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Abstract
Purpose of Review  Single-cell profiling, either in suspension or within the tissue context, is a rapidly evolving field. 
The purpose of this review is to outline recent advancements and emerging trends with a specific focus on studies in 
spondyloarthritis.
Recent Findings  The introduction of sequencing-based approaches for the quantification of RNA, protein, or epige-
netic modifications at single-cell resolution has provided a major boost to discovery-driven research. Fluorescent flow 
cytometry, mass cytometry, and image-based cytometry continue to evolve. Spatial transcriptomics and imaging mass 
cytometry have extended high-dimensional analysis to cells in tissues. Applications in spondyloarthritis include the 
indexing and functional characterization of cells, discovery of disease-associated cell states, and identification of signa-
tures associated with therapeutic responses. Single-cell TCR-seq has provided evidence for clonal expansion of CD8+ 
T cells in spondyloarthritis.
Summary  The use of single-cell profiling approaches in spondyloarthritis research is still in its early stages. Challenges 
include high cost and limited availability of diseased tissue samples. To harness the full potential of the rapidly expanding 
technical capabilities, large-scale collaborative efforts are imperative.
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Introduction

The diseases belonging to the spondyloarthritis (SpA) 
family are immune-mediated inflammatory conditions. 
Multiple lines of evidence, including data from genome-
wide association studies, suggest the involvement of lym-
phocytes in SpA pathogenesis, though other cell types 
are likely to play significant roles as well [1]. Recent 
technological advances have revolutionized the way we 
study cells, permitting the simultaneous measurement 

of numerous parameters per cell. These studies have 
revealed remarkable heterogeneity within cell populations 
that were previously thought to be rather uniform. Single-
cell profiling has emerged as a powerful tool enabling 
the identification of previously unknown functional cell 
states and characterization of differentiation trajectories. 
Sequencing-based approaches now allow the examina-
tion of transcriptome, proteome, and epigenome of indi-
vidual cells either alone or in combination (multi-omics) 
with thousands of cells per experiment. High-throughput 
cytometry approaches such as fluorescent flow cytometry, 
which analyze millions of cells in a typical experiment, 
have also seen an increase in the number parameters that 
can be measured per cell. The expanding spectrum of 
single-cell profiling techniques holds great promise for 
providing fresh insight into the underlying biology of 
both health and disease (Fig. 1). In this review, we outline 
recent technological advances and explore their applica-
tion in studies of SpA pathogenesis.
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Methods for the Profiling of Single Cells 
in Suspension

Fluorescent Flow Cytometry

Cells in suspension are fluorescently labeled, typically 
using fluorochrome-conjugated antibodies. In the flow 
cytometer, the cells are directed in a single file line past 
a series of lasers which excite the fluorochromes to emit 
photons with a characteristic spectrum of wavelengths. 
Current high-end cytometers contain up to six lasers and 
can process up to 30,000 cells per second. In conven-
tional fluorescent flow cytometry, the intensity of the 
emitted light is measured in a narrow window around 
the peak emission wavelength of each fluorochrome. 
Most f luorochromes have relatively broad emission 
spectra resulting in fluorescent spillover between the 
optical channels of the cytometer. This necessitates 

mathematical data correction, referred to as compensa-
tion, which becomes increasingly complex as the number 
of fluorochromes increases. In spectral flow cytometry, 
instead of measuring emission peaks using discrete opti-
cal channels (one channel for each fluorochrome), the 
full spectrum of the emitted light is analyzed [2]. The 
contribution of individual f luorochromes to the total 
emitted light signal is then determined by “spectral 
unmixing.” This approach has been shown to provide 
better resolution between closely related dyes, thereby 
increasing the number of parameters that can be meas-
ured simultaneously [3]. Recent publications reported 
staining panels with > 40 parameters per cell [4•, 5•]. 
A major advantage of fluorescent flow cytometry, both 
conventional and spectral, is that the analysis of cells 
can be combined with a sorting mechanism that permits 
the collection of phenotypically defined viable cells for 
subsequent in vitro studies Table 1.

Table 1   Comparison of techniques for single-cell profiling in suspension

Fluorescent flow cytometry Image-based flow cytometry Mass cytometry Sequencing-based cytometry

Parameters per cell Moderate (~ 30) Low (~ 10) High (30–50) Very high (thousands)
Throughput Very high (up to 30,000 

cells/s)
High (up to 5000 cells/s) Moderate (~ 1000 cells/s) Low (~ 10,000 cells per run)

Major advantages Very high throughput
Sorting for subsequent assays 

is possible (FACS)
High degree of familiarity 

with technique

Direct visualization of cell 
morphology

High number of parameters 
per cell

No spectral overlap

Very high number of param-
eters per cell

No spectral overlap
Simultaneous gene expres-

sion and protein quantifi-
cation

Major disadvantages Moderate number of param-
eters per cell

Spectral overlap
Fluorochrome instability

Low number of parameters 
per cell

Throughput lower than fluo-
rescent flow cytometry

Substantial cell loss
Cell sorting not possible

Low throughput
Expensive
High turnaround time
Cell sorting not possible

Table 2   Comparison of techniques for single-cell profiling in tissues

Fluorescence microscopy Imaging mass cytometry Spatial transcriptomics

Incl. DNA barcoding/fluo-
rescent probes

Scanning mass cytometry 
(SMC), multiplexed ion-
beam imaging (MIBI)

Next-generation sequencing 
(NGS)-based

Imaging-based incl. in situ 
sequencing (ISS)-based, 
in situ hybridization (ISH)-
based

Parameters per cell Low (~ 10) to high (50–100) Moderate–high (up to > 
100)

Very high (thousands) High–very high (hundreds to 
thousands)

Major advantages Large scan area
High degree of familiarity 

with technique
High spatial resolution

High dynamic range
Low background
High spatial resolution
Commercial development 

(SMC)

Very high number of param-
eters (unbiased)

Commercial development

High–very high number of 
parameters per cell

High sensitivity (FISH)
High spatial resolution

Major disadvantages Tissue autofluorescence
Spectral overlap
Fluorochrome instability

Small scan area
Slow

Limited spatial resolution 
(not single-cell resolution)

Typically preselection of 
targets required
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Image‑Based Flow Cytometry

Image-based flow cytometry differs from fluorescent flow 
cytometry in that a picture is taken from each cell so that 
cell morphology can be assessed along with the fluorescent 
signals [6]. While cell throughput and fluorescent options 
have been lagging behind fluorescent flow cytometry, a 
recent study introduced an image-enabled cell sorter that 
could sort cells at a rate of ~ 15,000 cells/s [7]. Exam-
ples for the use of image-based flow cytometry include 
the study of apoptosis (by examining changes in cellular 
morphology), signal transduction, and protein-protein and 
cell-cell interactions [6].

Mass Cytometry

The term CyTOF, cytometry by time-of-flight, is often used 
synonymously with mass cytometry but is really a trade-
mark for a commercial application of this technology. In 
mass cytometry, the cells are stained with antibodies that 
are labeled with elemental metal tags [8]. Individual cells 
are vaporized by an argon torch which ionizes the metal 
atoms. The identity and number of the metal ions are then 
determined using time-of-flight mass spectrometry. The 
number of detected metal ions is proportional to the abun-
dance of the antigen. Mass cytometry eliminates spectral 
overlap by differentiating probes based on discrete atomic 
weights. Typical mass cytometry experiments measure 
30–40 parameters simultaneously. While forward and side 
scatter are used to distinguish lymphocytes, monocytes, and 
granulocytes in fluorescent flow cytometry, these optical 
parameters do not exist in mass cytometry. To address this 
problem, Tsai et al. introduced “scatterbodies,” antibodies 
that target surrogates of physical cell properties such as 
cytoskeletal and granule components [9]. The physics of 
mass cytometry limit cellular throughput. As the cells pass 
through the mass cytometer, many are lost and only 30 to 
40% of cells can be analyzed. The ion clouds generated by 
the torch also require a finite spacing that limits the rate of 
analysis to ~ 1,000 cells per second. Moreover, cells get 
destroyed during analysis, and cell sorting for subsequent 
experiments is impossible [10].

Sequencing‑Based Cytometry

Cytometry by sequencing, the most recent addition to the 
single-cell profiling tool box, includes single-cell RNA-
sequencing (scRNA-seq) and a variety of related appli-
cations that rely on next-generation sequencing (NGS) 
for target quantification. scRNA-seq enables unbiased, 
transcriptomic analysis of individual cells [11]. Using 

droplet-based approaches, investigators can now perform 
single-cell transcriptomic analysis of heterogenous cell 
populations with tens of thousands of cells [12]. Droplet-
based scRNA-seq works by encapsulating an individual 
cell in a lipid droplet containing beads attached to a bar-
code and unique molecular identifiers. The cell is lysed 
and its RNA binds to the beads. During reverse transcrip-
tion, which is performed inside the droplet, each cDNA 
molecule gets tagged with the cell-specific barcode and 
the unique molecular identifier. All subsequent steps can 
then be done with pooled cDNA. While fluorescent and 
mass cytometry depend on prior knowledge of the cel-
lular phenotypes expected in a sample in order to design 
an informative antibody staining panel, scRNA-seq over-
comes this limitation by providing an unbiased assessment 
of the entire transcriptome. The ability to do this for tens 
of thousands of cells at the same time has ushered in a new 
era of hypothesis-generating research studies. scRNA-seq 
has some disadvantages though. Lowly transcribed genes 
and very short transcripts may not be picked up by cur-
rent sequencing methods. Moreover, multiplets, multiple 
cells trapped in the same droplet, or ambient RNA from 
lysed cells may confound the experimental output if not 
accounted for using appropriate technical or bioinfor-
matic strategies to eliminate them from the downstream 
data analysis [13–16]. Similar to mass cytometry, cells are 
destroyed during sample processing. In addition, the work-
flow is significantly longer compared to non-sequencing 
methods, the bioinformatic requirements for data analysis 
are higher, and costs remain substantial.

In 2017, two groups independently described meth-
ods to combine RNA-seq with protein quantification at 
the single-cell level, which they called cellular index-
ing of transcriptomes and epitopes (CITE-seq) and 
RNA expression and protein sequencing (REAP-seq), 
respectively [17, 18]. Similar to other cytometric meth-
ods, antibodies specific for protein targets of interest are 
conjugated to a reporter which in this case is a unique 
oligonucleotide barcode. After staining, a droplet-based 
system is used to sequence the antibody barcodes and 
the cellular transcriptome simultaneously. The number 
of protein targets that can be measured with sequencing-
based cytometry is limited only by the length of the 
barcode used to label each antibody clone. For exam-
ple, using a barcode length of eight nucleotides provides 
over 65,000 unique identifiers. In the original REAP-seq 
study, 82 proteins were labeled with barcoded antibod-
ies in addition to sequencing 20,000 genes [18]. In an 
analogous way, single-cell sequencing has been used 
to detect epigenetic modifications at the single-cell 
level. In the single-cell assay for transposase-accessible 
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chromatin using sequencing (scATAC-seq), the prokary-
otic Tn5 transposase inserts sequencing adapters into 
open chromatin regions, thereby allowing the genome-
wide identification of open chromatin regions, often 

marking regulatory elements.[19] The combination of 
sequencing-based cytometry techniques for multi-omics 
analysis at the single-cell level is a very rapidly evolving 
field [20, 21, 22•, 23•].

Fig. 1   Single-cell profiling—overview. Created with https://​www.​biore​nder.​com/

https://www.biorender.com/
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Methods for the Profiling of Single Cells 
in Tissues

Traditional methods of immunohistochemistry (IHC), fluo-
rescence microscopy, or in situ hybridization have been 
limited by the small number of cellular markers that can 
be measured simultaneously. Isolating cells from tissues 
for high-dimensional analysis of single-cell suspensions 
has therefore been used but is associated with a number of 
limitations. Fortunately, the technological advancements 
in profiling single cells in suspension have spilled over 
into the analysis of cells in tissues with a rapid growth of 
the diversity and power of available techniques (Table 2). 
An overview of major trends is provided below, and more 
detailed information can be found in dedicated reviews 
[24, 25•, 26, 27•].

Fluorescence Microscopy

Similar to fluorescent flow cytometry, spectral overlap is 
a major limiting factor of fluorescence microscopy [28]. 
Nevertheless, confocal microscopes using spectral array 
detectors in combination with sequential imaging have 
allowed measuring up to 14 colors per slide [29]. In sequen-
tial imaging, the tissue section is stained with a first set of 
antibodies and imaged. After removal of the antibodies (or 
just the fluorochromes), the section is stained with a second 
set of antibodies and imaged again. The obtained images 
are then combined in silico. In a variation of this approach, 
the monoclonal antibodies are labeled with a DNA barcode 
(rather than directly with fluorochromes). Tissue sections 
are first incubated with a panel of antibodies followed by 
hybridization with fluorescently labeled oligonucleotides. 
Co-detection by indexing (CODEX) using DNA-conjugated 
antibodies has been used to detect up to 60 markers on the 
same slide [30•]. Fluorescence microscopy has been helped 
by the development of tissue-clearing techniques which per-
mit the penetration of staining reagents deep into tissues 
and imaging of three-dimensional structures using confocal 
microscopy [31, 32].

Imaging Mass Cytometry

Here, the tissue sections are stained with monoclonal 
antibodies labeled with metal tags. Two major variants 
have been described that differ in how the abundance of 
the metal tags is quantified: scanning mass cytometry 
(SMC) and multiplexed ion-beam imaging (MIBI) [24, 
33, 34]. Imaging mass cytometry offers high sensitiv-
ity and dynamic range, and there is little to no channel 

cross-talk due to the discrete mass of the metal tags. How-
ever, data acquisition is slow and the area that can be 
scanned is small [35]. Segmentation algorithms can be 
applied to identify individual cells in the tissue section. 
These cells isolated in silico can then be analyzed using 
approaches developed for cells in suspension. Moreover, 
the generated two- or three-dimensional maps can be 
analyzed quantitatively to identify cell clusters or study 
cell-cell interactions between cells of different type or 
function [36].

Spatial Transcriptomics

This technique, also called spatially resolved transcriptom-
ics, was highlighted as the Method of the Year 2020 [37]. 
Two principal approaches for the highly multiplexed quan-
tification of gene transcripts in tissue sections have been 
described, NGS-based spatial transcriptomics and imaging-
based spatial transcriptomics [25•]. In NGS-based spatial 
transcriptomics, mRNA is released from the tissue section 
and captured so that information about the localization of 
each molecule in two-dimensional space is retained. In the 
original description of this method [38], the tissue section 
is placed on a slide with a grid of dots (100 μm diameter, 
spaced 200 μm center-to-center) each coated with bar-
coded oligo-dT constructs. After reverse transcription is 
performed on the slide, the cDNA molecules are released 
and transcript frequency is measured by standard NGS. The 
origin of each transcript can be traced back to individual 
dots in the grid by means of the location-specific barcodes. 
The grid can then be overlaid onto a traditionally stained 
tissue section to correlate gene expression with histology. 
Using secondary data sources, it is possible to identify sig-
natures of cell types in the bulk signal from each dot that 
permits (along with the histological appearance) drawing 
conclusion about the cells present in this area of the tis-
sue section. NGS-based spatial transcriptomics approaches 
appeal to translational research for several reasons. They are 
relatively simple to implement due to their compatibility 
with standard laboratory instruments and established NGS 
workflows. They are also compatible with a variety of tissue 
and sample types. Recent advances have enabled the use of 
formalin-fixed paraffin-embedded (FFPE) tissues, which is 
ideal for applying this technology to previously collected 
clinical pathology specimens. Major limitations are a lack 
of customizability to detect specific transcripts and the rel-
ative low spatial resolution. NGS-based spatial transcrip-
tomics is strictly speaking not currently single-cell analy-
sis, since the barcoded area typically encompasses more 
than one cell. However, newer versions of this method, for 
instance, using barcoded beads, have substantially improved 
spatial resolution approaching cell size [39].
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In imaging-based spatial transcriptomics, RNA-seq or 
multiplexed single-molecule FISH (smFISH) are performed 
on the tissue section and the results are read out using fluo-
rescence microscopy. Examples include STARmap (spatially 
resolved transcript amplicon readout mapping), MERFISH 
(multiplexed error-robust fluorescence in situ hybridization), 
and seqFISH (sequential fluorescence in situ hybridization) 
[40–42]. Imaging-based spatial transcriptomics combines 
high sensitivity with high spatial resolution. One potential 
disadvantage of multiplexed smFISH is the limited num-
ber of mRNA probes, currently around 300 to 1000 targets, 
depending on the technology platform. Another challenge 
with this type of technology is the assignment of transcripts 
to segmented cells. As technology and bioinformatic meth-
ods continue to improve, one can expect that measurement 
of gene expression will continue to improve in terms of 
dimension, accuracy, and specificity.

Applications in Spondyloarthritis Research

In the following section, we highlight recently published 
studies as examples for the application of these techniques 
in SpA research that show both the promise and challenges 
in this field.

Indexing and Functional Characterization of Cells 
in a Tissue

A state-of-the-art example for this approach is provided 
by a recent study from the Accelerating Medicines Part-
nership (AMP) consortium which analyzed synovial tissue 
specimens from patients with rheumatoid arthritis. A total 
of 314,011 analyze cells from 79 patients were analyzed 
by CITE-seq. The combination of transcriptional profil-
ing by RNA-seq with 58 surface protein markers identified 
6 major cell types (B or plasma cells, T cells, NK cells, 
myeloid cells, fibroblasts, endothelial cells) with a total of 
77 distinct cell states [43] which were then analyzed fur-
ther. A similarly scaled study analyzed 528,253 cells from 
19 skin samples with scRNA-seq revealing 34 cell types 
or states in 4 major groups (dermal non-immune cells, 
epidermal non-immune cells, lymphocytes and mast cells, 
antigen presenting cells) [44]. Sequencing-based cytometry 
is particularly well suited for cellular indexing because of 
the large number of parameters that can be measured at the 
same time. This avoids the need to make a priori restrictive 
choices that limit the analysis to predefined cell types. At 
least theoretically, an unbiased snapshot of all cells and 
their phenotypes in a given tissue can be obtained [45]. 
Practically, the snapshot will be incomplete though, as 
certain cell types (e.g., osteoclasts and adipocytes) are dif-
ficult to extract from the tissue. Moreover, the cell isolation 

procedure may impact the number and phenotype of the 
cells. Considerations of cost and feasibility often dictate to 
limit the analysis to subsets of cells such as CD45+ hemat-
opoietically derived cells [46] or (even more restricted) 
distinct immune cells populations [47, 48].

Analysis of Samples with Very Few Cells

The unbiased measuring of many parameters with 
sequencing-based approaches is also useful when only 
a very small number of cells are available for analysis. 
Kasper et al. applied scRNA-seq to the analysis of cells in 
the aqueous humor of patients with acute anterior uveitis 
(AAU) [49]. The authors screened 4980 subjects and were 
ultimately able to obtain aqueous humor from the anterior 
chamber of the eye of 4 subjects with HLA-B27+ AAU, 
2 with HLA-B27- AAU, and 1 patient with bacterial 
endophthalmitis. After quality control, they could analyze 
12,305 total cells which they assigned to 13 distinct clus-
ters. Not surprisingly, the bacterial endophthalmitis sam-
ple had more neutrophils, but there were also differences 
between the HLA-B27+ and HLA-B27- AAU patients. 
Unfortunately, a more detailed analysis was hampered 
by the small number and high-interindividual variability 
between samples. Batch variability is a well-recognized 
problem in scRNA-seq studies, and methods such as Har-
mony, LIGER, or Seurat 3 have been developed to adjust 
for this problem during data analysis [50–52]. However, 
a smart experimental design that minimizes the risk for 
batch effects in the first place remains essential.

Identification of Disease‑Associated Immune Cell 
Subsets

Several studies have attempted to identify disease-associ-
ated subpopulations in SpA based on the premise that only 
a small fraction of inflammatory cells present in peripheral 
blood or diseased tissue is central to the disease process. 
For example, Qaiyum et al. designed a 36-marker mass 
cytometry panel enriched for integrins and cell adhesion 
molecules to analyze peripheral blood and synovial fluid 
from patients with axSpA. They found a distinct popula-
tion of CD103+CD49a+CD8+ T cells (InEx cells) to be 
expanded in axSpA patients [53] that phenotypically cor-
responds to tissue-resident memory T cells [54]. Alber 
et al. studied PBMCs from patients with AS and healthy 
controls using CITE-seq and identified an NK cell pop-
ulation expressing CD16, CD161, and CD38 as well as 
cytotoxic genes that was overrepresented in AS patients 
[55••]. Steel et al. analyzed cytokine production of syno-
vial fluid mononuclear cells from patients with PsA find-
ing an enrichment of tissue-resident memory CD8+ T 
cells in the joints of PsA patients that were polyfunctional 
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and expressed IL-17A as well as IFN-γ, TNF, and GM-
CSF [56]. Using mass cytometry, Yager et al. described 
an expansion of monocytes and macrophages producing 
osteopontin, CCL2, and IL-8 in PsA synovial fluid [57].

Clonal Analysis of Lymphocyte Receptors

A recurring theme in cellular profiling studies in SpA and 
PsA has been a renewed focus on CD8+ T cells. Studies 
in the 1990s had demonstrated clonal expansion of CD8+ 
T cells in reactive arthritis and AS [58] consistent with an 
HLA-B27-restricted T cell response. However, technical 
limitations at the time prevented the identification of the 
antigenic targets of this immune response. Today’s single-
cell technologies permit revisiting the arthritogenic pep-
tide hypothesis by studying the TCR repertoire in individ-
ual cells isolated from target tissues. Using scTCR-seq, 
recent studies confirmed the clonal expansions of CD8+ 
T cells in synovial fluid in PsA and SpA [59–62••] as 
well as in aqueous humor in HLA-B27+ AAU patients 
[62••]. Importantly, these studies consistently identi-
fied cells with the same TRBV9-TRBJ2-3 sequence that 
was previously found in studies in cloned CD8+ T cells 
from reactive arthritis patients [63] and bulk CD8+ T 
cells [64]. Yang et al. then expressed recombinant TRCs 
and used yeast display to identify HLA-B27-restricted 
peptides recognized by TCRs with this conserved CDR3 
sequence. These peptides mapped to disease associated 
microbes and human proteins [62••].

Predictive Biomarkers and Signatures 
of Therapeutic Response

Solberg et al. analyzed peripheral blood from patients 
with psoriasis using a 26-parameter mass cytometry panel 
searching for signatures associated with a response to 
three types of biologics. They found a reduction of CD8+ 
T cells and Th17 subsets that correlated with a reduction 
in PASI score. However, the number of analyzed patients 
was probably too small to identify a cellular biomarker 
predictive of response [65]. In a rare analysis of tissue 
specimens from patients enrolled in a phase 3 randomized 
controlled treatment trial, Mehta et  al. compared skin 
biopsy samples from patients with plaque psoriasis treated 
with the IL-17A inhibitor secukinumab or the IL-23p19 
inhibitor guselkumab. Tissue specimens collected at base-
line and after 4 and 24 weeks of therapy were digested 
and analyzed by fluorescent flow cytometry. Interestingly, 
inhibition of IL-17A vs. IL-23 had differential effects on 
kinetics and type of observed changes in the inflammatory 
infiltrate. While both treatments resulted in a reduction of 
CD4+CD103-CD49a- T cells, only the IL-23p19 inhibitor 

reduced the frequency of CD8+ tissue-resident memory T 
cells at week 24 [66••].

Understanding Tissue Organization

In the first application of spatial transcriptomics in rheu-
matology, Carlberg et al. studied synovial tissue specimens 
from seropositive RA and SpA. Analyzing gene expres-
sion in lymphocyte aggregates, they found an enrichment 
of genes involved in adaptive immunity in RA and genes 
involved in extracellular matrix organization and tissue 
repair in SpA. While the resolution of the technique did 
not allow for the identification of individual cells, the 
authors could identify areas that were enriched for CD4+ 
and CD8+ memory T cells, class-switched B cells, and 
plasma cells, respectively [67]. Despite its limitations 
including small sample number and limited spatial reso-
lution, the study highlights how spatial transcriptomics 
can provide insight in the organization of disease tissues 
and differences between different diseases.

Access to Diseased Tissue in SpA

Access to tissue samples has been a major challenge in 
studying SpA. While skin biopsies and joint aspirations are 
performed routinely in clinical practice and the feasibility 
of U/S-guided synovial biopsies for research purposes is 
established, the analysis of enthesial or spinal tissue is 
problematic. A single paper analyzed a small number of 
needle biopsy samples from the Achilles tendon enthesis, 
but there were no follow-up studies [68]. More recently, 
Pachowsky et al. reported the collection of tissue speci-
mens suitable for IHC and gene expression analysis from 
the lateral epicondylus of the elbow using a low morbid-
ity surgical procedure [69••]. The McGonagle group has 
published a series of papers analyzing discarded surgical 
specimens from non-AS patients undergoing laminectomy 
[70, 71]. A recent study from that group demonstrated the 
presence of MAIT cells at spinal entheses [72], but the 
value of these findings for understanding axSpA patho-
genesis is diminished by the lack of tissue from axSpA 
patients. Appel et al. analyzed facet joint samples from AS 
patients undergoing corrective spine surgery in a series of 
papers [73–75]. Surgical specimens from axSpA patients 
are typically from late stage AS although it might be pos-
sible to distinguish lesions at various stages of evolution 
in the same patient [76]. Alternatively, the sacroiliac joint 
and subchondral bone might represent a valuable although 
currently underappreciated source of tissue for analysis 
[77]. There is a major unmet need for tissue specimens 
from the inflamed spine and SI joints from patients with 
axSpA and axial PsA.
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Conclusions

The number of studies that have used single-cell profiling 
methodology for the analysis of cells in suspension or tis-
sues in SpA is still small. Recent studies in RA and SLE 
from the AMP consortium have demonstrated the value of 
multi-center efforts for standardized sample collection and 
the critical importance of studying cells from diseased tis-
sues rather than peripheral blood [78, 79]. AMP 2.0 includes 
patients with psoriatic disease, and one should hope that 
there will be similar efforts focusing on axSpA in the future.

Author Contributions  J. E.: Conceptualization; writing—original draft, 
review, and editing; and preparation of the figure

M. L.: Writing—original draft
K. W.: Writing—review and editing
M. G. A.: Writing—review and editing

Funding  J. E. was supported by NIH grant R21 AR076040-01.

Data Availability  Not applicable

Compliance with Ethical Standards 

Ethics Approval  Not applicable

Conflict of Interest  The authors declare no competing interests.

Human and Animal Rights and Informed Consent  This article does not 
contain any studies with human or animal subjects performed by any 
of the authors.

References

Papers of particular interest, published recently, have 
been highlighted as:  
•  Of importance  
••  Of major importance

	 1.	 Ermann J. Pathogenesis of axial spondyloarthritis - sources 
and current state of knowledge. Rheum Dis Clin North Am. 
2020;46(2):193–206. https://​doi.​org/​10.​1016/j.​rdc.​2020.​01.​016.

	 2.	 Futamura K, Sekino M, Hata A, Ikebuchi R, Nakanishi Y, 
Egawa G, et al. Novel full-spectral flow cytometry with multi-
ple spectrally-adjacent fluorescent proteins and fluorochromes 
and visualization of in vivo cellular movement. Cytometry A. 
2015;87(9):830–42. https://​doi.​org/​10.​1002/​cyto.a.​22725.

	 3.	 Niewold P, Ashhurst TM, Smith AL, King NJC. Evaluating spec-
tral cytometry for immune profiling in viral disease. Cytometry 
A. 2020;97(11):1165–79. https://​doi.​org/​10.​1002/​cyto.a.​24211.

	 4.•	 Park LM, Lannigan J, Jaimes MC. OMIP-069: forty-color full 
spectrum flow cytometry panel for deep immunophenotyping 
of major cell subsets in human peripheral blood. Cytometry A. 
2020;97(10):1044–51. https://​doi.​org/​10.​1002/​cyto.a.​24213. 
Description of a 40-color staining panel for human immune 
cells documenting the power of spectral flow cytometry.

	 5.•	 Sahir F, Mateo JM, Steinhoff M, Siveen KS. Development of 
a 43 color panel for the characterization of conventional and 
unconventional T-cell subsets, B cells, NK cells, monocytes, 
dendritic cells, and innate lymphoid cells using spectral flow 
cytometry. Cytometry A. 2020; https://​doi.​org/​10.​1002/​cyto.a.​
24288. Description of a 43-color staining panel for human 
immune cells documenting the power of spectral flow 
cytometry.

	 6.	 Zuba-Surma EK, Ratajczak MZ. Analytical capabilities of the 
ImageStream cytometer. Methods Cell Biol. 2011;102:207–30. 
https://​doi.​org/​10.​1016/​b978-0-​12-​374912-​3.​00008-0.

	 7.	 Schraivogel D, Kuhn TM, Rauscher B, Rodriguez-Martinez M, 
Paulsen M, Owsley K, et al. High-speed fluorescence image-
enabled cell sorting. Science. 2022;375(6578):315–20. https://​
doi.​org/​10.​1126/​scien​ce.​abj30​13.

	 8.	 Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach 
R, Lou X, et al. Mass cytometry: technique for real time sin-
gle cell multitarget immunoassay based on inductively cou-
pled plasma time-of-flight mass spectrometry. Anal Chem. 
2009;81(16):6813–22. https://​doi.​org/​10.​1021/​ac901​049w.

	 9.	 Tsai AG, Glass DR, Juntilla M, Hartmann FJ, Oak JS, Fer-
nandez-Pol S, et al. Multiplexed single-cell morphometry for 
hematopathology diagnostics. Nat Med. 2020;26(3):408–17. 
https://​doi.​org/​10.​1038/​s41591-​020-​0783-x.

	10.	 Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. 
A deep profiler’s guide to cytometry. Trends Immunol. 
2012;33(7):323–32. https://​doi.​org/​10.​1016/j.​it.​2012.​02.​010.

	11.	 Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, 
et al. mRNA-Seq whole-transcriptome analysis of a single 
cell. Nat Methods. 2009;6(5):377–82. https://​doi.​org/​10.​1038/​
nmeth.​1315.

	12.	 Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman 
M, et al. Highly parallel genome-wide expression profiling of 
individual cells using nanoliter droplets. Cell. 2015;161(5):1202–
14. https://​doi.​org/​10.​1016/j.​cell.​2015.​05.​002.

	13.	 Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, 
Mauck WM 3rd, et al. Cell Hashing with barcoded antibod-
ies enables multiplexing and doublet detection for single cell 
genomics. Genome Biol. 2018;19(1):224. https://​doi.​org/​10.​
1186/​s13059-​018-​1603-1.

	14.	 Wolock SL, Lopez R, Klein AM. Scrublet: computational 
identification of cell doublets in single-cell transcriptomic 
data. Cell Syst. 2019;8(4):281–91 e9. https://​doi.​org/​10.​
1016/j.​cels.​2018.​11.​005.

	15.	 Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova 
L, McCarthy E, et al. Multiplexed droplet single-cell RNA-
sequencing using natural genetic variation. Nat Biotechnol. 
2018;36(1):89–94. https://​doi.​org/​10.​1038/​nbt.​4042.

	16.	 Young MD, Behjati S. SoupX removes ambient RNA contami-
nation from droplet-based single-cell RNA sequencing data. 
Gigascience. 2020;9(12) https://​doi.​org/​10.​1093/​gigas​cience/​
giaa1​51.

	17.	 Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, 
Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope 
and transcriptome measurement in single cells. Nat Methods. 
2017;14(9):865–8. https://​doi.​org/​10.​1038/​nmeth.​4380.

	18.	 Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, 
et al. Multiplexed quantification of proteins and transcripts in 
single cells. Nat Biotechnol. 2017;35(10):936–9. https://​doi.​org/​
10.​1038/​nbt.​3973.

	19.	 Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, 
Snyder MP, et al. Single-cell chromatin accessibility reveals 
principles of regulatory variation. Nature. 2015;523(7561):486–
90. https://​doi.​org/​10.​1038/​natur​e14590.

	20.	 Swanson E, Lord C, Reading J, Heubeck AT, Genge PC, Thom-
son Z, et al. Simultaneous trimodal single-cell measurement of 

https://doi.org/10.1016/j.rdc.2020.01.016
https://doi.org/10.1002/cyto.a.22725
https://doi.org/10.1002/cyto.a.24211
https://doi.org/10.1002/cyto.a.24213
https://doi.org/10.1002/cyto.a.24288
https://doi.org/10.1002/cyto.a.24288
https://doi.org/10.1016/b978-0-12-374912-3.00008-0
https://doi.org/10.1126/science.abj3013
https://doi.org/10.1126/science.abj3013
https://doi.org/10.1021/ac901049w
https://doi.org/10.1038/s41591-020-0783-x
https://doi.org/10.1016/j.it.2012.02.010
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1186/s13059-018-1603-1
https://doi.org/10.1186/s13059-018-1603-1
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1038/nbt.4042
https://doi.org/10.1093/gigascience/giaa151
https://doi.org/10.1093/gigascience/giaa151
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nature14590


152	 Curr Rheumatol Rep (2024) 26:144–154

transcripts, epitopes, and chromatin accessibility using TEA-seq. 
Elife. 2021:10. https://​doi.​org/​10.​7554/​eLife.​63632.

	21.	 Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL, Hao 
Y, Takeshima Y, et al. Scalable, multimodal profiling of chro-
matin accessibility, gene expression and protein levels in single 
cells. Nat Biotechnol. 2021;39(10):1246–58. https://​doi.​org/​10.​
1038/​s41587-​021-​00927-2.

	22.•	 Baysoy A, Bai Z, Satija R, Fan R. The technological landscape 
and applications of single-cell multi-omics. Nat Rev Mol Cell 
Biol. 2023:1–19. https://​doi.​org/​10.​1038/​s41580-​023-​00615-w. 
State-of-the-art review of single-cell multi-omics.

	23.•	 Wang X, Fan D, Yang Y, Gimple RC, Zhou S. Integrative 
multi-omics approaches to explore immune cell functions: 
challenges and opportunities. iScience. 2023;26(4):106359. 
https://​doi.​org/​10.​1016/j.​isci.​2023.​106359. State-of-the-art 
review of single-cell multi-omics

	24.	 Bodenmiller B. Multiplexed epitope-based tissue imaging for 
discovery and healthcare applications. Cell Syst. 2016;2(4):225–
38. https://​doi.​org/​10.​1016/j.​cels.​2016.​03.​008.

	25.•	 Rao A, Barkley D, Franca GS, Yanai I. Exploring tissue architec-
ture using spatial transcriptomics. Nature. 2021;596(7871):211–
20. https://​doi.​org/​10.​1038/​s41586-​021-​03634-9. State-of-the-
art review of spatial transcriptomics.

	26.	 Hickey JW, Neumann EK, Radtke AJ, Camarillo JM, Beuschel 
RT, Albanese A, et al. Spatial mapping of protein composition 
and tissue organization: a primer for multiplexed antibody-based 
imaging. Nat Methods. 2022;19(3):284–95. https://​doi.​org/​10.​
1038/​s41592-​021-​01316-y.

	27.•	 Moffitt JR, Lundberg E, Heyn H. The emerging landscape of spa-
tial profiling technologies. Nat Rev Genet. 2022;23(12):741–59. 
https://​doi.​org/​10.​1038/​s41576-​022-​00515-3. State-of-the-art 
review of spatial transcriptomics.

	28.	 Ranjit S, Lanzano L, Libby AE, Gratton E, Levi M. Advances 
in fluorescence microscopy techniques to study kidney function. 
Nat Rev Nephrol. 2021;17(2):128–44. https://​doi.​org/​10.​1038/​
s41581-​020-​00337-8.

	29.	 Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. 
Histo-cytometry: a method for highly multiplex quantitative 
tissue imaging analysis applied to dendritic cell subset micro-
anatomy in lymph nodes. Immunity. 2012;37(2):364–76. https://​
doi.​org/​10.​1016/j.​immuni.​2012.​07.​011.

	30.•	 Black S, Phillips D, Hickey JW, Kennedy-Darling J, Ven-
kataraaman VG, Samusik N, et al. CODEX multiplexed tis-
sue imaging with DNA-conjugated antibodies. Nat Protoc. 
2021;16(8):3802–35. https://​doi.​org/​10.​1038/​s41596-​021-​
00556-8. Imaging of up to 60 protein markers in tissue sec-
tions using DNA-conjugated monoclonal antibodies and 
fluorescently labelled oligonucleotide probes.

	31.	 Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, 
Lubeck E, et al. Single-cell phenotyping within transparent intact 
tissue through whole-body clearing. Cell. 2014;158(4):945–58. 
https://​doi.​org/​10.​1016/j.​cell.​2014.​07.​017.

	32.	 Weiss KR, Voigt FF, Shepherd DP, Huisken J. Tutorial: 
practical considerations for tissue clearing and imaging. 
Nat Protoc. 2021;16(6):2732–48. https://​doi.​org/​10.​1038/​
s41596-​021-​00502-8.

	33.	 Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hat-
tendorf B, et al. Highly multiplexed imaging of tumor tissues 
with subcellular resolution by mass cytometry. Nat Methods. 
2014;11(4):417–22. https://​doi.​org/​10.​1038/​nmeth.​2869.

	34.	 Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky 
AD, et al. Multiplexed ion beam imaging of human breast tumors. 
Nat Med. 2014;20(4):436–42. https://​doi.​org/​10.​1038/​nm.​3488.

	35.	 Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Baranov 
VI, Hedley DW. Imaging mass cytometry. Cytometry A. 
2017;91(2):160–9. https://​doi.​org/​10.​1002/​cyto.a.​23053.

	36.	 Kuett L, Catena R, Ozcan A, Pluss A, Cancer Grand Challenges 
IC, Schraml P, et al. Three-dimensional imaging mass cytometry 
for highly multiplexed molecular and cellular mapping of tissues 
and the tumor microenvironment. Nat Cancer. 2022;3(1):122–
33. https://​doi.​org/​10.​1038/​s43018-​021-​00301-w.

	37.	 Editorial. Method of the Year 2020: spatially resolved transcrip-
tomics. Nat Methods. 2021;18(1):1. https://​doi.​org/​10.​1038/​
s41592-​020-​01042-x.

	38.	 Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, 
Magnusson J, et al. Visualization and analysis of gene expres-
sion in tissue sections by spatial transcriptomics. Science. 
2016;353(6294):78–82. https://​doi.​org/​10.​1126/​scien​ce.​aaf24​03.

	39.	 Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Di Bella DJ, 
et al. Highly sensitive spatial transcriptomics at near-cellular 
resolution with Slide-seqV2. Nat Biotechnol. 2021;39(3):313–9. 
https://​doi.​org/​10.​1038/​s41587-​020-​0739-1.

	40.	 Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, 
Vesuna S, et al. Three-dimensional intact-tissue sequencing 
of single-cell transcriptional states. Science. 2018;361(6400) 
https://​doi.​org/​10.​1126/​scien​ce.​aat56​91.

	41.	 Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang 
X. High-throughput single-cell gene-expression profiling with 
multiplexed error-robust fluorescence in situ hybridization. 
Proc Natl Acad Sci U S A. 2016;113(39):11046–51. https://​
doi.​org/​10.​1073/​pnas.​16128​26113.

	42.	 Eng CL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, 
et al. Transcriptome-scale super-resolved imaging in tissues 
by RNA seqFISH. Nature. 2019;568(7751):235–9. https://​doi.​
org/​10.​1038/​s41586-​019-​1049-y.

	43.	 Zhang F, Jonsson AH, Nathan A, Millard N, Curtis M, Xiao Q, 
et al. Deconstruction of rheumatoid arthritis synovium defines 
inflammatory subtypes. Nature. 2023;623(7987):616–24. 
https://​doi.​org/​10.​1038/​s41586-​023-​06708-y.

	44.	 Reynolds G, Vegh P, Fletcher J, Poyner EFM, Stephenson E, Goh 
I, et al. Developmental cell programs are co-opted in inflamma-
tory skin disease. Science. 2021;371(6527) https://​doi.​org/​10.​
1126/​scien​ce.​aba65​00.

	45.	 Morris SA. The evolving concept of cell identity in the single 
cell era. Development. 2019;146(12) https://​doi.​org/​10.​1242/​
dev.​169748.

	46.	 Liu Y, Wang H, Taylor M, Cook C, Martinez-Berdeja A, North 
JP, et al. Classification of human chronic inflammatory skin 
disease based on single-cell immune profiling. Sci Immunol. 
2022;7(70):eabl9165. https://​doi.​org/​10.​1126/​sciim​munol.​abl91​
65.

	47.	 Nakamizo S, Dutertre CA, Khalilnezhad A, Zhang XM, Lim 
S, Lum J, et al. Single-cell analysis of human skin identifies 
CD14+ type 3 dendritic cells co-producing IL1B and IL23A in 
psoriasis. J Exp Med. 2021;218(9) https://​doi.​org/​10.​1084/​jem.​
20202​345.

	48.	 Liu J, Chang HW, Huang ZM, Nakamura M, Sekhon S, Ahn R, 
et al. Single-cell RNA sequencing of psoriatic skin identifies 
pathogenic Tc17 cell subsets and reveals distinctions between 
CD8(+) T cells in autoimmunity and cancer. J Allergy Clin 
Immunol. 2021;147(6):2370–80. https://​doi.​org/​10.​1016/j.​jaci.​
2020.​11.​028.

	49.	 Kasper M, Heming M, Schafflick D, Li X, Lautwein T, Zu M, 
Horste M, et al. Intraocular dendritic cells characterize HLA-
B27-associated acute anterior uveitis. Elife. 2021:10. https://​doi.​
org/​10.​7554/​eLife.​67396.

	50.	 Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, 
et al. Fast, sensitive and accurate integration of single-cell data 
with Harmony. Nat Methods. 2019;16(12):1289–96. https://​doi.​
org/​10.​1038/​s41592-​019-​0619-0.

	51.	 Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, 
Macosko EZ. Single-cell multi-omic integration compares and 

https://doi.org/10.7554/eLife.63632
https://doi.org/10.1038/s41587-021-00927-2
https://doi.org/10.1038/s41587-021-00927-2
https://doi.org/10.1038/s41580-023-00615-w
https://doi.org/10.1016/j.isci.2023.106359
https://doi.org/10.1016/j.cels.2016.03.008
https://doi.org/10.1038/s41586-021-03634-9
https://doi.org/10.1038/s41592-021-01316-y
https://doi.org/10.1038/s41592-021-01316-y
https://doi.org/10.1038/s41576-022-00515-3
https://doi.org/10.1038/s41581-020-00337-8
https://doi.org/10.1038/s41581-020-00337-8
https://doi.org/10.1016/j.immuni.2012.07.011
https://doi.org/10.1016/j.immuni.2012.07.011
https://doi.org/10.1038/s41596-021-00556-8
https://doi.org/10.1038/s41596-021-00556-8
https://doi.org/10.1016/j.cell.2014.07.017
https://doi.org/10.1038/s41596-021-00502-8
https://doi.org/10.1038/s41596-021-00502-8
https://doi.org/10.1038/nmeth.2869
https://doi.org/10.1038/nm.3488
https://doi.org/10.1002/cyto.a.23053
https://doi.org/10.1038/s43018-021-00301-w
https://doi.org/10.1038/s41592-020-01042-x
https://doi.org/10.1038/s41592-020-01042-x
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1038/s41587-020-0739-1
https://doi.org/10.1126/science.aat5691
https://doi.org/10.1073/pnas.1612826113
https://doi.org/10.1073/pnas.1612826113
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-023-06708-y
https://doi.org/10.1126/science.aba6500
https://doi.org/10.1126/science.aba6500
https://doi.org/10.1242/dev.169748
https://doi.org/10.1242/dev.169748
https://doi.org/10.1126/sciimmunol.abl9165
https://doi.org/10.1126/sciimmunol.abl9165
https://doi.org/10.1084/jem.20202345
https://doi.org/10.1084/jem.20202345
https://doi.org/10.1016/j.jaci.2020.11.028
https://doi.org/10.1016/j.jaci.2020.11.028
https://doi.org/10.7554/eLife.67396
https://doi.org/10.7554/eLife.67396
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0


153Curr Rheumatol Rep (2024) 26:144–154	

contrasts features of brain cell identity. Cell. 2019;177(7):1873–
87 e17. https://​doi.​org/​10.​1016/j.​cell.​2019.​05.​006.

	52.	 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, 
Mauck WM 3rd, et al. Comprehensive integration of single-cell 
data. Cell. 2019;177(7):1888–902 e21. https://​doi.​org/​10.​1016/j.​
cell.​2019.​05.​031.

	53.	 Qaiyum Z, Gracey E, Yao Y, Inman RD. Integrin and tran-
scriptomic profiles identify a distinctive synovial CD8+ 
T cell subpopulation in spondyloarthritis. Ann Rheum 
Dis. 2019;78(11):1566–75. https://​doi.​org/​10.​1136/​annrh​
eumdis-​2019-​215349.

	54.	 Weisberg SP, Ural BB, Farber DL. Tissue-specific immunity for 
a changing world. Cell. 2021;184(6):1517–29. https://​doi.​org/​10.​
1016/j.​cell.​2021.​01.​042.

	55.••	Alber S, Kumar S, Liu J, Huang ZM, Paez D, Hong J, et al. Sin-
gle cell transcriptome and surface epitope analysis of ankylosing 
spondylitis facilitates disease classification by machine learning. 
Front Immunol. 2022;13:838636. https://​doi.​org/​10.​3389/​fimmu.​
2022.​838636. CITE-seq study of human PBMCs that identi-
fies an expanded population of CD16+CD161+CD38+ NK 
cells in AS.

	56.	 Steel KJA, Srenathan U, Ridley M, Durham LE, Wu SY, 
Ryan SE, et al. Polyfunctional, proinflammatory, tissue-
resident memory phenotype and function of synovial inter-
leukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis 
Rheumatol. 2020;72(3):435–47. https://​doi.​org/​10.​1002/​art.​
41156.

	57.	 Yager N, Cole S, Lledo Lara A, Maroof A, Penkava F, Knight 
JC, et al. Ex vivo mass cytometry analysis reveals a profound 
myeloid proinflammatory signature in psoriatic arthritis syno-
vial fluid. Ann Rheum Dis. 2021;80(12):1559–67. https://​doi.​
org/​10.​1136/​annrh​eumdis-​2021-​220280.

	58.	 Hermann E, Yu DT, Meyer zum Büschenfelde KH, Fleischer 
B. HLA-B27-restricted CD8 T cells derived from synovial 
fluids of patients with reactive arthritis and ankylosing spon-
dylitis. Lancet. 1993;342(8872):646–50. https://​doi.​org/​10.​
1016/​0140-​6736(93)​91760-j.

	59.	 Penkava F, Velasco-Herrera MDC, Young MD, Yager N, 
Nwosu LN, Pratt AG, et al. Single-cell sequencing reveals 
clonal expansions of pro-inflammatory synovial CD8 T 
cells expressing tissue-homing receptors in psoriatic arthri-
tis. Nat Commun. 2020;11(1):4767. https://​doi.​org/​10.​1038/​
s41467-​020-​18513-6.

	60.	 Simone D, Penkava F, Ridley A, Sansom S, Al-Mossawi MH, 
Bowness P. Single cell analysis of spondyloarthritis regulatory 
T cells identifies distinct synovial gene expression patterns 
and clonal fates. Comm Biology. 2021;4(1) https://​doi.​org/​10.​
1038/​s42003-​021-​02931-3.

	61.	 Deschler K, Rademacher J, Lacher SM, Huth A, Utzt M, 
Krebs S, et al. Antigen-specific immune reactions by expanded 
CD8(+) T cell clones from HLA-B*27-positive patients with 
spondyloarthritis. J Autoimmun. 2022;133:102901. https://​doi.​
org/​10.​1016/j.​jaut.​2022.​102901.

	62.••	Yang X, Garner LI, Zvyagin IV, Paley MA, Komech EA, Jude 
KM, et al. Autoimmunity-associated T cell receptors recognize 
HLA-B*27-bound peptides. Nature. 2022;612(7941):771–7. 
https://​doi.​org/​10.​1038/​s41586-​022-​05501-7. scTCR-seq 
analysis of CD8+ T cells from synovial fluid and aqueous 
humor of HLA-B27+ patients with AS and AAU. Evidence 
for expansion of distinct TCR clonotypes and identification 
of HLA-B27 restricted candidate peptides.

	63.	 May E, Dulphy N, Frauendorf E, Duchmann R, Bowness P, 
Lopez de Castro JA, et al. Conserved TCR beta chain usage in 
reactive arthritis; evidence for selection by a putative HLA-
B27-associated autoantigen. Tissue Antigens. 2002;60(4):299–
308. https://​doi.​org/​10.​1034/j.​1399-​0039.​2002.​600404.x.

	64.	 Faham M, Carlton V, Moorhead M, Zheng J, Klinger M, 
Pepin F, et al. Discovery of T cell receptor β motifs specific to 
HLA-B27-positive ankylosing spondylitis by deep repertoire 
sequence analysis. Arthritis Rheumatol. 2017;69(4):774–84. 
https://​doi.​org/​10.​1002/​art.​40028.

	65.	 Solberg SM, Aarebrot AK, Sarkar I, Petrovic A, Sandvik LF, 
Bergum B, et al. Mass cytometry analysis of blood immune 
cells from psoriasis patients on biological therapy. Eur J 
Immunol. 2021;51(3):694–702. https://​doi.​org/​10.​1002/​eji.​
20204​8857.

	66.••	Mehta H, Mashiko S, Angsana J, Rubio M, Hsieh YM, Maari 
C, et al. Differential changes in inflammatory mononuclear 
phagocyte and T-cell profiles within psoriatic skin during 
treatment with guselkumab vs. secukinumab. J Invest Der-
matol. 2021;141(7):1707–18 e9. https://​doi.​org/​10.​1016/j.​
jid.​2021.​01.​005. Fluorescent flow cytometric analysis of 
skin biopsy specimens from a head-to-head randomized 
controlled clinical trial comparing IL-17A with IL-23p19 
inhibition in psoriasis. A differential effect of the two 
treatment modalities on the inflammatory infiltrate is 
demonstrated.

	67.	 Carlberg K, Korotkova M, Larsson L, Catrina AI, Stahl 
PL, Malmstrom V. Exploring inf lammatory signatures 
in arthritic joint biopsies with spatial transcriptom-
ics. Sci Rep. 2019;9(1):18975. https://​doi.​org/​10.​1038/​
s41598-​019-​55441-y.

	68.	 McGonagle D, Marzo-Ortega H, O'Connor P, Gibbon W, 
Hawkey P, Henshaw K, Emery P. Histological assessment 
of the early enthesitis lesion in spondyloarthropathy. Ann 
Rheum Dis. 2002;61(6):534–7. https://​doi.​org/​10.​1136/​ard.​
61.6.​534.

	69.••	Pachowsky ML, Raimondo MG, Xu C, Rauber S, Tascilar K, 
Labinsky H, et al. Concise report: a minimal-invasive method 
to retrieve and identify entheseal tissue from psoriatic arthri-
tis patients. Ann Rheum Dis. 2022; https://​doi.​org/​10.​1136/​
annrh​eumdis-​2021-​222061. Description of a novel technique 
for the isolation of human enthesial cells for cellular and 
molecular analysis.

	70.	 Cuthbert RJ, Fragkakis EM, Dunsmuir R, Li Z, Coles 
M, Marzo-Ortega H, et  al. Brief report: group 3 innate 
lymphoid cells in human enthesis. Arthritis Rheumatol. 
2017;69(9):1816–22. https://​doi.​org/​10.​1002/​art.​40150.

	71.	 Cuthbert RJ, Watad A, Fragkakis EM, Dunsmuir R, Lough-
enbury P, Khan A, et  al. Evidence that tissue resident 
human enthesis gammadeltaT-cells can produce IL-17A 
independently of IL-23R transcript expression. Ann Rheum 
Dis. 2019;78(11):1559–65. https://​doi.​org/​10.​1136/​annrh​
eumdis-​2019-​215210.

	72.	 Rosine N, Rowe H, Koturan S, Yahia-Cherbal H, Leloup C, 
Watad A, et al. Characterization of blood mucosal-associated 
invariant T cells in patients with axial spondyloarthritis and 
of resident mucosal-associated invariant T cells from the 
axial entheses of non-axial spondyloarthritis control patients. 
Arthritis Rheumatol. 2022;74(11):1786–95. https://​doi.​org/​10.​
1002/​art.​42090.

	73.	 Appel H, Kuhne M, Spiekermann S, Ebhardt H, Grozdanovic 
Z, Kohler D, et al. Immunohistologic analysis of zygapophyseal 
joints in patients with ankylosing spondylitis. Arthritis Rheum. 
2006;54(9):2845–51. https://​doi.​org/​10.​1002/​art.​22060.

	74.	 Appel H, Loddenkemper C, Grozdanovic Z, Ebhardt H, 
Dreimann M, Hempfing A, et al. Correlation of histopatho-
logical findings and magnetic resonance imaging in the spine 
of patients with ankylosing spondylitis. Arthritis Res Ther. 
2006;8(5):R143. https://​doi.​org/​10.​1186/​ar2035.

	75.	 Appel H, Maier R, Wu P, Scheer R, Hempfing A, Kayser R, 
et al. Analysis of IL-17(+) cells in facet joints of patients with 

https://doi.org/10.1016/j.cell.2019.05.006
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1136/annrheumdis-2019-215349
https://doi.org/10.1136/annrheumdis-2019-215349
https://doi.org/10.1016/j.cell.2021.01.042
https://doi.org/10.1016/j.cell.2021.01.042
https://doi.org/10.3389/fimmu.2022.838636
https://doi.org/10.3389/fimmu.2022.838636
https://doi.org/10.1002/art.41156
https://doi.org/10.1002/art.41156
https://doi.org/10.1136/annrheumdis-2021-220280
https://doi.org/10.1136/annrheumdis-2021-220280
https://doi.org/10.1016/0140-6736(93)91760-j
https://doi.org/10.1016/0140-6736(93)91760-j
https://doi.org/10.1038/s41467-020-18513-6
https://doi.org/10.1038/s41467-020-18513-6
https://doi.org/10.1038/s42003-021-02931-3
https://doi.org/10.1038/s42003-021-02931-3
https://doi.org/10.1016/j.jaut.2022.102901
https://doi.org/10.1016/j.jaut.2022.102901
https://doi.org/10.1038/s41586-022-05501-7
https://doi.org/10.1034/j.1399-0039.2002.600404.x
https://doi.org/10.1002/art.40028
https://doi.org/10.1002/eji.202048857
https://doi.org/10.1002/eji.202048857
https://doi.org/10.1016/j.jid.2021.01.005
https://doi.org/10.1016/j.jid.2021.01.005
https://doi.org/10.1038/s41598-019-55441-y
https://doi.org/10.1038/s41598-019-55441-y
https://doi.org/10.1136/ard.61.6.534
https://doi.org/10.1136/ard.61.6.534
https://doi.org/10.1136/annrheumdis-2021-222061
https://doi.org/10.1136/annrheumdis-2021-222061
https://doi.org/10.1002/art.40150
https://doi.org/10.1136/annrheumdis-2019-215210
https://doi.org/10.1136/annrheumdis-2019-215210
https://doi.org/10.1002/art.42090
https://doi.org/10.1002/art.42090
https://doi.org/10.1002/art.22060
https://doi.org/10.1186/ar2035


154	 Curr Rheumatol Rep (2024) 26:144–154

spondyloarthritis suggests that the innate immune pathway 
might be of greater relevance than the Th17-mediated adaptive 
immune response. Arthritis Res Ther. 2011;13(3):R95. https://​
doi.​org/​10.​1186/​ar3370.

	76.	 Yu T, Zhang J, Zhu W, Wang X, Bai Y, Feng B, et al. Chon-
drogenesis mediates progression of ankylosing spondylitis 
through heterotopic ossification. Bone Res. 2021;9(1):19. 
https://​doi.​org/​10.​1038/​s41413-​021-​00140-6.

	77.	 Egund N, Sorensen FB, Ostgard R, Loft AG, Boel LWT, Jurik 
AG. CT-guided transarticular biopsy of the sacroiliac joint: 
technique and histomorphological results. A preliminary 
study. Skeletal Radiol. 2020;49(3):453–60. https://​doi.​org/​
10.​1007/​s00256-​019-​03305-x.

	78.	 Donlin LT, Rao DA, Wei K, Slowikowski K, McGeachy 
MJ, Turner JD, et al. Methods for high-dimensonal analy-
sis of cells dissociated from cyropreserved synovial tissue. 

Arthritis Res Ther. 2018;20(1):139. https://​doi.​org/​10.​1186/​
s13075-​018-​1631-y.

	79.	 Pisetsky DS. The basic and translational science year in 
review: Confucius in the era of Big Data. Semin Arthritis 
Rheum. 2020;50(3):373–9. https://​doi.​org/​10.​1016/j.​semar​
thrit.​2020.​02.​010.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1186/ar3370
https://doi.org/10.1186/ar3370
https://doi.org/10.1038/s41413-021-00140-6
https://doi.org/10.1007/s00256-019-03305-x
https://doi.org/10.1007/s00256-019-03305-x
https://doi.org/10.1186/s13075-018-1631-y
https://doi.org/10.1186/s13075-018-1631-y
https://doi.org/10.1016/j.semarthrit.2020.02.010
https://doi.org/10.1016/j.semarthrit.2020.02.010

	Understanding Spondyloarthritis Pathogenesis: The Promise of Single-Cell Profiling
	Abstract
	Purpose of Review 
	Recent Findings 
	Summary 

	Introduction
	Methods for the Profiling of Single Cells in Suspension
	Fluorescent Flow Cytometry
	Image-Based Flow Cytometry
	Mass Cytometry
	Sequencing-Based Cytometry

	Methods for the Profiling of Single Cells in Tissues
	Fluorescence Microscopy
	Imaging Mass Cytometry
	Spatial Transcriptomics

	Applications in Spondyloarthritis Research
	Indexing and Functional Characterization of Cells in a Tissue
	Analysis of Samples with Very Few Cells
	Identification of Disease-Associated Immune Cell Subsets
	Clonal Analysis of Lymphocyte Receptors
	Predictive Biomarkers and Signatures of Therapeutic Response
	Understanding Tissue Organization
	Access to Diseased Tissue in SpA

	Conclusions
	References


