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Abstract
Purpose of Review Kidney transplantation is the best treatment for end-stage renal disease. However, due to organ shortage,
suboptimal grafts are increasingly being used.
Recent Findings We carried out a review on the methods and techniques of organ optimization in the cadaveric setting.
Summary Donor care is the first link in a chain of care. Right after brain death, there is a set of changes, of which hormonal and
hemodynamic changes are the most relevant. Several studies have been conducted to determine which drugs to administer,
although in most cases, the results are not definitive. The main goal seems rather achieve a set of biochemical and hemodynamic
objectives. The ischemia–reperfusion injury is a critical factor for kidney damage in transplantation. One of the ways found to
deal with this type of injury is preconditioning. Local and remote ischemic preconditioning has been studied for various organs,
but studies on the kidney are scarce. A new promising area is pharmacological preconditioning, which is taking its first steps.
Main surgical techniques were established in the late twentieth century. Some minor new features have been introduced to deal
with anatomical variations or the emergence of donation after circulatory death. Finally, after harvesting, it is necessary to ensure
the best conditions for the kidneys until the time of transplantation. Much has evolved since static cold preservation, but the best
preservation conditions are yet to be determined. Conservation in the cold has come to be questioned, and great results have
appeared at temperatures closer to physiological.

Keywords Kidney transplantation . Organ preservation . Tissue and organ procurement . Ischemic preconditioning

Introduction

Kidney transplant is the best treatment for end-stage renal
disease [1]. However, due to organ shortage, the majority of
patients do not get a transplant. To increase organ pool avail-
able, we resort to new forms of donation, like expanded
criteria donors (ECD) or donation after circulatory death

(DCD) [2]. These new donors are suboptimal comparing with
living donors or standard donors after brain dead (DBD) [3].

To get the best results from these organs and to harvest the
maximum number of organs from each donor, a keychain of
medical and technical care is established since death (DBD or
DCD) is declared, until the organ is implanted on the recipient.

We performed a review of current and possible future care
in renal procurement on the cadaveric setting, making a sum-
mary of the evidence on the various stages of renal procure-
ment: donor care, preconditioning, and surgical.

Donor Optimization Prior Harvest

One of the critical points for graft quality optimization is donor
care [4]. Immediately after brain death, changes start to occur in
different organ systems (cardiac, pulmonary, endocrine, hemato-
logical, and musculoskeletal), which must be optimized before
harvest surgery to increase the number of organs transplanted per
donor (OTPD) and to improve graft function [5, 6]. Some trans-
plant coordinating entities have established hemodynamic and
biochemical goals for the brain-dead donor maintenance until
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harvest surgery [7]. However, the way to achieve these goals and
donor pharmacological management is still a subject of study.

One of the most prominent areas is catecholamine usage.
Animal studies [8–10] show that among catecholamines, dopa-
mine has the highest therapeutic potential. It reduces kidney graft
inflammation by decreasing the expression of major histocom-
patibility class (MHC) II, P-selectin and tumor necrosis factor-α
(TNF-α), and by inducing antioxidant defenses. These effects
resulted in less leukocyte infiltration and reduced endothelial
injury associated with reperfusion–ischemia and cold storage.
However, clinical studies show different results. Two retrospec-
tive studies [11, 12] have shown an advantage in donor treatment
with dopamine or norepinephrine, by reducing acute rejection
and improving long-term graft survival. However, two random-
ized control trials (RCTs) showed opposite results, as one failed
to achieve kidney graft survival improvement [13] and the other
one succeeded on that goal [14]. Hence, there is no definite
evidence to support systematic catecholamine use in donor man-
agement to improve kidney transplant results.

Fluid management is another relevant factor. Various au-
thors raised questions about how to manage donor fluid re-
plenishment and which fluids to use. When addressing fluid
resuscitation, retrospective studies [15] showed that an aggres-
sive approach increased the number of OTPD. This observa-
tion led to an RCT [16] that aimed to establish a fluid therapy
protocol in organ donors, but this showed no advantage over a
standard and clinically guided management.

Regarding which fluids to use, different approaches have
been studied. A retrospective series [17] that compared crys-
talloids with colloid resuscitation demonstrated that when on-
ly crystalloids were used, there was more delayed graft func-
tion (DGF) compared to an approach with crystalloids and
colloids. Also, the type of colloid to use is a matter of debate.
Hydroxyethyl starch has been the focus of several studies
[18–20], showing an increased risk of DGF when this colloid
was used in donor resuscitation.

As mentioned before, one of the physiological changes that
happen on the donor immediately after brain death is serum
hormonal level variations [21]. Among these, one of the most
relevant pertains to thyroid hormones, as T3 and T4 decrease
to a half hour after brain death and become undetectable be-
tween 9 and 16 h, while TSH remains stable [21, 22].
Retrospective studies and non-randomized studies [15, 23,
24] showed an advantage in donor thyroid hormone treatment,
by facilitating their hemodynamic stability, reducing catechol-
amines use, and by improving the number of OTPD, especial-
ly the kidneys. However, RCT and literature reviews fail to
show this advantage [22, 25, 26].

Other hormones whose replacement has been studied are
insulin and antidiuretic hormone (ADH). After brain death,
insulin decreases to 20% at 13 h, and ADH becomes unde-
tectable at 6 h [21]. Administration of desmopressin to the
brain-dead donor showed an advantage in both renal graft

survival and the number of kidneys harvested by donor in
two retrospective studies [23, 27], but one RCT failed to show
any advantage [28]. Regarding insulin administration, it
seems that more important than its administration to the donor,
which in itself is not beneficial [23], the focus should be on
keeping blood glucose below 180 mg/dL, which allows to
improve graft function and increase the number OTPD [29].

The other crucial hormonal group studied are the cortico-
steroids. The rationale for their application lies in the obser-
vation that most brain-dead donors have adrenal insufficiency
[30] and the presumption that using them would reverse the
systemic inflammation affecting the donor [31]. However, ret-
rospective studies [23] and RCT [32, 33] showed no advan-
tage in terms of the number of kidneys harvested by donor,
DGF, or graft survival. Furthermore, two systematic reviews
[34, 35] showed no beneficial effect.

Controlled hypothermia is a promising donor management
care option. An RCT [14] showed that spontaneous donor
hypothermia 4–20 h before the harvest was associated with
lower kidney DGF. The authors associated this improvement
with less systemic inflammation, which resulted in less kidney
damage. Another RCT [36] showed the same benefit, which
was more significant in expanded criteria donors (ECDs).
However, this may not be beneficial for all types of donors,
namely for heart transplant donors, since hypothermia has
been shown to lead to worse heart graft function [37].

Maintaining different hemodynamic and biochemical ob-
jectives until the time of harvest seems to be more critical than
focusing on a single one drug or parameter [7]. The so-called
donor management goals (DMGs), set by the US Department
of Health and Human Services and the Health Resources and
Services Administration, is a set of nine donor hemodynamic
and biochemical parameters proposed to be achieved in brain-
dead donor care. Different studies have shown that meeting at
least seven of these nine goals increases the number of OTPD
and decreases the rate of DGF in kidney transplant recipients
[7, 38–40].

The use of other drugs such as statins [41, 42], cyclosporin
[43], N-acetylcysteine [44], or therapeutics such as blood
transfusions [45] is under investigation.

Preconditioning and Ischemia–Reperfusion Injury
Modulation

Optimizing organ preservation starting even before harvest until
implantation is another critical aspect to achieve a quality graft
for transplantation. One of the main, if not the primary, mecha-
nisms of organ damage until transplantation is the so-called is-
chemia and reperfusion injury (IRI) [46, 47]. After the circulation
stops, the organ becomes anaerobic, leading to a depletion in
cellular stored ATP and to dysfunction of ATP synthetase.
There is an intracellular accumulation of anaerobic products,
causing acidosis and hyperosmolarity. An ionic movement from
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extracellular to intracellular space aggravates this state of
hyperosmolarity [46–48]. Finally, dysfunction of endoplasmic
reticulum protein production and mitochondrial damage activate
apoptotic pathways [47, 49, 50]. There are several mechanisms
and cellular pathways involved in IRI, including the mitogen-
activated protein kinase (MAPK) family pathways [51, 52], an-
tioxidant defenses, reactive oxygen species [53], and IL-8 [54].
To prevent graft IRI, one line of study has focused onmodulating
the mechanisms of IRI by organ preconditioning [55, 56].

The preconditioning concept was first described byMurry in
1986 when he presented the first studies in myocardial precon-
ditioning [57]. Since his work, the preconditioning study ex-
tended to different organs, including the kidney. In its purest
form, ischemic preconditioning (IP) consists of exposing an
organ to a short period of ischemia, followed by reperfusion
and subsequent new ischemia. This was the principle first ap-
plied in the field of kidney transplantation by Torras [58], when
he presented the first animal studies, concluding that the best IP
time scheme consisted of 15min of warm ischemia followed by
10 min of reperfusion since these were the intervals with the
best histological and functional protection of renal function.
Torras also demonstrated that NO was involved in the IP pro-
cess [58]. As the works progressed, it was possible to realize
that IP is a two-phase process, with an early and late window
[59]. The initial phase is rapid, occurring within minutes and
without protein synthesis. The late phase requires hours to be-
gin and involves protein synthesis. Between them, there is a
period in which there is no protection for ischemia [59]. More
recently, new forms of preconditioning have emerged, such as
remote IP [60] (in which organ preconditioning is achieved
through limb ischemia) and pharmacological preconditioning.

IP was initially tested in animal models [61, 62] without
advantage, like reducing renal dysfunction or morphological
injury. It was later retested on rodent kidney transplant models
[63–66], and at this time with success, showing biological im-
provement. These studies have shown that pathways involved
in protection against IRI by IP are related to endothelial NO
production, induced NO synthetase, and activation of cellular
pathways such as NF-κB or hypoxia-induced factor (HIF) 1α/
HIF-2. Another mechanism related to IP is heme oxygenase
(HO), a key enzyme in redox homeostasis processes [67].
Overall, IP studies on renal transplantation have shown benefi-
cial effects in inflammation inhibition, coagulation inhibition,
oxidative attenuation, induction of antiapoptotic state, andmod-
ulation of HIF pathways [55]. However, despite the absence of
clinical studies in renal transplantation, a meta-analysis of ani-
mal studies showed a reduction in serum creatinine, blood urea
nitrogen, and histological damage in IP kidneys, and the bene-
ficial effect was attained both with local and remote IP [68].

The field that has concentrated most of the research is phar-
macological preconditioning. One extensively studied drug is
erythropoietin [53, 69–73]. Its administration before ischemia
has shown beneficial effects in animal models. It increases

creatinine clearance and sodium excretion fraction, and reduces
visible tubulointerstitial lesions on biopsy [53, 73] and lipid per-
oxidation of renal tissue [71]. Another study that aimed to eval-
uate IRI by urinary excretion of neutrophil gelatinase-associated
lipocalin (NGAL) concluded that administration of erythropoie-
tin significantly reduced urinary NGAL [73]. An additional ben-
eficial effect of erythropoietin administration is the reduction of
proinflammatory cytokines such as IL-6 [72], IL-2, and TNF-α
[71]. The positive impact of erythropoietin appears to result from
activation of tyrosine kinases, named Janus kinase 2 (JAK2) [70,
71], mediated by heat shock protein-70 (HSP70) [70], and also
increased expression of the anti-apoptotic gene Bcl-2 [70].

Other composites tested showed varying results. One is
carbon monoxide (CO) [74–76]. CO is produced at low doses
by mammalian cells through HO catalysis and helps to main-
tain cellular protection, vascular tone, and neuromessenger
[76]. Experimental studies in animal models have shown ad-
vantages in CO application on preservation fluid, namely bet-
ter functional outcomes [75], better histology by reducing fi-
brosis, inflammatory infiltrate, and lipid peroxidation [75].
One of the mechanisms involved in CO action is cytochrome
P450 levels maintenance [74].

Several other compounds are in the early stages of study such
as cardiotropin-1 [77], which have been shown to reduce oxida-
tive stress markers, inflammation, and vascular injury. Another
example is melgatran, a thrombin inhibitor, which when applied
to the kidney storage fluid has been shown to reduce the immune
cells’ proinflammatory state after transplantation, improving graft
function, reducing inflammation and kidney damage. Hydrogen
sulfide (H2S) is an endogenously produced gas with anti-inflam-
matory, antioxidant, and antiapoptotic functions [78]. Applying
H2S to the kidney preservation fluid improved early graft func-
tion and survival, decreasing necrosis and apoptosis [78]. The
manipulation of IRI-related pathwaysmay also be beneficial. For
example, in a study with a HIF hydroxylase inhibitor adminis-
tration, it reduced the effects of IRI [66]. Other compounds also
studied with beneficial effects were cyclosporine [51], 1–25 di-
hydroxy vitamin D3 [79], tin-protoporphyrin IX (an HO inhibi-
tor) [80], bosentan [81], ozone [82], or sildenafil [83].

Optimization of Surgical Harvesting Technique

Establishment of organ harvest main surgical techniques was
done at the end of twentieth century [84–86]. Despite having
similar surgical procedures, DBD and DCD surgical tech-
niques are different.

In DBD, there are two different approaches. The oldest is
the “warm dissection technique” [87] in which the anatomical
structures are dissected before perfusing the corpse. This tech-
nique is associated with more vasospasm and vascular and
parenchymal lesions [88], requiring a 30- to 60-min recovery
period before ischemia to reverse some of the damages.
However, this technique facilitates anatomical dissection.
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The most commonly used method is “dissection in the cold”
[88, 89]. With this technique, there is minimal dissection until
ischemia and perfusion are established. Dissection and organ
separation only takes place after exsanguination and when the
organs are cold. Studies indicate that functional results are
similar between these two techniques [90].

With DCD, we have two main techniques: “super-rapid”
and “premortem cannulation.” With “super-rapid” method,
the main principle is to perform the laparotomy and cannulate
the distal aorta in less than 4 min [91]. Following cannulation,
the supraceliac aorta should be cross-clamped and the
intrapericardial inferior vena cava should be incised. With
“premortem cannulation,” the cannulas are inserted on the
femoral vessels (artery and vein) before withdrawn of support
on the donor. Immediately after death is declared, perfusion is
started, and the explantation surgery starts. This approach de-
creases warm ischemia time [89].

The main surgical procedure for kidney harvest is the
same in DBD and DCD and was already described by our
group [92]. It starts with a midline incision from the xi-
phoid process to the symphysis pubis. In high BMI donors,
a cruciform prolongation or chest incision might be needed
[93]. The round and the falciform hepatic ligaments are
sectioned up to the diaphragm. To get access to the
retroperitoneum, we have to perform a Cattell Braasch ma-
neuver. For that, an incision is made in the white line of
Toldt, starting in the right iliac artery, laterally to the as-
cending colon, up to the hepatoduodenal ligament. An in-
cision is performed on the peritoneum at the right side of
the duodenum, as well as in the inferior border of the fo-
ramen ovale. The head of the pancreas and the duodenum
are mobilized. An incision is performed on the mesenteric
root to free the duodenum. The left white line of Toldt is
cut, and the freed bowel is covered with gauze and is held
outside of the upper part of the abdomen.

After this exposition, the aorta and the inferior vena cava
(IVC) are dissected immediately above the bifurcation. It is
essential to identify an accessorial lower pole renal artery
originating from the iliac artery, which happens in 1–3% of
individuals. In that case, cannulating the ipsilateral iliac has to
be considered, instead of the aorta. The inferior mesenteric
artery is ligated and cut, and a thick silk thread is passed
behind the aorta (two threads) and the IVC (one thread).

If only the kidneys are being harvested, the superior
mesenteric artery (SMA) must be ligated and cut, and
the aorta above the superior mesenteric artery is encircled.
Another thread is passed behind the IVC above the renal
veins. If an abdominal multiorgan harvest is performed,
the supraceliac aorta must be controlled instead. To access
this aortic segment, the left liver lobe must be freed. After
that, the lesser omentum is inspected to check the pres-
ence of a left accessory hepatic artery (occurs in approx-
imately 15% of individuals) and is cut next to gastric

smaller curve. The diaphragm crus is exposed and should
be divided, and the supraceliac aorta is encircled.

In order to get the best results, it is of paramount impor-
tance to administer 25,000–30,000 U (or 300–500 U/kg) of
non-fractioned heparin at least 3 min before cannulation. To
cannulate, the two inferior threads (on the aorta and IVC) are
tied, the perfusion cannula is placed on the aorta, and the
second inferior aortic thread is tied to fix it in place. If the
portal perfusion is considered necessary, another cannula can
be placed on the inferior mesenteric vein.

To start perfusion on a kidney-only harvest, all the threads
are tied, and an incision on the IVC next to the inferior ligature
is made. In an abdominal multiorgan harvest, the diaphragm
and the pericardium are opened, and the intrathoracic IVC is
identified, the thread above the supraceliac aorta is tied, and
the intrathoracic IVC is cut. Quickly after starting perfusion,
the abdomen is filled with ice. Perfusion is most frequently
made with Celsior (40–60 mL/kg) or UW (75–100 mL/kg).

After perfusion, to remove the kidneys, the inferior liga-
tures are cut. The left renal vein is sectioned at its entrance on
the IVC. On the right side, the IVCmust be divided above and
below the right renal vein to perform elongation plasty on the
bench. The anterior wall of the aorta is opened longitudinally
until the SMA origin. After inspection of the aorta and iden-
tification of the renal arteries’ origin, the Carrel patch is cut.
Each kidney is mobilized with perirenal and pararenal fat, and
the ureter is sectioned near the bladder. In the end, the organs
are inspected and perfused on the bench.

Organ Preservation Methods Optimization

After surgical harvest, a crucial stage starts in transplan-
tation: the organ preservation. The first and still most used
strategy used for organ preservation is cold storage (CS)
after perfusion with preservative liquid. Different perfu-
sion solutions available were designed to maintain cellular
integrity during CS [94]. The most commonly used solu-
tion is the University of Wisconsin (UW) because it is
compatible with different organs preservation, has buffers
to keep the pH close to neutrality, and presents a high
concentration of impermeable molecules that prevent cel-
lular edema [94]. Alongside the UW, the other commonly
used solutions are histidine–tryptophan–ketoglutarate
(HTK), Eurocollins, and Celsior. Two retrospective stud-
ies comparing UW and HTK showed that HTK increases
the risk of primary non-functioning (PNF) kidneys [95]
and decreases graft survival after the first 12 months
[96]. Regarding DGF, one of the previous retrospective
studies [96] and a meta-analysis [97] (citing two RCTs)
showed no difference between these two fluids. However,
another retrospective study comparing UW and HTK
showed a higher DGF in deceased donors’ kidneys pre-
served with HTK, but, on the other hand, the DGF risk
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was higher with UW-treated grafts in living donor kidneys
[98]. Comparing UW with the Eurocollins solution, the
same meta-analysis [97] cites two RCTs where the
Eurocollins solut ion had a higher risk of DGF.
Comparing UW with Celsior, there are two retrospective
studies [99, 100] and one review [101] showing similar
results in transplanted kidneys preserved with either solu-
tion. However, small details such as a UW higher fluid
viscosity have been pointed out as an essential property to
attend to at the time of choosing the preservation solution
to use, as organ perfusion time increases [102].

Hypothermic machine perfusion (HMP) was the next
step in organ conservation. These machines improve the
condition of the organs, particularly the kidneys, by var-
ious mechanisms. A study in an animal model [103]
showed that one of the physiological mechanisms that
the HMP helps to preserve is endothelial nitric oxide
(NO) production. This improvement translates into better
and earlier reperfusion of the kidney. Other physiological
mechanisms proposed are ATP production preservation
and organ immunogenicity modulation [104].

Regarding the experience of using the pulsed machine, the
initial study by Moers [105] showed lower DGF and more
prolonged graft survival by the end of the first and the third
years, particularly in ECD [106], although other early studies
have not seen this advantage [107]. Experimental animal stud-
ies [103, 108], clinical human studies in donation after cardiac
death (DCD) [109], ECD [110], and meta-analysis [111–113]
were unanimous in showing lower DGF and less PNF kidneys
with HMP preservation, although long-term results of its us-
age are still unknown [114].

More recently, there have been advances in the compo-
sition of the preservation fluids and organ preservation
temperature. Conservation in hypothermia has increasingly
been questioned, as hypothermia can aggravate IRI [115,
116]. There are several proposed and proved mechanisms
for hypothermic preservation–induced organ damage. One
of those mechanisms is protein conformational alteration,
as hypothermia reduces protein hydrogen bond length,
leading to altered conformation and function [115].
Another proven mechanism in an animal model is endo-
thelial injury that leads to the expression of several adhe-
sion molecules, which will lead to increased inflammation
within the graft [117]. Reduced ATP production, redox
imbalance, and increased intracellular calcium levels were
other proven mechanisms in experimental models [118].
Hypoxia has also been questioned as it has harmful effects
on cell function, namely in protein folding and in cytoskel-
eton elements [119, 120]. Different studies are underway in
the field of organ preservation based on the physiological
mechanisms associated with animal hibernation [121].
During hibernation, the metabolic rate and oxygen con-
sumption drop more than body temperature, hinting that

the use of these pathways may in the future offer hope in
organ preservation optimization.

Regarding oxygenated preservation techniques of the
kidney, there are different methods to achieve oxygenation:
retrograde persufflation, hyperbaric oxygenation, hypother-
mic perfusion, artificial oxygen carriers, and oxygenation at
normothermic temperatures [122]. Initial studies in animal
models have shown different results [123, 124]. The various
human clinical studies carried out to date have not yet led to
conclusions about the usefulness of these techniques [125].

Experimental studies in animal models comparing kid-
neys preserved only in an HMP with preservation in an
HMP followed by controlled heating with oxygenated liq-
uid showed better mitochondrial recovery, with less acti-
vation of apoptotic pathways and better graft function
after transplantation [126]. In other studies, this controlled
heating has also been shown to lead to less parenchymal,
tubular, and endothelial damage, better mitochondrial
function in renal cells, and better kidney graft function
[116, 127], and may even promote graft regeneration
[128]. Early human studies have shown that preservation
with normothermic machine perfusion (NMP) reduces
DGF, albeit not improving graft survival at 12 months
[129]. More recently, human clinical studies have shown
that the use of the NMP has allowed the use of kidney
grafts that would otherwise be considered not viable
through better evaluation of previously discarded kidney
for transplantation [130, 131].

Conclusion

This review summarized the evidence available on organ op-
timization in the cadaveric setting. Organ shortage and the
subsequent increased use of suboptimal organs call upon the
need for better strategies in donor management and organ
preservation. As previously stated, optimal donor care and
meeting DMG increase the OTPD. To do that, it is essential
to correct imbalances, mainly endocrine and hemodynamic.
Preconditioning is a promising area but is currently making its
first steps in the clinical setting. Surgical techniques were
established in the late twentieth century, and more innovations
are needed. Finally, preservation has evolved since CS, but the
best conditions to do so are still to be determined.
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