to injury and ische-
mic cardiomyopathy (ICM) over time [3–5]. Though
remodeling has been shown to maintain or even im-

prove stroke volume [3, 4] and, therefore, cardiac out-
put, [5] the cost is significant dilatation of the left
ventricle (LV) to increase chamber volume and com-
pensate for the lost myocardium [3–5]. Progressive en-
largement of the LV causes an eventual decline in
ejection fraction [3, 5] and is associated with poor
long-term prognosis, including onset of heart failure
(HF) [5] and a decrease in survival [6]. All told, one
of every six deaths in the United States is due to coro-



nary artery disease while one of every nine involves
HF, [1] yet few therapies, whether medical, surgical,
or mechanical, exist that can prevent or reverse LV di-
latation after MI [7]. For that reason, the idea of cell-
based therapy for cardiac repair has gained popular-
ity, and numerous cell types, from embryonic stem

cells (ESCs) to cardiac progenitor cells [8] have
been studied to assess their ability to regenerate vi-
able, functional myocardial tissue. For this article,
we will focus on mesenchymal stem cells (MSCs)
as these cells have gained significant popularity in
recent years.

Definition of MSC

MSCs were first identified in the 1960s when Friedenstein discovered a sub-
population of bonemarrow (BM) cells that adhered to plastic, had a fibroblast-
like appearance [9•], and formed clonal colonies in vitro [10]. He also dem-
onstrated that in vivo transplantation of these cells led to the generation of
multiple skeletal tissues from the progeny of a single precursor, which he called
an osteogenic stem cell [11] or BM stromal stem cell [12]. The termMSCwas not
used until it was coined by Caplan in 1991 [13].MSCs have since been found in
several different tissue types including skin, fat, muscle, ligament, tendon, um-
bilical cord, and placenta, among others [14]. This heterogeneity has made it
difficult to establish a precise definition of MSCs. Unlike hematopoietic stem
cells, MSCs lack a unique cell surface marker. Instead it has been proposed that
cells must meet the following criteria in order to be classified as MSCs [15]: (1)
they must be plastic-adherent when cultured under standard conditions; (2)
they must express CD105, CD73, and CD90 but lack expression of CD45,
CD34, CD14 or CD11b, CD79α or CD19, and HLA-DR; and (3) they must
differentiate into osteoblasts, adipocytes, and chondroblasts in vitro. It was this
third trait—the ability to differentiate into a variety of mesodermal
lineages—that made MSCs a promising target for tissue regeneration and engi-
neering.

Why MSCs?

Although the function ofMSCs in vivo is not fully understood, it is thought that
they are responsible primarily for the normal turnover andmaintenance of adult
mesenchymal tissues [16]. The ability of MSCs to both self-renew and differ-
entiate makes them an ideal source of replacement cells [17]. For example,
human MSCs injected into the LV of an adult murine heart engraft in the
myocardium and become morphologically indistinguishable from the native
cardiomyocytes (CMs) [18].MSCs also promote the growth and proliferation of
neighboring cells through paracrine signaling. MSC-derived conditioned me-
dium has previously been shown to activate cardiac progenitor cells in vitro,
leading to enhanced migration, upregulation of CM-related genes, and inhibi-
tion of apoptosis under hypoxia and serum starvation [19]. The mechanism
responsible for the beneficial effects of MSCs, however, remains to be clarified.
Interestingly, Hatzistergos et al. [20] published data from an in vivo swine study
suggesting that conditioned medium alone may not be enough to stimulate
proliferation of c-kit+cardiac stem cells (CSCs) and that the cells themselves are
necessary for the recruitment of new CMs. One key issue that needs to be ad-
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dressed as soon as possible is that while MSCs are known to secrete a broad
spectrum of regulatory and trophic factors including growth factors, cytokines,
and chemokines, characterization of this secretome has been limited [21]. One
molecule that seems to be made constitutively by MSCs is vascular endothelial
growth factor (VEGF), suggesting a role in angiogenesis and vasculogenesis [22–
24]. This finding is further supported by the observations that MSCs release
greater levels of VEGF when subjected to hypoxic conditions [23] and that
transplantation ofMSCs intomurine hindlimb ischemia [23] orMI [25]models
led to an increase in vessel density. Considering cell death after MI is due to lack
of oxygenated blood flow [2], this property of MSCs makes them extremely
valuable when attempting to repopulate an infarct area with viable CMs.

In addition to its capacity to facilitate cellular growth and proliferation, the
paracrine signaling ofMSCs functions in wound healing andmodulation of the
immune system. Evidence suggests that MSCs have the ability to enter the cir-
culation and follow chemotactic gradients to home to sites of injury or in-
flammation [26–29]. MSCs may regulate the development of fibroblasts and
endothelial cells, a process that is commonly involved in tissue repair, through
the release of growth factors, as a source of extracellular matrix, and as a catalyst
for angiogenesis [30, 31]. MSCs simultaneously create an immunosuppressive
microenvironment to mitigate inflammatory response [26, 30, 32]. In a healthy
individual, acute tissue injurywill lead to the activationofmanykindsof immune
cells including macrophages, B and T lymphocytes, dendritic cells, and natural
killer cells; however, an excessive response can actually interfere with repair or
even exacerbate the damage [30]. In the presence of inflammatory cytokines such
as interferon-γ, tumor necrosis factor-α, and interleukin-1β [30], MSCs release
soluble factors that counteract the activation, proliferation, andmaturation of the
cells that carry out both adaptive and innate immunity [26, 33]. Administration
of the immunosuppressive drug cyclosporin-A has long been known to reduce
infarct size by inhibiting the activation of leukocytes by ischemic tissue; [34, 35]
however, treatment with anti-inflammatory drugs post-MI has led to catastrophic
LV freewall rupture, suggesting theneed for an inflammatory response tomediate
wound healing. Although MSCs demonstrate a clear effect on the immune sys-
tem, interestingly, they themselves escape recognition by their targets. MSCs do
not display immunogenic surfacemarkers likemajor histocompatibility complex
(MHC) antigens or other co-stimulatory molecules, and, therefore, elicit a much
smaller immune reaction [26, 32, 33]. This relative immunoprivileged status
permits allogeneic transplantation of MSCs without the usual concern of rejec-
tion, an advantage that would allow for more timely treatment using an off-the-
shelf stock of prepared cells should MSC therapy prove to be effective.

Clinical research

MSC research in animals like rodents and swine has been well documented
for decades, but the quest to determine the efficacy of MSCs in human car-
diac repair is just now beginning. Hare et al. [36•] performed one of the first
major MSC therapy trials, a phase I, randomized, double-blinded, placebo-
controlled test of allogeneic BM-derived MSCs (BM-MSCs) in patients with
acute MI (n=53). The cells were administered intravenously up to 10 days
post-MI at one of three doses. This study not only endorsed the safety of
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MSCs, but also found that the MSC-treated groups experienced fewer ar-
rhythmias and improved left ventricular ejection fraction (LVEF) that was
sustained 6 months after treatment. These findings led to a subsequent phase
II study (n=220) for which the data is as yet unpublished but preliminary
reports have stated that an infusion of MSCs within 7 days of acute MI sig-
nificantly reduced cardiac hypertrophy, arrhythmia, progression to HF, and
rehospitalization for cardiac complications [37]. Hare’s team also conducted
the phase I/II randomized percutaneous stem cell injection delivery effects on
neomyogenesis (POSEIDON) trial [38] with the purpose of comparing au-
tologous and allogeneic BM-MSCs in the treatment of ICM. Though the study
was limited by a lack of a placebo control and a small participant population
(n=30), the results were encouraging. Injected transendocardially, both au-
tologous and allogeneic MSCs showed equally low rates of adverse events and
were associated with reversal of LV remodeling, reduction in myocardial scar-
ring, and better quality of life. Although various trials have studiedMSCs “as is,”
others such as the cardiopoietic stem cell therapy in heart failure (C-CURE)
study [39] have examined the differentiative potential of these cells. Autologous
BM-MSCs were primed with a cardiogenic growth-factor cocktail prior to
endomyocardial injection in patients with chronic HF (n=45) who were not
randomized to standard medical care. The hope was that lineage-selected sub-
populations of MSCs would contain a higher percentage of cells of a favorable
phenotype, thereby, increasing the amount of engraftment and retention, and
after 6 months of follow-up the intervention cohort indeed showed improve-
ment in the 6-minute walk test and LVEF as well as a decrease in end-systolic
volumes. Nevertheless, further data would likely be required to confidently as-
sert that cardiopoietic MSCs convey an advantage over their natural relatives.
Perhaps ongoing or upcoming trials including randomized clinical trial of adi-
pose-derived stem cells in the treatment of patients with ST-elevation myocar-
dial infarction (APOLLO) and safety and efficacy of adipose derived regenerative
cells delivered via the intracoronary route in the treatment of patients with ST-
elevation acute myocardial infarction (ADVANCE) [40], which are studying
adipose tissue-derived MSCs (AT-MSCs) in patients with ST-segment elevation
MI; mesenchymal stromal cell therapy in patients with chronic myocardial is-
chemia (MyStromalCell) [41], which is investigating the effects of VEGF-stim-
ulated AT-MSCs on chronic ischemic heart disease and refractory angina; and
allogeneic mesenchymal precursor cell infusion in myocardial infarction
(AMICI) [42], which is assessing the safety of intracoronary injections of MSC
precursors into patients undergoing left anterior descending revascularization
after acute MI, will help to provide more clarity regarding the optimal origin,
delivery method, and pretreatment strategy for therapeutic MSCs.

Reprogramming human amniotic mesenchymal stem cells
into induced pluripotent stem cells

The initial success of these clinical trials suggests MSCs may in fact become the
foundation for regenerative medicine in the future. However, the restorative
potential of the CMs derived from reprogrammedMSCswas examined recently.
This possibility has become the driving force behind the use of iPSC technology
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to generate cardiac cells in vitro. Ge et al. [43•] reported the ability to reprogram
human amniotic mesenchymal stem cells (hAMSCs) into iPSCs, which is ro-
bustly differentiated into CMs. In addition to the immunomodulatory proper-
ties and cardiac differentiation potential associated with all MSCs, these cells
displayed high reprogramming efficiency due to their partial pluripotency and
began to form hAMSC-derived iPSC (MiPSC) colonies within ten days of
transduction with the four Yamanaka factors: Sox2, Klf4, Oct4, and cMyc [44].
An important finding was that while MiPSCs displayed features typical of H7
ESCs, they retained the immunoprivileged state of hAMSCs as characterized by
expression of HLA-G and CD59 but lack of MHC classes I or II (also known as
HLA-C and HLA-DR, respectively) [43•]. Furthermore, over 50 % of MiPSCs
were found, through flow cytometry, to express the c-kit surface marker, which is
considered an indicator of precardiac mesodermal progenitor cells. This sub-
population underwent cardiac differentiation and exhibited spontaneous con-
tractility, with more than 60 % of the cells beating by day 28, and the CM
phenotypewas confirmedby the upregulation of cardiac specific genes, including
Nkx2.5, Gata-4, and cardiac troponin T [43•]. Proposed animal studies involving
this method have high expectations because fibroblast-derived iPSCs in murine
models have reversed LV remodeling and restored function post-MI [45] and
hAMSCs themselves have displayed substantial therapeutic effect because of their
precardiac properties as well as their engraftment and survival capacity [25].

Future directions

MSC transplantation appears to be a powerful tool in regenerativemedicine, but
there remain questions that must be answered before it can be recognized as an
established treatment for cardiac repair. First and foremost, we must demon-
strate that MSCs are the optimal cells to achieve significant restoration and not
just transient improvement. This is still uncertain as it was recently published
that CSCs, either alone [46] or combinedwithMSCs [47],may bemore effective
to reduce infarct area and vascular afterload because of their enhanced engraft-
ment potential. There also remain concerns regarding not only the mechanism
and degree of benefit of MSC therapy, but also its potential for harm. Even
though the majority of studies indicate that MSCs are in fact safe, there is liter-
ature to support the claim that they can increase the risk of adverse effects. Ac-
cording to past in vitro experiments, MSCs in long-term culture demonstrate
chromosomal instability and are susceptible to spontaneous malignant trans-
formation [48–51]. However, the findings published by Rubio et al. [48] and
Rosland et al. [49] turned out to be due to contamination of the MSC culture
with a cancerous line [52], making it hard to gauge the validity of the other
papers. Nevertheless, because MSCs are multipotent their tumorigenic capacity
must be evaluated and strict regulationsmust be put in place with regards to the
handling of these cells [53]. The differentiative ability of MSCs also brings up
another issue: the formation of bone, cartilage, or other mesenchymal tissues at
ectopic sites. To date, there have been no reports of ectopic tissue formation in
vivo in clinical trials [54], but animal research has demonstrated that it is a
possibility. In a rat model of MI, injection of MSCs into the myocardium re-
sulted in formation of ectopic bone [55]. Similarly,MSCs transplanted into a rat
model of glomerulonephritis differentiated into adipose tissue [56]. Obviously,
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tumors and ectopic tissues would pose a serious danger to patients receiving
MSC therapy, so if MSCs are indeed to be the cell type of the future, their safety
must be unequivocally proven. In that case, the next step will be to establish a
standardized dose and delivery method. This review has mentioned not only a
variety of tissue origins for MSCs, but also three unique strategies for treatment:
naturalMSCs, growth factor primed cardiopoieticMSCs, andCMs differentiated
fromMSC-derived iPSCs. Though each method has shown promise, significant
effort is still necessary to enable sustained restoration of the injured myocardi-
um and elucidate the underlying biological mechanism.
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