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Introduction
Photodynamic therapy (PDT) is based on the relatively old
concept that light irradiation can change an inert substance
into an active one. Current PDT involves the interaction of
a specific light-sensitive agent, the so-called photosensi-
tizer, and light of a particular wavelength in an oxygenated
environment. The light energy is absorbed by the photo-
sensitive molecules and “activates” them. The activated
molecule transfers an electron to an adjacent oxygen mole-
cule and generates oxygen radicals or the energy is trans-
ferred from the activated photosensitive molecule to an
oxygen molecule, generating an excited singlet oxygen
molecule. These reactive oxygen species (ROS) have a very
short lifetime, but are extremely reactive and usually
induce a cytotoxic reaction or cell destruction, respectively.
Other, more macroscopic effects (eg, vascular damage and
possibly immunologic reactions) contribute to the final
tissue damage, probably to a wide extent.

Although only relatively low, nonthermal power densi-
ties of light are required for PDT, the laser, combined with
an appropriate application system, made it possible to
apply PDT to hollow and parenchymatous organs.

To achieve an effective and safe tumor treatment, the
photosensitizing agent should fulfill some requirements: it
should be nontoxic when it is administered; selectively
concentrating in malignant tumor cells; and cytotoxic after
activation in the tumor, but not in other organs that are
exposed to light naturally, such as the skin. The laser light
must be transmitted to the tumor through optical fibers
and the laser wavelength must be suitable to activate the
particular photosensitizer and should penetrate as deeply
as possible into the tissue for complete tumor illumina-
tion. The power density of the laser light can be (even
needs to be) low to avoid unwanted thermal effects other
than hyperthermia, which may contribute to the treatment.
Activation of the photosensitizing agents usually is ideal at
one of their absorption maxima; the laser wavelength
needs to be chosen accordingly.

The first report of the use of PDT in urology was pub-
lished in 1975 by Kelly et al. [1] who observed the destruc-
tion of urothelial tumors by light application into the
bladder after systemic administration of hematoporphyrin
derivative (HpD). HpD, which consists of a mixture of var-
ious porphyrins, needs to be administered intravenously. It
concentrates relatively selectively in epithelial and, in par-
ticular, tumor tissue. The maximum absorption level for
HpD is 630 nm. In clinical use, light of this wavelength
usually was provided by an argon laser-pumped dye laser.
Apart from the requirement of cumbersome technology,
PDT using HpD has relevant treatment morbidity, such as
potential allergic reactions and a significant and relatively
long-lasting phototoxicity for the skin, which makes it nec-
essary for patients to remain in shadow for up to several
weeks [1–8].

Since the first report of PDT, several studies for the
treatment of transitional cell carcinoma of the bladder, in
particular for carcinoma in situ, have been published [2–
8]. New developments included improved delivery and
dosimetry systems [2–8].

New photosensitive agents also were tested. Recently,
5-aminolevulinic acid (ALA) was introduced as a new drug
for PDT of bladder cancer [9] and to be used in a diagnos-
tic procedure (photodynamic diagnosis [PDD] or ALA-
induced fluorescence endoscopy, [AFE]) [10,11]. An advan-
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tage of ALA is the possibility of topical administration [10].
ALA is an initial substrate of heme biosynthesis. In early
animal experiments, an accumulation of fluorescent por-
phyrins in malignant tissues of epithelial origin could be
demonstrated after exogenous administration of ALA [12].
It became apparent that, in the cells, ALA is converted into
the photoactive component protoporphyrin IX (PPIX) as
part of the biosynthesis of heme. In the tissue deep-pene-
trating red light spectrum, the relative absorption maxi-
mum of PPIX is 635 nm. To activate the photosensitizer,
laser light of this wavelength is required.

Photodynamic Therapy of the Prostate
Optical parameters of prostatic tissue
Several authors performed studies on the optical character-
istics of prostate tissue and prostate carcinoma tissue in
vitro and in vivo to measure the penetration depths of dif-
ferent wavelengths [13–16,17•,18–20] (Table 1).

Using laser light with a wavelength of 633 nm applied
interstitially through a 400 µm fiber, Pantelides et al. [14]
observed a similar penetration depth in human prostate
tissue in vitro (63% loss within an average of 2.31 ± 0.3
mm) to that in chicken thoracic muscles and a larger pene-
tration depth than in liver tissue (4.3x). The penetration
depth in the prostate decreased to as little as 0.55 mm with
612-, 594-, and 543-nm wavelengths, respectively. With
surface irradiation of a slice of prostate tissue, Newman
and Jaques [21] measured a penetration depth of approxi-

mately 2 mm for the argon laser (488 nm) and the KTP
laser (532 nm), approximately 3 mm for the dye laser (630
nm), and approximately 5 mm for the Nd:YAG laser (1064
nm). McPhee [22], whose measurements were concerned
with thermal tissue destruction, not with photodynamic,
studied the penetration depth of Nd:YAG laser irradiation
in Dunning R3327AT prostate tumors in rats and in pota-
toes and found very similar optical properties in both tis-
sues, leading them to recommend the potato model. With
a variation in the angle of impact of the laser beam,
McPhee [22] noticed that the penetration depth and the
necrotic area were smaller with an oblique angle of impact.
On irradiation with 60 W for 4 seconds in air, the potato
showed a penetration depth of 2.5 mm with a fiber with 36
º beam divergence and vertical impact (90°) of 1.85 mm
at 60° and of 1.45 mm at 30°. With 8º beam divergence of
the fiber, the penetration depth at the 90° impact was 3.1
mm, 2.75 mm at 60°, and 2.2 mm at 30°. It would only be
possible to achieve the desired thermal tissue necrosis of 3
to 4 mm with vertical beam application, which is some-
thing that, as the author noted, could not be attained in
practice in the prostatic urethra [22].

Other authors reported on measurements on experi-
mental prostate tumors in vivo [13] and on patients [14–
16,17•,18] with prostate carcinoma (Table 1). Arnfield et
al. [13] compared the penetration depth using 630 nm and
789 nm in Dunning R3327AT and R3327H tumors, respec-
tively, in rats. The absorption coefficient of both tumors
amounted to 0.9 cm-1 with 630 nm, 0.4 cm-1 with 789 nm

Table 1. Optical parameters of prostate tissue with different wavelengths suitable for 
photodynamic therapy

Study 
Material 
(in vivo)

Wavelength, 
nm

Effective weakening 
coefficient, mm-1

Diffusing 
coefficient, cm-1

Absorption 
coefficient, cm-1

Penetration 
depth, mm

Arnfield 
et al. [13]

Rat, R3327H 630 0.8 ± 0.5 12.3 ± 3.2 0.9 ± .04 N/A

Rat, R3327AT 630 0.57 ± 0.32 10.1 ± 3.5 0.9 ± .04 N/A
Rat, R3327H 789 0.31 ± 0.14 6.7 ± 1.7 0.5 ± 0.3 N/A
Rat, R3327AT 789 0.42 ± 0.12 5.3 ± 1.4 0.4 ± 0.2 N/A

Pantelides 
et al. [14]

Human* 633 0.43 ± 0.05 8.6 ± 0.5 0.7 ± 0.2 2.31 ± 0.3

Whitehurst 
et al. [15]

Human, benign 633 0.35 ± 0.02 N/A N/A N/A

(0.28–0.48)†
Human, Ca. 633 0.36 ± 0.02 N/A N/A N/A

Lee et al. 
[16,17•]

Human, Ca. 633 0.39 ± 0.05 N/A N/A N/A

Human, Ca. 665 0.32 ± 0.05 N/A N/A N/A
(0.24–0.42)†

Levy et al. 
[18]

Human, apex 650 N/A 7.61 ± 2.37 0.47 ± 0.14 3.8 ± 0.6

Human, center 650 N/A 17.19 ± 5.49 0.192 ± 0.05 3.8 ± 0.5
Human, apex 800 N/A 5.21 ± 1.17 0.413 ± 0.15 5.2 ± 1.2

Human, center 800 N/A 10.84 ± 2.39 0.172 ± 0.03 5.1 ± 0.9

*In vitro.
†Interindividual fluctuation spectrum with 11 patients
N/A—not applicable.
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in the quick-growing anaplastic R3327AT tumor, and 0.5
cm-1 in the well-differentiated R3327H tumor. The weak-
ening factor for both tumors was greater with 630 nm by a
factor of 1.9 than it was with 789 nm. For this reason, the
authors recommended using photosensitizers with their
favorite absorption maximum in longer wavelengths for
future applications [13]. Whitehurst et al. [15] conducted
measurements on 11 patients. The application fibers and
the measuring fibers were inserted into the prostate inter-
stitially. For 633 nm, there was an average weakening coef-
ficient of 0.35 mm-1 (benign tissue) and 0.36 mm-1

(carcinoma tissue). However, the values measured on dif-
ferent patients showed considerable fluctuations, ranging
from 0.28 to 0.48 mm-1. The authors concluded that, with
the necessary individual modification of the irradiation
parameters, it would be possible to treat a volume of
approximately 25 mL with four simultaneously inserted
fibers. Lee et al. [16] compared 633 nm and 665 nm (opti-
mum wavelength for the activation of the photosensitizer
tin(II)etiopurpurin-dichloride) on 11 patients. With 665
nm, the authors discovered that the average penetration
depth was 22% greater [16]. The weakening coefficient
mounted to 0.39 mm-1 (633 nm) and 0.32 mm-1 (665
nm), with a fluctuation of 0.24 to 0.42 mm-1 with various
patients. Levy et al. [18] studied wavelengths from 400 to
800 nm in six patients; usable results were acquired for the
wavelength range of 650 to 800 nm. The average penetra-
tion depth ranged from 0.38 cm (650 nm) to 0.52 cm (800
nm); however, the absorption coefficient varied consider-
ably in different areas of the prostate (0.47 cm-1 [apex, 650
nm], 0.413 cm-1 [apex, 800 nm], 0.192 cm-1 [center, 650
nm], and 0.172 cm-1 [center, 800 nm]). The authors were
not able to find an explanation for this observation [18].

Chen and Hetzel [20] concluded that, because of the
limited light penetration of the wavelengths required for
most suitable photosensitizers, multiple fiber irradiation is
necessary to treat the whole prostate gland.

Treatment Studies
Initial experimental studies on the use of PDT using
hematoporphyrin derivatives (HPD) with prostate carci-
noma were first described in 1984 by McPhee et al. [23]
(Table 2). Dunning R3327H and Dunning R3327AT tumors

in rats were used as a model. The laser fibers, with a cylindri-
cally emitting tip over a section of 1 cm, were inserted into
the tumors using trocar needles. In addition, temperature
sensors were positioned to evaluate thermal effects.

The Dunning R3327H tumors were irradiated with a
single fiber, with 500 J of laser energy being administered
at a power level of 150 mW. It was only possible to demon-
strate minor thermal effects with temperature increases of
1.5°C on the fiber. Therefore, the effects on tumor growth
in the HPD and laser group compared with all of the con-
trol groups were interpreted as photodynamic effects. With
the Dunning R3327AT tumors, four fibers were inserted
simultaneously at a distance of 1 cm. Each fiber irradiated
150 mW of power using a beam splitter. The authors mea-
sured temperature increases of 20°C in the tumor close to
the fibers and of 8°C at a distance of 1 cm from the fibers.
They concluded that the effects on the tumor were prima-
rily of a thermal nature [23].

In a further series of experiments [24], the subcutaneous
Dunning R3327AT tumors were subjected to cooling. The
temperatures during laser application in one series were
maintained in the tumor at 40 to 41°C and at 44 to 45°C in
a second series. The animals were subjected to PDT and four
laser applicators were inserted into the tumor at distances of
0.7 cm from each other and used to administer 300 mW
over 17, 30, and 33 minutes to a total energy level of 1224,
2160, and 2376 J, respectively. One group also was adminis-
tered misonidazole as a potential effect amplifier. A delay in
tumor growth was seen in all of the PDT groups and much
more strongly when misonidazole was administered. The
additional hyperthermia only had a minor effect; laser
hyperthermia of 45°C on its own achieved no noticeable
delay in growth. It was not possible to achieve the disappear-
ance of the tumor with any of the combinations.

Camps et al. [25] were able to achieve the devitaliza-
tion of cells in cell cultures from Dunning R3327AT pros-
tate tumors by exclusively using laser irradiation with more
than 500 mW/cm², which the authors interpreted as a
hyperthermia effect. Regardless of the dosage, the PDT with
HPD showed cytotoxic effects.

Further experiments concentrated on the optimization
of irradiation parameters and new photosensitive sub-
stances. Since 1994, a number of authors conducted
experimental photodynamic therapy on normal canine

Table 2. Photodynamic therapy for the treatment of prostate cancer*

Year Study Applicator Power Energy Experiment

1984 McPhee et al. [23] One to four diffuser tips 
(1 cm)

150 mW 500 J Dunning-R3327H and AT 
tumors in rats

1985 Camps et al. [25] Bare fiber 500 mW/cm² N/A Dunning-R3327H tumors 
in rats

1986 Gonzalez et al. [24] One to four diffuser tips 
(1 cm) plus cooling

300 mW 1200–2400 J Dunning-R3327H and AT 
tumors in rats

*Initial experiments in rats using hematoporphyrin derivative as a photosensitizer.
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prostates using various photosensitizers (tin(II)etiopurpu-
rin-dichloride [26,27,28••], meso-tetra-(m-hydroxyphe-
nyl)chlorine [mTHPC] [29••,30], aluminium disulpho-
nated phthalocyanine [AlS2Pc] [30,31,32••], ALA
[32,33••,34,35,36••,37], Photofrin II (Axcan Scandip-
harm Inc., Birmingham, AL) [38,39], and motexafin lute-
tium) [40••] (Tables 3 and 4).

Selman and Keck [26] and Selman et al. [27,28••] con-
ducted PDT pilot studies with the photosensitizer
tin(II)etiopurpurin-dichloride (SnET2). Forty-eight hours
after PDT and interstitial irradiation with 660 nm, the
authors found extensive areas of hemorrhagic necrosis (on
average 4.3 ± 1.0 cm³), which accounted for as much as
47.3% of the prostate. After 3 to 6 weeks, there was a reduc-
tion in the size of the glands; histologically fibrotic tissue
could be seen. In the first study [26], a 2-cm diffuser tip was
placed in the prostatic urethra; the second stage followed
irradiation with two transperineally applied interstitial laser
fibers. Chang et al. [29••,30,31,32••] also irradiated the
prostate transurethrally or interstitially through trans-
perineally applied laser fibers. The photosensitizers mTHPC
and AlS2Pc were tested. Using only one fiber, it was possible
with mTHPC to achieve a lesion of 20 x 25 x 25 mm; AlS2Pc
led to a hemorrhagic necrosis of 10 x 9 x 9 mm [30] and 12

mm in diameter, respectively [32••]. Four simultaneously
placed fibers destroyed 85% of the gland. Atrophy of the
glands in the treatment area, with otherwise intact structures,
was recognizable after 4 weeks. Urethral lesions healed by 28
days without functional impairment. Shetty et al. [38] con-
ducted PDT with Photofrin II and 630 nm laser light.
Depending on the dosage, it was possible to create lesions
with diameters ranging from 4.l ± 0.9 mm (Photofrin II dos-
age: 1 mg/kg bodyweight) to 6.3 ± 0.9 mm (Photofrin II dos-
age: 5 mg/kg bodyweight). Another study using Photofrin (2
mg/kg bodyweight) as a photosensitizer for PDT on canine
prostates was published by Lee et al. [39]. Using one or two
2-cm long diffuser tips, which were placed interstitially, a
lesion with a radius of 5.3 ± 1.4 mm was achieved. The mea-
sured light penetration was 2.14 ± 0.2 mm. Hsi et al. [40••]
investigated different dosages (2–6 mg/kg bodyweight) of
motexafin lutetium for PDT in canine prostates. Laser light of
732 nm was administered interstitially or transurethrally
through cylindrically diffusing fibers at 75 to 150 J/cm. Com-
prehensive treatment of the entire prostate could be
achieved. However, complications such as urethral fistulae
occurred at the highest dose level.

The intention of Johnson et al. [33••,34] was that of
using PDT for the therapy of benign prostatic hyperpla-

Table 3. Photodynamic therapy for the treatment of prostate cancer*

Year Study Photosensitizer Wavelength Applicator Lesion size

1994/1996 Selman et al. 
[26,27]

SnET2 660 nm One diffuser tip (2 
cm) in the urethra;
two diffuser tips 
(3 cm)

4.3 cm³

1995 Johnson et al. 
[33••,34]

ALA 630 nm Diffuser tip in 
the urethra

1 cm radius

1996 Muschter et al. 
[35] and Sroka 
et al. [36••]

ALA 635 nm Diffuser tip (1 cm) 0.9–1.6 cm 
in diameter

1996 Chang et al. 
[29••,30]

mTHPC
AIS2Pc

650 nm One to four 
diffuser tips

20 x 25 x 25 mm (up 
to 40 mm diameter 
with four fibers) 
10 x 9 x 9 mm

1996 Shetty 
et al. [38]

Photofrin II (Axcan 
Scandipharm Inc., 
Birmingham, AL)

630 nm 0.41–0.63 cm 
in diameter

1997 Chang 
et al. [32••]

AlS2Pc
ALA

Interstitial 
diffusor tips

12 mm 
in diameter
1–2 mm in diameter

1997 Lee 
et al. [39]

Photofrin II 630 nm 1 or 2 interstitial 
diffusor tips 
(2 cm)

5.3 ± 1.4 mm radius

2001 Hsi 
et al. [40••]

Lu-Tex (Pharmacyclics 
Inc., Sunnyvale, CA)

732 nm Several cylindrical 
diffusing fibers, 
interstitial and/or 
transurethral

Entire prostate 
(combined or 
interstitial approach)

2002 Chen 
et al. [41••]

WST09 763 nm Superficial (surgically 
exposed), interstitial

> 3 cm 
in diameter

*Canine experiments with various photosensitizing agents.
ALA—5-aminolevulinic acid; AIS2Pc—aluminum disulphonated phthalocyanine; mTHPC—meso-tetra-(m-hydroxyphenyl)chlorine; 
SnET2—tin(II)etiopurpurin-dichloride; Lu-Tex—lutetium texaphyrin; WST09—palladium-bacteriopheophorbide. 
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sia (BPH). In accordance with this objective, they used
laser diffuser tips urethrally after determining the phar-
macokinetics of ALA. Irradiation was achieved with 630
nm with 650 mW for 45 minutes 8 hours after ALA
administration; the authors determined this to be the
time of ALA concentration maximum. Seven days after
therapy, a hemorrhagic necrosis with a radius of 1 cm
could be observed histopathologically. Muschter et al.
[35] and Sroka et al. [36••,37] reported on experimental
studies on canine prostates using ALA with the primary
objective of therapy of prostate carcinoma. When deter-
mining the in vivo pharmacokinetics and the distribu-
tion of the ALA-induced PPIX (which is the active
photosensitizing agent) in the prostate, the authors
found a concentration maximum approximately 3 to 4
hours  a f t e r  int ravenous  ALA admini s t ra t ion
[35,36••,37]. The PPIX-induced fluorescence was
strongly restricted to the epithelial tissue. With an inter-
stitially placed 1-cm long laser diffuser tip and 635 nm
dye laser irradiation with an irradiation of 50 J/cm² and
100 J/cm², it was possible to induce hemorrhagic lesions
of as much as 13 mm in diameter in the normal prostate
gland. There was no consequential increase in tempera-
ture. Another study using ALA-induced PPIX as the pho-
tosensitizing agent for PDT in the canine experiment
was reported by Chang et al. [32••]. Laser light at 100
mW was delivered interstitially 3 hours after ALA admin-
istration. In contrast to the previous findings of other
authors, the lesions obtained with ALA were only 1 to 2
mm in diameter [32••].

The photosensitizer most recently tested for PDT of
prostate cancer is a pure and stable bacteriochlorophyll
derivative named palladium-bacteriopheophorbide. In
normal canine prostates, PDT was performed by irradiating
the surgically exposed prostate superficially or interstitially,
using a 763-nm laser source at a fluence of 100 J/cm² or
200 J/cm², respectively. With a single interstitial treatment,
a maximum lesion size of more than 3 cm in diameter
could be achieved. There was no damage to the bladder or
rectum caused by scattered light [41••].

With gaining interest in PDT for the treatment of pros-
tate cancer, more recent experiments were done on cell
lines [42••,43,44••,45]. Using a 630-nm dye laser at 3 J/
cm2, Chakrabarti et al. [42••] could demonstrate the high
cytotoxic potential of ALA-induced PDT on two different in
vitro prostate cancer cell lines (LNCaP and PC-3) and a
benign modified prostatic cell line (TP-2). However, the
cell lines responded differently, suggesting a dependence
on the intracellular production of PPIX and some charac-
teristics of the cell mitochondria. Xue et al. [43] were able
to identify some factors potentially protecting prostate can-
cer cells from apoptosis after PDT. Colasanti et al. [44••]
also investigated PDT on LNCaP and PC-3 cell lines. They
found hypericin photosensitization followed by dye laser
irradiation at 599 nm, with a fluence of 11 J/cm² being very
effective in both cell lines.

Further animal and dosimetry studies with PDT for
prostate cancer were performed in the rat model. Momma
et al. [46], who tested Photofrin II in rats in an orthotopic
prostate cancer model (MatLyLu variant of Dunning
3327), stated a high cytotoxic efficacy, in particular in a
combination with prostate resection. Although local con-
trol could be obtained by PDT alone, compared with the
control groups, the number of distant lung metastases was
significantly higher.

The effects of ALA-induced PDT on MatLyLu tumors in
39 Copenhagen rats were investigated by Zaak et al. [47].
PPIX concentration in the tumors was found to be (at max-
imum) approximately 2.5 to 3.5 hours after intravenous
application of ALA (150 mg/kg bodyweight). Forty-eight
hours after laser irradiation (diode laser, 633 nm) with 100
mW/cm², 70% to 100% of the tumor was found to be
necrotic, compared with 0% to 8% in all of the control
groups with no treatment, only ALA administration, or
only laser irradiation.

Clinical Application
Windahl et al. [48•] had already used PDT clinically in
1990 for two patients with localized prostate carcinoma.

Table 4. Photodynamic therapy for the treatment of prostate cancer*

Year Study Photosensitizer Wavelength Applicator Patients, n

1990 Windahl et al. [48•] Photofrin II (Axcan 
Scandipharm Inc., 
Birmingham, AL) 
(1.5/2.5 mg/kg)

628 nm Transurethrally, ball-
shaped diffusor tip; 
energy density = 15 J/cm²

2

2002 Nathan et al. [49••] mTHPC (0.15 mg/kg) 652 nm Interstitially, multiple bare 
fibers; power = 100–150 
mW per fiber

14

2003 Zaak et al. [50••] ALA (20 mg/kg) 633 nm Interstitially, multiple 1-cm 
diffusor tips; 50 J/cm² per 
fiber (0.5 W for 500 s)

20 (5 therapeutic)

*Clinical studies with various photosensitizing agents.
ALA—5-aminolevulinic acid; mTHPC—meso-tetra-(m-hydroxyphenyl)chlorine.
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Analogously to thermal transurethral laser therapy, a maxi-
mum transurethral resection was initially performed in
two sessions. Six weeks after the second transurethral resec-
tion of the prostate, 1.5 mg/kg bodyweight HpD (first case)
and 2.5 mg/kg bodyweight Photofrin II (second case) were
administered. Irradiation was performed within 48 to 72
hours with a laser wavelength of 628 nm (energy density,
15 J/cm²) through a ball-shaped diffuser tip placed in the
prostatic urethra. The first patient died 6 months later of
causes unrelated to his disease; the prostate was found to
be tumor-free. In the second patient, the prostate-specific
antigen (PSA) had fallen 5 months after the treatment
from 6 µg/L before the operation to 0.2 µg/L. Further
reports on the follow-up were not given.

The largest series of patients treated with PDT in a
phase I study was reported by Nathan et al. [49••] in
2002. All 14 patients had biopsy-confirmed local recur-
rence of prostate cancer after radiotherapy. The photosen-
sitizer mTHPC was administered intraveneously (0.15
mg/kg bodyweight). Three days later, laser application of
a wavelength of 652 nm was administered through bare
fibers placed interstitially on the location of positive
biopsies. Up to four fibers were operated simultaneously
at 100 to 150 mW, each using a beam splitter. Regarding
the phase I character of the study (no attempt was made
to treat the entire gland), the results were good; nine
patients had a relevant decrease of PSA, PSA was unde-
tectable in two patients, and five patients had no viable
cancer on post-treatment biopsies. Magnetic resonance
imaging and a computed tomography scan, which were
performed several days and 2 months, respectively, after
PDT showed, after an initial marked inflammatory
response with edema and volume increase by a median of
81% in the later phase, necrosis of up to 91% of the pros-
tate cross section. Urinary stress incontinence developed
in four patients and erectile function was impaired for
four of seven men who were able to have intercourse
before PDT. There were no rectal complications directly
related to PDT, but one patient experienced a urethrorec-
tal fistula after rectal biopsy.

In a similar phase I study published in 2003, ALA or
ALA-induced PPIX was used as the photosensitizing agent
in 20 patients with prostate cancer by Zaak et al. [50••]. In
14 patients, ALA (20 mg/kg bodyweight) was administered
before scheduled radical prostatectomy to investigate the
PPIX distribution. In fluorescence microscopic pathology,
PPIX fluorescence was observed exclusively in cancer cells;
however, normal epithelial cells and stromal tissue showed
only autofluorescence. One patient underwent ALA-
induced PDT. Laser application at 633 nm (irradiation 50
J/cm², irradiance 0.5 W for 500 s, light energy 250 J) was
performed with three subsequent interstitial applications
of a cylindrical 1-cm diffuser tip before radical retropubic
prostatectomy. In the specimen, cell dissociation and
necrosis within the tumor were found. A total of five
patients were treated with ALA-induced PDT. In three

patients, the interstitial fibers were placed transurethrally
(5 to 10 subsequent applications); in two patients, they
were placed perineally using transrectal ultrasonographic
guidance (40 to 55 subsequent applications). Within 6
weeks, PSA showed an average decrease to approximately
55% of the pretreatment value.

A phase I trial of PDT in patients with recurrent pros-
tate carcinoma who had failed radiotherapy was proposed
[51]. The photosensitizing agent lutetium texaphyrin was
chosen, which is administered intravenously. Delivery of
730 nm laser light was proposed to be achieved using laser
fibers inserted interstitially into the prostate through a
perineal template.

Conclusions
In combination with interstitial applicators, PDT seems to
have great potential in the treatment of prostate carcinoma.
However, a number of answers have to be found regarding
the manner and dosage of the most suitable and least toxic
photosensitizers and the resulting irradiation parameters.

Several studies in normal canine prostates, in prostate
cancer cell lines and the rat model, and in humans have
demonstrated the capability of several different photo-
sensitizing agents to produce defined necrosis of prostate
tissue or prostate cancer cells. However, some photosensi-
tizers, such as Photofrin, come along with a relevant tox-
icity, such as skin photosensitization [48•]. The need for
avoiding bright light after administration of such photo-
sensitizers, for at least several days, reduces life quality
and adds other problems. For example, if mTHPC is used
as a photosensitizer, patients have to stay in reduced
room lighting for as long as 3 days after mTHPC adminis-
tration before the laser treatment can be performed and
PDT is completed to prevent skin photosensitivity [49••].
Such problems regarding the preoperative logistics do not
occur with photosensitizers with more favorable pharma-
cokinetics and much shorter incubation times, such as
ALA or motexafin lutetium. Although mTHPC is a more
potent photosensitizer than ALA-induced PPIX requiring
a lower therapeutic light irradiation, there seems to be
some advantages of ALA in clinical use [50••]. Regarding
the oncologic results of the phase I studies, using mTHPC
and ALA are comparable.

The analysis of the published studies shows that, at
least for some photosensitizers, the optimal route of
administration and dosage, the interval between drug
administration and laser irradiation, and the laser wave-
length and parameters (irradiation [J/cm²], irradiance [W,
irradiation time [s, energy [J]) seems to be known. How-
ever, some studies are lacking such data. The application
system (ie, the laser fiber) is not standardized. The tech-
nique of laser application to the targeted tissue is even
more problematic. Most laser wavelengths required for
PDT do not penetrate deep enough to treat the entire pros-
tate if the laser fiber is placed in the prostatic urethra.
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Therefore, interstitial irradiation using (multiple) fibers
placed percutaneously from the perineum will most likely
be required. Modern diode laser technology and beam
splitters should overcome wavelength and irradiation
problems. Future PDT may involve transrectal ultrasonog-
raphy guidance and a template, which is known from
brachytherapy or cryotherapy.

In all events, a final evaluation will be possible only
after the conclusion of clinical studies with the corre-
sponding long-term results. However, the commencement
of such studies should be possible in the near future.
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	Arnfield et al. [13]
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	McPhee et al. [23]
	One to four diffuser tips (1 cm)
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	Dunning-R3327H and AT tumors in rats
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	Camps et al. [25]
	Bare fiber
	500 mW/cm·
	N/A
	Dunning-R3327H tumors in rats
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	Gonzalez et al. [24]
	One to four diffuser tips (1 cm) plus cooling
	300 mW
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	Dunning-R3327H and AT tumors in rats


	<TABLE FOOTING>
	<TABLE ROW>
	*Initial experiments in rats using hematoporphyrin derivative as a photosensitizer.



	Other authors reported on measurements on experimental prostate tumors in vivo [
	Chen and Hetzel [


	Treatment Studies
	Treatment Studies
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	1994/1996
	Selman et al. [26,27]
	SnET2
	660 nm
	One diffuser tip (2 cm) in the urethra; two diffuser tips (3 cm)
	4.3 cm¸

	<TABLE ROW>
	1995
	Johnson et al. [33••,34]
	ALA
	630 nm
	Diffuser tip in the urethra
	1 cm radius

	<TABLE ROW>
	1996
	Muschter et al. [35] and Sroka et al. [36••]
	ALA
	635 nm
	Diffuser tip (1 cm)
	0.9–1.6 cm in diameter
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	Chang et al. [29••,30]
	mTHPC AIS2Pc
	650 nm
	One to four diffuser tips
	20 x 25 x 25 mm (up to 40 mm diameter with four fibers) 10 x 9 x 9 mm
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	1996
	Shetty et al. [38]
	Photofrin II (Axcan Scandipharm Inc., Birmingham, AL)
	630 nm
	0.41–0.63 cm in diameter

	<TABLE ROW>
	1997
	Chang et al. [32••]
	AlS2Pc ALA
	Interstitial diffusor tips
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	1997
	Lee et al. [39]
	Photofrin II
	630 nm
	1 or 2 interstitial diffusor tips (2 cm)
	5.3 ± 1.4 mm radius

	<TABLE ROW>
	2001
	Hsi et al. [40••]
	Lu-Tex (Pharmacyclics Inc., Sunnyvale, CA)
	732 nm
	Several cylindrical diffusing fibers, interstitial and/or transurethral
	Entire prostate (combined or interstitial approach)

	<TABLE ROW>
	2002
	Chen et al. [41••]
	WST09
	763 nm
	Superficial (surgically exposed), interstitial
	> 3 cm in diameter
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	1990
	Windahl et al. [48•]
	Photofrin II (Axcan Scandipharm Inc., Birmingham, AL) (1.5/2.5 mg/kg)
	628 nm
	Transurethrally, ball- shaped diffusor tip; energy density = 15 J/cm·
	2

	<TABLE ROW>
	2002
	Nathan et al. [49••]
	mTHPC (0.15 mg/kg)
	652 nm
	Interstitially, multiple bare fibers; power = 100–150 mW per fiber
	14

	<TABLE ROW>
	2003
	Zaak et al. [50••]
	ALA (20 mg/kg)
	633 nm
	Interstitially, multiple 1-cm diffusor tips; 50 J/cm· per fiber (0.5 W for 500 s)
	20 (5 therapeutic)
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	*Clinical studies with various photosensitizing agents. ALA—5-aminolevulinic acid; mTHPC—meso-tet...



	The intention of Johnson
	The photosensitizer most recently tested for PDT of prostate cancer is a pure and stable bacterio...
	With gaining interest in PDT for the treatment of prostate cancer, more recent experiments were d...
	Further animal and dosimetry studies with PDT for prostate cancer were performed in the rat model...
	The effects of ALA-induced PDT on MatLyLu tumors in 39 Copenhagen rats were investigated by Zaak

	Clinical Application
	Clinical Application
	Windahl
	The largest series of patients treated with PDT in a phase I study was reported by Nathan
	In a similar phase I study published in 2003, ALA or ALA-induced PPIX was used as the photosensit...
	A phase I trial of PDT in patients with recurrent prostate carcinoma who had failed radiotherapy ...

	Conclusions
	Conclusions
	In combination with interstitial applicators, PDT seems to have great potential in the treatment ...
	Several studies in normal canine prostates, in prostate cancer cell lines and the rat model, and ...
	The analysis of the published studies shows that, at least for some photosensitizers, the optimal...
	In all events, a final evaluation will be possible only after the conclusion of clinical studies ...
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