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Abstract
Purpose of Review  Over the past two decades, significant progress has been made to untangle the etiology of inflammation 
and new bone formation (NBF) associated with axial spondyloarthritis (axSpA). However, exact mechanisms as to how the 
disease initiates and develops remain elusive.
Recent Findings  Type 3 immunity, centered around the IL-23/IL-17 axis, has been recognized as a key player in the pathogenesis of 
axSpA. Multiple hypotheses associated with HLA-B*27 have been proposed to account for disease onset and progression of axSpA, 
potentially by driving downstream T cell responses. However, HLA-B*27 alone is not sufficient to fully explain the development  
of axSpA. Genome-wide association studies (GWAS) identified several genes that are potentially relevant to disease pathogenesis 
leading to a better understanding of the immune activation seen in axSpA. Furthermore, gut microbiome studies suggest an altered 
microbiome in axSpA, and animal studies suggest a pathogenic role for immune cells migrating from the gut to the joint. Recent 
studies focusing on the pathogenesis of new bone formation (NBF) have highlighted the importance of endochondral ossification, 
mechanical stress, pre-existing inflammation, and activated anabolic signaling pathways during the development of NBF.
Summary  Despite the complex etiology of axSpA, recent studies have shed light on pivotal pieces that could lead to a better 
understanding of the pathogenic events in axSpA.

Keywords  Axial spondyloarthritis · Ankylosing spondylitis · HLA-B*27 · ERAP1/2 · Microbiome · New bone formation · 
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Introduction

Axial spondyloarthritis (axSpA) is a chronic rheumatic 
disease that affects the spine, sacroiliac joints (SIJs), eyes 
(uveitis), gut (ileitis), and skin (psoriasis). The spectrum 
of AxSpA includes patients with (i) ankylosing spondylitis 

(AS) who have structural changes detectable by X-rays, 
fulfilling the modified New York criteria [1], and (ii) non-
radiographic axSpA where inflammation is captured by MRI 
but no definitive changes on x-rays.

Over the past two decades, significant progress has been 
made in untangling the pathogenesis of axSpA. Genetic 
susceptibility, epigenetic modification, gut microbiome, 
and other environmental factors play important roles in the 
immunopathology of axSpA, especially for the activation of This manuscript is published thanks to collaboration with the 

SPARTAN group.
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type 3 immunity [2]. Importantly, these factors likely con-
tribute in consort for the development of axSpA, as likely 
none of these factors can independently induce disease.

Here, we discuss recent advances in our understanding of 
the immunological mechanisms underlying the onset and the 
potential sequence of events in the development of axSpA.

Genetics of AS

The importance of hereditary factors in the pathogenesis of 
AS was reported in the early 1960s [3]. Monozygotic twins 
who have greater gene sharing have higher concordance of 
AS (63%) compared to dizygotic twins (12.5%) [4]. Among 
genetic variants identified in axSpA, HLA-B*27 is the 
strongest gene associated with AS [5]. However, the contri-
bution of HLA-B*27 has been reported to be only ~ 20% of 
the overall heritability of AS [6]. In addition, the vast major-
ity of healthy HLA-B*27 + individuals do not develop AS. 
This demonstrates that additional genes and genetic regions 
are involved in the development of AS. With the help of large 
GWAS studies, we have identified several genetic variants 
which may play critical roles in the pathogenesis of axSpA.

HLA‑B*27

The prevalence of HLA-B*27 varies in the general popula-
tions across countries. It is more common in indigenous pop-
ulations of Western Canada/Alaska (40–50% of prevalence) 
and European descent (~ 8%) than Middle East/North Afri-
can (2–5%) [7]. Among over 160 subtypes of HLA-B*27, 
HLA-B*27:02 and B27:05 have frequently been reported 
to have the disease association with AS [8]. Other sub-
types also appear to be implicated in different regions; for 
instance, HLA-B*27:03 and HLA-B*27:04 being associated 
with axSpA/AS in sub-Sahara/Middle Eastern and Chinese 
and Asian populations, respectively [9, 10].

The pathogenic roles of HLA-B*27 has been inves-
tigated in rodent models of SpA. The presence of a high 
gene copy number of HLA-B*27:05 in HLA-B*27/human 
β2-microglobulin (hβ2m) transgenic rats spontaneously 
induces SpA-like disease with arthritis, enthesitis, spon-
dylitis, and NBF. The model also exhibits increased lev-
els of key pathogenic cytokines including IL-17 [11–13]. 
Although hβ2m is part of MHC class I, its pathogenic role 
seems to be less important than HLA-B*27:05, as the trans-
genic rats still display the SpA-like phenotypes even in the 
lack of h β2m expression [14]. In addition, administration of 
the human class I heavy chain-specific monoclonal antibody 
(mAb: HC10) is sufficient to ameliorate the disease [15]. 
Intriguingly, HLA-B27:05 transgenic mice do not develop 
spontaneous SpA-like features potentially due to altered 
function of HLA-B27:05 in the presence of mouse β2m [16].

In humans, the precise pathological role of HLA-B27 
remains unclear. Some potential mechanisms of how HLA-
B*27 may be implicated in the pathogenesis of AS were 
previously suggested, including presentation of arthritogenic 
peptides, formation of aberrant HLA-B*27 (free heavy chains) 
structures, and accumulation of HLA-B*27 misfolded protein 
in the endoplasmic reticulum (ER) [17]. Recently, a study pub-
lished by Yang et al. provides strong evidence supporting the 
involvement of T cell receptors (TCRs) and peptide presen-
tation [18••]. Specifically, the study identified a unique TCR 
consistently pairing with the alpha chain variable region AV21, 
which was found to be clonally expanded in the joints of AS 
patients and in the eyes of acute anterior uveitis (AAU) patients. 
Notably, these TCRs isolated from AS and AAU patients exhib-
ited cross-reactivity with both self-peptides and microbial pep-
tides [18••], suggesting a shared binding motif in these antigens 
and highlighting the potential role of TCRs and peptide pres-
entation in the development of HLA-B27-associated diseases.

Other Genes

GWAS studies have identified over 100 susceptibility loci for 
SpA spectrum diseases, such as AS, Crohn’s disease (CD), 
and psoriasis [6]. The genetic polymorphisms in the amin-
opeptidases, endoplasmic reticulum aminopeptidase 1 and 2 
(ERAP1 and ERAP2), are strongly associated with AS [19]. 
Enzymatic activities of ERAP1 and ERAP2 aid in trimming 
peptides for presentation on MHC-I molecules. Based on 
this function, ERAP1 and ERAP2 variants could directly 
affect peptide-HLA-B*27 complex formation. However, 
the potential role of ERAP in previous studies show mixed 
results, possibly due to the difference in the experimental 
designs, methods, cell lines, or others. For instance, it was 
reported that the silencing of ERAP1 expression enhanced 
the accumulation of HLA-B*27 open conformations on the 
cell membrane [20, 21], while others showed that dysfunction 
of ERAP1 decreased the expression of open conformations 
[22]. With regard to ERAP2, the higher expression of HLA-
B*27 open conformations on the surface of PBMCs has been 
shown in HLA-B*27 positive axSpA patients lacking ERAP2 
[23]. The same study also showed that ERAP2 suppression in 
a HLA-B*27 cell line led to increased levels of HLA-B*27 
open conformations and activation of the unfolded protein 
response (UPR) [23]. These results suggest that impaired 
peptide processing and antigen presentation could contribute 
to the pathogenesis of axSpA in a multitude of ways.

Gut Microbiome

Alterations in the composition of gut microbiome may con-
tribute to the pathogenesis of autoimmune diseases. Gut 
microbiome, through activation of immune responses and 
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impaired intestinal permeability, is reported to be associ-
ated with disease activity of autoimmune diseases. Gut 
inflammation is one of the major extra-articular manifes-
tations in SpA, affecting up to 70% of patients including 
those who have subclinical inflammation [24]. Changes of 
gut microbiota have been reported in patients with axSpA 
and recent studies demonstrate that HLA-B*27 play a role 
in the bacterial flora even in healthy individuals [25, 26]. In 
addition, microbiome differences were seen in HLA-B*27/ 
hβ2m transgenic rats compared to wild type rats [27]. These 
data suggest that disrupted microbiome in axSpA may be the 
cause rather than a consequence of disease.

Dysbiosis in the gut causes a pathogenic microenviron-
ment where inflammatory mediators are overproduced [28]. 
The SKG mouse (Zap70 mutation), a well-established SpA 
mouse model, exhibits ileitis after the administration of fun-
gal component β-glucans with increased production of IL-23 
[29]. IL-23 activates IL-23 receptor bearing cells such as 
conventional CD4 + T cells, γδ T cells, and group 3 innate 
lymphoid cells, all of which are identified in human spinal 
entheses [30–32]. As an IL-23 overexpression mouse model 
displays enthesitis [33], it is conceivable that upregulated 
production of IL-23 in the gut tissues activates entheseal 
resident immune cells and stromal cells, leading to the 
enhancement of the IL-23/IL-17 axis.

Although a distinct composition of microbiota has been 
postulated in axSpA, this does not necessarily indicate an 
activated immune response in the gut. To detect microbi-
ota evoking an immune response in the gut, a recent study 
labeled and sorted IgA-coated and uncoated bacteria from 
fecal homogenates of CD-associated SpA patients [34••]. 
This study found an abundant IgA-coated Escherichia coli 
(E. coli) in CD-SpA patients and the E. coli were similar 
in genotype and phenotype to an adherent-invasive E. coli 
(AIEC) pathotype. CD-SpA–derived AIEC induced systemic 
Th17 immunity and promoted joint inflammation. These 
data suggest that the specific bacterial pathogen enhances 
the adaptive IgA response to induce Th17-mediated immune 
response. Previous reports showed increased levels of serum 
IgA in SpA patients including axSpA [35–37], which may 
corroborate this etiology.

The migration of activated immune cells in the gut to joint 
tissues have been proposed in axSpA, yet the corroborating 
evidence is still sparse. However, a recent study demonstrated 
evidence that may link arthritis with gut inflammation in the 
CIA mouse model [38••]. This study showed that effector T 
cells migrate from the lamina propria of the leaky gut towards 
the synovial tissues in the joint where they induced arthritis. 
The authors also showed that the increased permeability in the 
intestinal epithelium may be caused by increased expression 
of zonulin that disrupts gut tight junctions in arthritis patients 
and mouse models. Restoration of the intestinal barrier func-
tion with zonulin antagonist suppressed the development of 

arthritis in this mouse model. Although further studies focus-
ing on how immune cells are activated and migrate into the 
joints are needed, this study demonstrates an important per-
spective of immune cell migration from gut to joint tissues 
through the impaired gut barrier function.

Gender

Historically, AS was commonly considered a condition pri-
marily impacting men, with a male-to-female ratio of 3.6 
to 6.1: 1 [39]. However, recent studies indicate that a sub-
stantial number of AS patients are women, with a male-to-
female ratio of less than 2: 1 [40, 41]. Regarding nr-axSpA, 
the prevalence appears to be similar between the genders 
[42]. Previous studies showed that men are more likely to 
have greater radiographic changes and MRI inflammation in 
the sacroiliac joints and spinal progression (syndesmophyte 
formation) assessed by mSASSS (The modified Stoke Anky-
losing Spondylitis Spinal Score) scores compared to women 
[43–45]. Despite more extensive spinal damage in men, the 
quality of life (QOL) assessed by patient-reported outcomes 
are poorer in women than in men with early axSpA [45]. Key 
elements in QOL such as fatigue, axial pain, and functional 
scores (BASFI) are significantly poorer in women [45]. A 
more recent real-world study further showed the similar 
results in which overall disease burden was greater in women 
compared to men with axSpA, despite lesser spinal immo-
bilization than men [46]. These data indicate that gender is 
one of the determinants for disease phenotypes in axSpA.

The reasons for the distinct phenotypes between males 
and females are likely multifactorial such as genetic, immu-
nological, and hormonal differences. In men but not women 
with AS, upregulated expression was observed in genes such 
as IL17RA, MEFV, and NLRP12 [47]. Likewise, the serum 
level of IL-17A and the frequency of Th17 cells in blood 
were increased in men but not in women with AS, compared 
to healthy controls [47]. Hormonal gender differences may 
also be responsible for part of distinct immune responses 
between men and women. Estrogen increases production of 
IL-1, IL-6, and tumor necrosis factor-alpha (TNF-α) [48], 
while testosterone decreases TNF-α production but increases 
the production of anti-inflammatory IL-10 [49]. Given men 
have more radiographic changes, these cytokine profiles do 
not seem to fully account for spinal progression in axSpA, 
and the etiology is likely more complicated.

Other Potential Factors

Smoking has been reported as a risk factor of spinal pro-
gression in AS [50]. A previous study showed that current 
smoking status was significantly associated with incident 
self-reported axSpA in logistic regression adjusted for 
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possible confounders [51]. Interestingly, smoking was an 
independent factor associated with MRI-assessed inflam-
mation in sacroiliac joints in a cohort for axSpA patients 
[52]. Although the mechanism as to how smoking induces 
worse spinal outcomes has not been determined, these 
data suggest that smoking has harmful effects on the spi-
nal progression in patients with axSpA.

Despite sparse evidence, lower levels of vitamin D, 
compared to healthy controls, are not uncommon in AS 
patients and may contribute to increased risks of active 
disease, impaired function, radiographic severity, and 
bone mineral loss [53]. Conversely, another study showed 
that there were not any significant correlations between 
serum levels of vitamin D and the severity of disease in 
SpA patients, although serum vitamin D levels were lower 
in SpA patients compared to healthy controls [54]. An 
overview of potential contributors driving inflammation 
in axSpA is shown in Fig. 1.

Development of NBF in AS

Besides the understanding of the activation of immune 
response that provokes inflammation in axSpA, the 
sequential development of NBF has rigorously been stud-
ied, and its pathogenesis has gradually been unveiled.

Endochondral Ossification

Endochondral ossification in axSpA spinal ligaments has 
been described as an essential process during the develop-
ment of NBF in axSpA [55]. During this process, a car-
tilage template is first formed by chondrocytes which is 
then replaced by osteoblasts to create mature bone. Yu 
et al. found increased Col II + chondrocyte differentiation 
and cartilage formation in the spinal ligaments of patients 
with early AS [56••]. The same study identified endochon-
dral ossification in these sites where hypertrophied chon-
drocytes calcified and subsequently recruited osteoclasts 
[56••]. Similar to acquired heterotopic ossification, these 
osteoclasts secreted transforming growth factor beta (TGF-
β) which in-turn attracted osteoblasts to these sites to pro-
duce mature heterotopic bone [56••]. Moreover, a study by 
Cui et al. highlighted the importance of another chemokine, 
CXCL12, in the recruitment of osteoprogenitor cells to the 
entheseal sites of NBF [57]. They showed that CXCL12 was 
overexpressed in the ligaments and entheseal regions of both 
human and mouse models of AS. CXCL12 was found to be 
expressed mainly by CD45 + immune cells in early disease 
and by Col2a1 + cells in later stages. When CXCL12 was 
overexpressed in Col2a1 + cells in DBA mice, severe anky-
losis, higher bone volume of osteophytes, and earlier onset 
of new bone formation were observed [57].

Other studies also highlight the importance of endochon-
dral ossification in axSpA. A study showed that tenascin C, a 

Fig. 1   Potential factors driving inflammation in axial spondyloar-
thritis (axSpA). Factors such as genetic, gender, and environmental 
factors (smoking and diet) activate immune response in axSpA. Gut 
inflammation caused by microbiome alteration (dysbiosis), barrier 
dysfunction, and specific pathogens also activates systemic inflam-
mation. The activated immune response chiefly driven by type 3 

immunity causes inflammation in the joint, spine, and entheseal tis-
sues. Immune cells activated in the gut may migrate into the joint and 
spine. ERAP, endoplasmic reticulum aminopeptidase 1; ER, endo-
plasmic reticulum; UPR, unfolded protein response. The figure was 
created with BioRender (BioRender.com)
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large molecular extracellular matrix glycoprotein, promotes 
chondrogenesis in bone marrow derived mesenchymal stem 
cells (BM-MSCs) [58]. This protein is overexpressed in AS 
ligaments and entheseal tissues in both humans and ani-
mal models [58, 59]. Inhibition of tenascin C systemically, 
showed an overall amelioration of pathogenic NBF in prote-
oglycan-induced arthritis mice [58]. In another study, antag-
onism of the calcium-sensing receptor (CaSR) was shown to 
downregulate chondrogenic genes such as Sox9 and Col2a1 
in mouse chondrocytes [60]. These studies demonstrate the 
importance of chondrogenesis as one of the initial processes 
of NBF, which may serve as a potential therapeutic target to 
prevent NBF at an early stage.

Interestingly, a recent study has reported an interesting 
aspect of TNF related to endochondral ossification in SpA 
[61••]. Transmembrane TNF (tm TNF) was found to be 
elevated in synovial tissues from SpA patients compared 
to those from rheumatoid arthritis (RA) patients. Con-
versely, soluble TNF (sTNF) is more abundant in SF from 
RA compared to SF from SpA, possibly due to deceased 
activity of ADAMTS17 (TACE) in SpA patients [61••]. As 
tm TNF-overexpressing mice clearly exhibit NBF through 
endochondral ossification, the balance between tm TNF and 
sTNF may determine the phenotypic difference between RA 
and SpA. Therefore, therapies targeting tmTNF, rather than 
sTNF, may offer a novel treatment avenue to prevent or delay 
NBF in axSpA.

Contribution of Mechanical Stress and Inflammation 
to NBF

Previous studies proposed the potential relationship between 
mechanical loading and proinflammatory processes in 
axSpA joints and entheses. Studies in collagen antibody 
induced arthritis (CAIA) mouse models show that volun-
tary running induced mechanical stress impaired the resolu-
tion of arthritis, by upregulating the complement system and 
inhibiting the immune suppressing activity of T regulatory 
cells (Tregs) [62]. Another recent study done in TNFΔARE 
mouse models showed that hindlimb unloading by tail sus-
pension ameliorated clinical signs of peripheral arthritis and 
led to the development of decreased new bone formation by 
inactivating the ERK1/2 pathway [63]. This pathway has 
been shown to upregulate osteogenic and proinflammatory 
markers in AS [64, 65]. A recent study showed that Peizo-1, 
a mechanosensitive calcium channel, was overexpressed in 
human AS and CAIA mouse entheseal samples [66]. Moreo-
ver, when mice were tail suspended to prevent mechanical 
stress induced NBF, the administration of a Peizo-1 agonist 
Yoda1 rescued osteophyte formation in CAIA mice [66].

In vitro studies that stretch stimulated osteoblasts and 
chondrocytes showed increases in osteogenic BMP2 and 
proinflammatory mediators such as IL-6 and prostaglandin 

E2 (PGE2) [67]. Furthermore, mechanical loading was also 
shown to be responsible for the onset of joint specific inflam-
mation from systemic autoimmunity by leading to the over-
expression of monocyte homing markers such as CXCL1 
and CCL2. This can promote bone specific damage by osteo-
clast conversion and inflammation through the secretion of 
cytokines [68].

Although the sequential event from inflammation to NBF 
has not been fully delineated yet, NBF tends to develop at 
inflamed vertebral edges in human AS [69]. In addition, 
previous MRI studies suggested that NBF likely develops 
in resolved inflammatory spinal lesions with fat metaplasia 
[70, 71]. Pro-inflammatory cytokines themselves, especially 
the IL23/IL-17 axis, contribute to NBF in AS [72]. While 
both IL-17 and IL-23 have been shown to have a positive 
effect on osteoclastogenesis [72–74], evidence also exists 
on these cytokines’ ability to induce bone formation as 
well. In human periosteal derived cells treated with IL-17A 
and IL-17F, increased RUNX2, BMP2, and matrix miner-
alization was observed [75]. Similar results were achieved 
in mesenchymal stem cells (MSCs) cultured with IL17A, 
whereby osteogenesis was enhanced over adipogenesis [76]. 
Furthermore, IL-37, a member of the IL-1 family, upregu-
lated matrix mineralization and osteoblast markers in MSCs 
through PI3K/AKT signaling [77]. Research has also shown 
that IL-1β, IL-17A, IL-22, IL-23, and TNF-α were able to 
induce the expression of calcium sensing receptor (CaSR) 
in osteoblasts cell lines [60]. CaSR is a G protein coupled 
receptor that is critical in modulating Ca2+ homeostasis. 
Inhibition of this receptor diminished osteoblast matura-
tion and matrix mineralization in vivo and inhibited spinal 
ankylosis and pathogenic bone formation in a proteoglycan-
induced arthritis mouse model [60]. Furthermore, increased 
levels of CaSR + osteoblasts accumulated in bone forma-
tion sites like the entheses and spinal ligaments in axSpA 
patients compared to healthy controls [60]. Finally, mac-
rophage inhibitory factor (MIF) was recently identified as an 
osteogenic cytokine that induced mineralization in a mature 
osteoblast cell line in vitro. MIF was elevated in AS serum 
compared to controls and positively associated with radio-
graphic progression as assessed by mSASSS scores [78•]. 
Taken together, the recent evidence shows that mechanical 
stress in axSpA/AS joints and entheses promotes a proin-
flammatory environment which in turn recruits osteoclastic, 
osteogenic and progenitor cells to these sites. This drives 
NBF through the anabolic pathways described below.

Signaling Pathways Associated with NBF

Wnt/β‑Catenin Pathway

The Wnt pathway regulates important cellular activities and 
plays a vital role during skeletal development [79]. When 
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this pathway is activated by secreted Wnt proteins, cytosolic 
β-catenin is rescued from phosphorylation and subsequent 
proteasomal degradation and is translocated into the nucleus 
to transcribe target genes. This pathway is also critically 
important to bone homeostasis and NBF [79]. In AS, Wnt 
proteins are highly expressed in the spinal ligament tissue 
of axSpA patients compared to healthy controls [80]. When 
osteoblasts were treated with supernatant from monocytes 
that were treated constitutively with low doses of TNF-α, 
increased levels of osteogenesis were observed. This was 
reversed with the knock down of β-catenin in osteoblasts 
or Wnt proteins in monocytes [80]. Other studies show 
that Wnt pathway inhibitors such as DKK-1 and sclerostin 
(SOST) could be differentially expressed and regulated in 
AS to promote aberrant NBF [81, 82]. However, there is 
some disagreement in literature on the exact nature of their 
involvement [83–85]. Further investigation is warranted to 
determine the clinical importance and nature of Wnt path-
way inhibitors in AS. Finally, recent studies have elucidated 
the role of ankylosis progressive homolog (ANKH) in AS 
[86, 87]. ANKH is a transmembrane protein that transports 
intracellular pyrophosphate to the extracellular milieu. This 
protein was downregulated in AS spinal ligament tissues 
when compared to those from spinal fracture controls. 
In vitro studies showed that overexpression of ANKH in 
AS fibroblasts inhibited mineralization and ossification by 
promoting β-catenin phosphorylation and degradation [86]. 
Another study showed that miR-17-5p was significantly 
upregulated in fibroblasts and ligament tissue from AS 
patients compared to HC and inhibits ANKH by targeting 
its 3’ untranslated region [87]. Indeed, the knockdown of 
miR-17-5p reduced fibroblast osteogenesis and sacroiliitis 
in rats with AS [87].

Other microRNAs can also regulate the Wnt pathway 
in AS. miR-96 levels are elevated in AS and have been 
reported to inhibit sclerostin [88]. Administration of miR-
96 mimics to AS mouse models resulted in increased levels 
of inflammatory cytokines such as IL-6, IL-1, and TNF-α. 
It also resulted in increased levels of Wnt1, β-catenin, and 
osteoblast lineage markers such as Runx2, osteoprotegerin 
(OPG) and osteocalcin (OC) which contributed to increased 
osteoblast differentiation and calcium mineralization [88]. 
Additionally, miR-29a was also upregulated in AS PBMCs 
and is positively associated with mSASSS and disease dura-
tion [89]. It has been shown to upregulate the Wnt pathway 
by downregulating its inhibitor DKK-1 [90, 91].

BMP Pathway

Bone morphogenic proteins (BMPs) are growth factors and 
cytokines that belong to the TGF superfamily [92]. It is 
one of the most critical among cell signaling pathways in 
the body for skeletal development and growth. BMPs can 

activate the Smad pathway by binding to its cell surface 
receptor, which subsequently phosphorylates Smad1/5/8, 
translocating Smad4 into the nucleus to modulate gene 
expression. In AS, multiple studies have shown that the 
involvement and upregulation of BMPs is necessary for 
disease pathogenesis. Specifically, serum levels of BMP2 
and BMP4 have been associated with spinal progression 
[93–95].

In a 3D cell culture system that was meant to model the 
bone microenvironment in AS, MSCs derived from AS 
patients had higher osteogenic potential than those from 
healthy controls [96]. This could be reversed by inhibiting 
BMP-2 or Smad1/5/8 pathway molecules [96]. In another 
study, osteogenesis in AS fibroblasts could be downregulated 
by inhibiting matrix metallopeptidase-2 (MMP-2) which 
acts by downregulating BMP2, Smad1/5/8, and Smad 4 [97]. 
Similarly, in supraspinous ligament fibroblasts, BMP2 and 
TGF-β1 overexpression significantly activated Smad signal-
ing, which upregulated the expression of Runx2 to induce 
osteogenesis. Knockdown of the BMP and TGF receptor 
TβRIII in these fibroblasts, was able to reverse this effect 
[98]. Lastly, miR-214-3p was found to be downregulated 
in AS fibroblasts [99]. Overexpression of this microRNA 
led to the inhibition of alkaline phosphatase activity and 
calcium nodule formation in culture. This study showed that 
miR-214-3p inhibits BMP-2 and blocks Smad signaling to 
prevent fibroblast osteogenic differentiation [99].

HLA‑B27 and NBF

A recent study highlights the potential contribution of HLA-
B*27 to the development of NBF in axSpA [100]. However, 
the specific role of HLA-B*27 in NBF remains controver-
sial [55, 101–103]. In an experimental animal model, HLA-
B*27 has been shown to have no significant role in either 
chondrogenesis or osteoblastogenesis in CAIA models of 
arthritis [104]. Furthermore, in vitro experiments in models 
of chondrogenesis (ATDC5), osteogenesis (human periosteal 
derived cells) and endochondral ossification (lim bud cells) 
also showed no significant difference between HLA-B*27 
transduced cells and controls [104]. Contrastingly, in human 
AS MSCs isolated from the entheses, HLA-B*27 misfolding 
was shown to activate the UPR inositol-requiring 1 (IRE1)/
spliced X-box–binding protein 1 (sXBP1) pathway [105••]. 
This was shown to subsequently upregulate the expression 
of tissue non-specific alkaline phosphate (TNAP), which 
enhances mineralization by hydrolyzing anti-mineral factor 
pyrophosphate into inorganic phosphate. Inhibiting TNAP 
or pathway molecules ameliorated matrix mineralization 
by MSCs. Furthermore, bone specific TNAP (BAP) was 
shown to be significantly upregulated in AS serum and an 
independent predictor of radiographic progression [105••]. 
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Therefore, it is possible that targeting this pathway could be 
a potential therapeutic avenue for NBF in AS (Fig. 2).

Future Directions

Although recent studies including both human ex vivo and 
experimental animal models have revealed that genetic fac-
tors combined with environmental factors and gut dysbio-
sis appear to activate immune response leading to chronic 
inflammation in axSpA, there are still many questions 
that remain unresolved. The exact role of HLA-B*27 in 
the pathogenesis of axSpA needs to be refined. Specific 
immune cell populations responsible for disease initiation 
and progression in spinal tissues of axSpA patients remain 
elusive. In addition, the gut-joint axis seems to be critical 
in the pathogenesis of axSpA, yet immune cells migrating 
from the gut to the joint in humans has not been defined. 

Endochondral ossification is a critical process during the 
development of NBF in axSpA, and several regulatory fac-
tors have been identified; however, the complex regulatory 
network is still unclear. Moreover, newly identified thera-
peutic targets need to be validated for efficacy and safety 
in different pre-clinical animal models prior to clinical tri-
als. To better delineate the pathogenesis and sequence of 
events in axSpA, future studies on exploring specific roles 
of genetic associations, animal and human ex vivo studies, 
will be warranted.
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