
Vol.:(0123456789)1 3

Curr Rheumatol Rep (2023) 25:327–340 
https://doi.org/10.1007/s11926-023-01118-5

HLA‑B*27 and Ankylosing Spondylitis: 50 Years of Insights 
and Discoveries

Muhammad A. Khan1 

Published online: 11 November 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Purpose of Review To commemorate the 50th anniversary of the groundbreaking discovery of a remarkably strong associa-
tion between HLA-B*27 and ankylosing spondylitis (AS).
Recent Findings In addition to HLA-B*27, more than 116 other recognized genetic risk variants have been identified, while 
epigenetic factors largely remain unexplored in this context. Among patients with AS who carry the HLA-B*27 gene, clon-
ally expanded CD8 + T cells can be found in their bloodstream and within inflamed tissues. Moreover, the α and β chain 
motifs of these T-cell receptors demonstrate a distinct affinity for certain self- and microbial-derived peptides, leading to an 
autoimmune response that ultimately results in the onset of the disease. These distinctive peptide-binding and presentation 
characteristics are a hallmark of the disease-associated HLA-B*27:05 subtype but are absent in HLA-B*27:09, a subtype 
not associated with the disease, differing by only a single amino acid. This discovery represents a significant advancement 
in unraveling the 50-year-old puzzle of how HLA-B*27 contributes to the development of AS.
Summary These findings will significantly accelerate the process of identifying peptides, both self- and microbial-derived, 
that instigate autoimmunity. This, in return, will pave the way for the development of more accurate and effective targeted 
treatments. Moreover, the discovery of improved biomarkers, in conjunction with the emerging technology of electric field 
molecular fingerprinting, has the potential to greatly bolster early diagnosis capabilities. A very recently published ground-
break paper underscores the remarkable effectiveness of targeting and eliminating disease-causing T cells in a HLA-B*27 
patients with AS. This pivotal advancement not only signifies a paradigm shift but also bolsters the potential for preventing 
the disease in individuals carrying high-risk genetic variants.
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Introduction

This year marks the 50th anniversary of the groundbreaking 
discovery of a remarkably strong association between HLA-
B*27 and ankylosing spondylitis (AS} [1–3]. In celebration 
of this milestone, my focus will be on AS, which represents 
a more homogeneous and extensively studied clinical condi-
tion, as opposed to axial spondyloarthritis (axSpA) encom-
passing early or milder disease forms and other SpA-related 
conditions [4–7].

Discovery of HLA‑B*27

In 1969, Erik Thorsby of Norway made a significant break-
through when he identified a novel human histocompatibility 
antigen. He accomplished this feat by developing the TH-FJH 
antibody by a method called “planned immunization” [8]. This 
specific serologic trait, initially labeled as “w27,” underwent 
a provisional naming evolution. Its official designation transi-
tioned to HL-A27 at the 4th International Histocompatibility 
Workshop (IHW) [9]. Subsequently, at the 6th IHW, it was 
further designated as HLA-B27. With the advent of the DNA-
based “HLA Extended Allele Nomenclature” system [10], the 
nomenclature for HLA loci, including the B locus, now includes 
an asterisk (*). Consequently, HLA-B27 is now represented as 
HLA-B*27, aligning with its DNA-level designation. Its preva-
lence varies widely among genetically unmixed (indigenous) 
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populations and tribal groups worldwide (see Fig. 1). For con-
sistency, throughout this review article, I will use the term HLA-
B*27 and italicize it (HLA-B*27) when transitioning from the 
discussion of the protein molecule to the gene itself.

Discovery of Its Association with Ankylosing 
Spondylitis

The journey to this groundbreaking discovery commenced 
with a study undertaken by a group of British researchers 
at London’s Westminster Hospital [1, 2]. Notably, some 
members of this team have since shared firsthand accounts 
of their involvement in this pivotal investigation [11–14]. 
According to these narratives and the insights gleaned from 
my personal discussions, the year 1971 marked a pivotal 
juncture. It was during this time that David James, a hema-
tologist who had newly established an HLA-typing labo-
ratory and possessed a keen interest in exploring potential 
associations between HLA and rheumatic ailments, met with 
Derrick Brewerton, a rheumatologist, and inquired if there 
were any rheumatic diseases worth studying. Brewerton, 
having learned from his mentor, Professor Frank Dudley 
Hart, about published reports strongly suggesting a genetic 
predisposition to AS [15, 16], promptly suggested investigat-
ing this illness as a worthy subject.

This exchange of ideas paved the way for the journey 
that would lead to the groundbreaking revelation we dis-
cuss today. The investigating team drafted and submitted a 
study proposal, only to face rejection from their financially 
constrained hospital administration. Undeterred, the team 
proceeded to conduct HLA typing on 8 patients with AS, 
revealing that all possessed HLA-B*27. With the revised 
proposal gaining approval, their remarkable findings were 
eventually published in 1973 [2]. Notably, HLA-B*27 was 
detected in 72 out of 75 (96%) patients with classical (pri-
mary) AS, in stark contrast to a mere 3 out of 75 (4%) con-
trols. Family studies further unveiled HLA-B*27’s presence 
in 31 out of 60 (51.7%) first-degree relatives (FDR) of AS 
patients, firmly establishing its robust genetic link to the 
disease. Additionally, later that same year, the team reported 
a strong correlation between HLA-B*27 and acute anterior 
uveitis (AAU) as well as reactive arthritis [17, 18].

At the same time, an independent but quite serendipi-
tous discovery of this association was reported in 1973 by 
a team based at the University of California at Los Ange-
les and its affiliated Veterans Administration (VA) Hospital 
[3]. The team members had planned to investigate possible 
HLA association with rheumatoid arthritis (RA) for which 
they had a control group of healthy subjects, but they also 
included patient control groups comprising AS and gout 
patients that were abundantly available at their VA hospi-
tal. The investigators were pleasantly surprised to find that 
although no significant deviation from control frequencies 
of the then HLA specificities was noted in patients with RA 
and gout, HLA-B*27 was present in 35 of 40 (88%) patients 
with AS, as compared to 8% of the 906 normal controls [3].

In subsequent years, Erik Thorsby shared with me the 
information that he had tested members of his own fam-
ily, revealing that some indeed possessed his newly dis-
covered HLA antigen. Notably, one of the family members 
had AS, and another displayed symptoms suggestive of AS 
[19]. Nevertheless, as most relatives with this novel antigen 
enjoyed good health, he attributed these findings to serendip-
ity. Looking back, he expressed regret for not delving deeper 
into this observation by investigating other AS patients. He 
acknowledged that had he pursued this path, he could have 
been a trailblazer, not only identifying a new HLA antigen 
but also unveiling its remarkable association with a disease 
[19].

Disease Heterogeneity

Studies in diverse racial/ethnic groups subsequently found 
differences in the strength of this association of HLA-B*27 
with AS and an influence on the clinical phenotypes and 
endotypes of the disease [20–25]. While there are numer-
ous similarities, HLA-B*27( +) patients with AS exhibit a 

Fig. 1  The world map shows a highly variable prevalence of HLA-
B*27 among the various genetically unmixed indigenous populations 
and tribal groups in the world. Legend: the numbers in red color (6 
over North America, 5 over South America, and 8 over Australia) 
indicate the current average prevalence of HLA-B*27 in these regions 
because of European colonization. Its prevalence is noticeably very 
high among the various native indigenous tribes of North America 
in contrast to its virtual absence among a few unmixed native tribes 
in South America that have been available for study. The indigenous 
unmixed natives of Australia lack HLA-B*27. The red arrow points 
to Indonesia where the natives have approximately 12% prevalence of 
HLA-B*27 but have less AS than the Indonesians of Chinese ances-
try that has only 5% prevalence. This apparent paradox results from 
the fact the HLA-B*27 among the native Indonesians is primarily 
the HLA-B*27:06 subtype that does predispose to AS, as explained 
in the text.  (Adapted from Khan MA. HLA-B27 and its subtypes 
in world populations. Curr Opin Rheumatol. 1995 Jul;7(4):263–9. 
10.1097/00002281–199507000-00001)
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greater familial disposition and a higher likelihood of associ-
ated AAU and tend to experience an earlier age of onset and 
age at diagnosis [26, 27•]. Furthermore, there is a slightly 
stronger association with HLA-B*27 among males than 
females, observed in both European and Chinese popula-
tions [28, 29]. Recent research underscores HLA-B*27 as 
an important predictor of the effectiveness of TNF inhibi-
tors in treatment. It suggests that male gender and CRP lev-
els are better at explaining variability in individual patient 
responses [30]. Acknowledging the impact of sexual dimor-
phism on the disease phenotype or endotype is vital for pre-
dicting outcomes and tailoring therapeutic approaches 
to individual patients [31].

By the mid-1980s, it became apparent that radiographic 
changes in the sacroiliac joints were highly prevalent in AS 
but not in early or atypical forms of the disease [32]. Later 
on, it was emphasized that the prevailing definition of AS did 
not encompass the broader spectrum of the disease [33], and 
global studies across various racial/ethnic groups have sub-
stantiated this perspective [29, 34–36]. Improved clinical rec-
ognition of “spondylitic disease without radiologic evidence 
of sacroiliitis” (now referred to as nr-axSpA) [32], which 
is more commonly found in females, and along with the 
increased use of MRI since the mid-1990s, has led to reports 
of the nearly equal prevalence of the extended spectrum of 
axSpA among both males and females [37–39]. A long-term 
Swiss study observed a gradual and progressive increase over 
a 36-year period (from 1980 to 2016), ultimately resulting in 
an equalized ratio of axSpA between the sexes [40].

HLA‑B*27 Subtypes

Recent advances in molecular genotyping have unveiled a 
strikingly diverse landscape of the major histocompatibility 
complex (MHC) [41•, 42]. To address this diversity, an addi-
tional set of numbers has been introduced as suffixes to the 
assigned HLA names, with a preceding colon serving as a 
field separator. For instance, the most recent genetic variant 
of HLA-B*27 is named HLA-B*27:267 (https:// www. ebi. 
ac. uk/ ipd/ imgt/ hla). Many of them have further subvariants 
denoted by additional numbers after an additional colon. 
Among these, HLA-B*27:05:02 serves as the “parent” geno-
type from which other variants seem to have evolved through 
one or more nucleotide substitutions, altering the amino acid 
sequences of their encoded proteins [41•].

While many of these subtypes are exceptionally rare, dif-
ferences in disease associations exist, particularly among 
the more common variants that have been studied [42]. 
HLA-B*27:05, specifically HLA-B*27:05:02, is the most 
widely distributed and disease-associated subtype that has 
been extensively studied. Other prevalent disease-associ-
ated subtypes include HLA-B*27:02 (more prevalent in 

Mediterranean populations) and HLA-B*27:04 (more com-
mon in Chinese, South, and Southeast Asian populations) 
[42]. In European populations, HLA-B*27:05 and HLA-
B*27:02 confer nearly equal susceptibility to AS. However, 
in Chinese populations, HLA-B*27:04 exhibits a more 
robust association and poses a greater risk for AS compared 
to HLA-B*27:05 [42].

Two distinct subtypes of HLA-B*27, namely, HLA-
B*27:06 (common in Southeast Asia) and HLA-B*27:09 
(rare, primarily found on the Italian island of Sardinia), 
do not exhibit an association with classical AS [42, 43]. 
Intriguingly, HLA-B*27:06 differs from its closely related 
disease-predisposing subtype, HLA-B*27:04, by just two 
amino acid substitutions (His114 > Asp and Asp116 > Tyr), 
both located in the peptide-binding cleft [42, 43]. Similarly, 
HLA-B*27:09 distinguishes itself from its disease-predis-
posing counterpart, HLA-B*27:05, through a single amino 
acid substitution (Asp116 > His) in the peptide-binding cleft 
(as depicted in Fig. 2) [42, 43]. Thus, peptide binding seems 
to be the pivotal element in understanding the biology of 
HLA-B*27 and its role in the pathogenesis of AS [43–45].

It is conceivable that disease-predisposing HLA-B*27 
subtypes might induce pathogenicity through non-canonical 
mechanisms (as illustrated in Fig. 3) [46–48]. Both genetic 
and functional interactions can influence antigen presenta-
tion by altering the equilibrium between epitope generation 
and destruction. The accumulation of misfolded or unfolded 
free heavy chains, in conjunction with β2m and endoplasmic 
reticulum (ER) chaperones, can trigger intracellular stress, 
the unfolded protein response (UPR), and autophagy. This 
cascade results in HLA-B*27 pathogenicity through this 
non-canonical mechanism [46–48].

Additionally, HLA-B*27-free heavy chains have the 
capacity to form homodimers, both intracellularly and on the 
cell surface [47]. This can play a pathogenic role by binding 
to natural killer family receptors, including KIRs (killer Ig-
like receptors) expressed on both natural killer cells and T 
cells, as well as LILRs (leukocyte Ig-like receptors) found 
on monocytes, B lymphocytes, and dendritic cells, which are 
enriched for IL-17 production [47]. However, it is worth not-
ing that a subsequent study has challenged the role of HLA-
B*27 homodimers in AS and implicated other mechanisms, 
such as peptide binding and antigen presentation, as pivotal 
in disease pathogenesis [49].

Additional Disease‑Predisposing Genes

Researchers have long favored the involvement of HLA-
B*27 in disease pathogenesis [50–52]. In 1992, a sig-
nificant breakthrough occurred when a three-dimensional 
structure of HLA-B*27 was resolved at 2.1 A resolution, 
offering insights into the tight binding of peptide in its 

https://www.ebi.ac.uk/ipd/imgt/hla
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antigen-binding cleft [53]. Recent genome-wide associa-
tion studies (GWAS) have identified 116 single-nucleotide 
polymorphisms (SNPs) associated with an increased risk of 
AS [28, 55–57, 58•, 59, 60]. Only 28% of the total genetic 
risk is attributed to these SNPs, with just over 20% stem-
ming from the MHC, primarily the HLA-B*27 gene, and 
7.4% from non-MHC risk loci, including ERAP1, ERAP2, 
NPEPPS, IL23R, TNFRSF1A, TYK2, ILGR, IL27, IL12B, 
ANTXR2, PTGER4, KIF21B, STAT3, CARD9, and MEVF 
[54–57, 58•, 59, 60].

Interestingly, these non-MHC risk loci have a dispropor-
tionate impact on gene expression and epigenetic markers 
in the gastrointestinal tract [55, 56]. Genetic changes can 
alter protein production, while epigenetic changes control 
gene activation, effectively switching genes “on” and “off.” 
Ongoing research seeks to unveil how the interplay between 
genetic and epigenetic factors leads to immune-mediated 
events and the release of pro-inflammatory cytokines, con-
tributing to the disease [61, 62, 63••] ERAP1 and ERAP2 
play a significant role, often interacting with susceptibility 
to MHC class-I alleles in a phenomenon known as epistasis, 
thereby influencing the peptidome [64–68]. Notably, after 
HLA-B*27, ERAP1 emerges as the second most influential 

gene in increasing the risk of AS [54–57, 58•] Genetic poly-
morphisms in the ERAP genes can affect their enzymatic 
function in the ER, potentially resulting in the production of 
oligomeric peptides with low affinity for binding to disease-
associated HLA-B*27 subtypes (and HLA-B*40) within the 
ER-derived cytoplasmic vehicles, subsequently presented 
on the cell surface via the protein loading complex (PLC) 
mechanism [65–68]. ERAP1 and ERAP2 variants that cause 
loss of function or expression are associated with reduced 
disease risk.

ERAP’s role in infectious diseases has garnered signifi-
cant attention in recent research [69, 70]. A particularly 
noteworthy investigation delved into the genetic impact of 
the Yersinia pestis pandemic (plague or famously known 
as the “Black Death”), which struck in the mid-fourteenth 
century, claiming the lives of 30 to 50% of the population 
across Europe, the Middle East, and Asia [71]. This study 
identified 245 genetic variants that exhibited changes in 
frequency before and after the plague, focusing on Lon-
don, England’s inhabitants. ERAP2 stood out prominently 
in these changes. It featured two alleles, differing by a sin-
gle genetic letter, determining whether the gene produces 
a full-size or truncated peptide. Intriguingly, individuals 

Fig. 2  A schematic ribbon drawing of the three-dimensional struc-
ture of the antigen-binding cleft of HLA-B*27. Legend: the antigen-
binding cleft is made of a1 and a2 domains of the heavy chain that 
associates non-covalently with a light chain β2-microglobulin (not 
shown). A self- or foreign nonameric peptide (shown in light-blue 
color) is shown anchored (bound) in the antigen-binding cleft of the 
molecule. The view is from above, as seen from the viewpoint of a 
T-cell receptor. The letters N and C indicate the amino (N) and car-
boxy (C) terminal, respectively, of the bound peptide. The floor of the 
antigen-binding cleft is formed by the beta strands (broad arrows), 
while its margins are formed by alpha helices shown as helical rib-
bons. The top alpha helix and the four beta strands to the left are from 
the alpha-1 domain of the heavy chain, and the bottom alpha helix 
and the four beta strands to the right are from the alpha-2 domain. 
The disulfide bond is shown as two connecting spheres. Not marked 
are the six side pockets (assigned the letters A, B, C, D, E, and F) on 

the surface of the antigen-binding cleft. Pockets A and F are highly 
conserved deep pockets at the two terminals of the antigen-binding 
cleft. The residues that form the B pocket are marked by black arrow-
heads (at positions 7, 9, 24, 34, 45, 63, 67, and 99). The side chain of 
the second amino acid of the bound peptide anchors into pocket B. 
The non-disease-associated HLA-B*27:09 is distinguished from its 
closely related but disease-associated HLA-B*27:05 subtype by only 
one amino acid substitution at position 116. The other non-disease-
associated subtype HLA-B*27:06 is distinguished from its closely 
related but disease-associated HLA-B*27:04 subtype by amino acid 
substitutions at positions 114 and 116 that are located on the floor of 
the peptide binding groove within the F pocket.  (Adapted from Khan 
MA. Spondyloarthropathies: editorial overview. Curr Opin Rheuma-
tol 1994; 6:351–353.” and from “Khan MA. In: Hunder GG, ed. Atlas 
of Rheumatology. 2005:151–181″)
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inheriting two copies of the allele produced full-size pep-
tide were twice as likely to survive the plague compared 
to those with the allele produced truncated peptides. Fur-
thermore, within just three to four subsequent generations, 
a 10% increase in the protective allele’s frequency was 
observed in the London population [71]. It is intriguing 
to note that the selective advantages of ERAP2’s protec-
tive alleles in the past intersect with alleles now associ-
ated with increased susceptibility to autoimmune diseases, 
such as Crohn’s disease and AS. A subsequent report has 
pointed out that there is insufficient evidence for natureal 
selection associated with the Black Death [72]. However, 
it is worth mentioning that there are several ERAP2-
dependent cellular peptides with striking similarities to 
some from arthritogenic bacteria, including one HLA-
B*27:05 ligand fully conserved in a protein from Campy-
lobacter jejuni [73].

There are some additional MHC antigens, besides HLA-
B*27 and HLA-B*40 (a split of HLA-Bw60), that may also 
be operative in genetic predisposition to AS. They include 
HLA-A*2, HLA-A*29, HLA-B*38 and HLA-B*39 splits 
of HLA-B16, HLA-B*47, HLA-B*49, HLA-B*51, HLA-
B*52, HLA-C*15, HLA-DRB1*01:03, and HLA-DQB1*04 
[74–77]. On the other hand, HLA-B*07, HLA-B*57, HLA-
DRB1*15:01, HLA-DQB1*02:01, and HLA-DQB1*06:02 
show a negative association, suggesting that they may have 
some protective effect [74].

HLA‑B*27, Gut Microbiome, 
and Arthritogenic Peptide Hypothesis

HLA-B*27 in healthy subjects influences the composition 
of the gut microbiome because bacterial dysbiosis has been 
demonstrated in both healthy HLA-B*27( +) subjects and 
AS patients, as compared to controls [78], and is influ-
enced by both disease activity and HLA-B*27 status [79]. 
It has been proposed that alteration of the gut microbiome 
and intracellular microbial handling of putative arthrito-
genic organisms by HLA-B*27 can result in an aberrant 
or impaired immune response in conjunction with an up-
regulated production of pro-inflammatory cytokines [58•, 
78–82].

X-ray crystallography has shown that HLA-B*27:05 
binds pVIPR (a well-defined self-peptide from the vasoac-
tive intestinal peptide receptor type 1) in two distinct con-
formations, whereas non-disease-associated HLA-B*27:09 
presents the same peptide in only one of these two confor-
mations [83, 84]. Considering the subtle structural altera-
tions that impact peptide binding and presentation, it has 
been proposed that disease-predisposing HLA-B*27 sub-
types may present currently unidentified non-self-derived 
peptide(s) that could lead to the activation of CD8 + cyto-
toxic T-cell clonotypes, which, during thymus ontogenesis, 
were not eliminated (as depicted in Fig. 4) [43, 44]. The 
presence of these T cells could potentially play a role in 

Fig. 3  The interaction of genetic 
and epigenetic factors triggering 
innate and adaptive immunity 
resulting in the production of 
pro-inflammatory cytokines. 
Legend: accumulation of mis-
folded or unfolded free heavy 
chains along with β2m and ER 
chaperones can cause intracel-
lular stress, unfolded protein 
response (UPR), and autophagy. 
Moreover, the free heavy chains 
may reach the cell surface and 
they can then form dimers and 
multimers that are amenable to 
recognition by CD4 + T cells 
or by NK cells. These events 
promote release of various pro-
inflammatory cytokines. (This 
figure is used with permission 
from Carlo Perricone (Fatica M, 
D'Antonio A, Novelli L, Trig-
gianese P, Conigliaro P, Greco 
E, et al. How Has Molecular 
Biology Enhanced Our Under-
taking of axSpA and Its Man-
agement. Curr Rheumatol Rep. 
2023;25(1):12–33. 10.1007/
s11926-022–01092-4))
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the development of an autoimmune inflammatory process 
leading to AS in later life in HLA-B*27( +) individuals in 
the presence of other disease-predisposing genetic and epi-
genetic factors.

There is ample published evidence for the presence of 
clonally expanded CD8 + T lymphocytes in the blood and 
synovial fluid of AS patients but only in a small propor-
tion of healthy HLA B*27( +) subjects [58•, 85–89]. The 
T-cell receptor (TCR) expresses disease-associated β-chain 
variable region-complementary-determining region 3β 
(BV9–CDR3β) motif. However, there was no description 
of the corresponding TCRα chains. Yang et al. [90••] have 
used single-cell RNA sequencing to isolate orphan TCRs 
expressing the AS-associated BV9–CDR3β-TRBJ2.3 motif 
from the blood and synovial fluid in HLA-B*27( +) patients 
with AS and from the blood and eye (aqueous humor) of 
those with AAU. They showed that TCRβ chains consist-
ently paired with TRAV21( +) TCRα chains. Additionally, 
bulk TCR sequencing of these biosamples showed that when 
compared with blood, there was at least a tenfold enrichment 
of the disease-associated β-chain motif in synovial fluid or 
in ocular fluid. This suggests that T cells expressing the 

disease-associated TCRβ with TCRα pairing have under-
gone clonal expansion in the inflamed tissues.

Yang et al. [90••] then used single-cell sequencing of 
the TCRs of these clonally expanded CD8 + T cells and 
expressed them as recombinant TCRs to screen for poten-
tial HLA-B*27:05-restricted peptides that engage these 
disease-associated TCRs. They used HLA-B*27:05 yeast 
display peptide libraries to identify shared self-peptides and 
microbial peptides that engage the TCRs of these patients. 
Subsequently, they searched the human proteome as well as 
the proteomes from the five potentially arthritogenic bacteria 
(Chlamydia, Salmonella, Shigella, Yersinia, and Klebsiella 
species) to identify the proteins from which such peptides 
may have originated. By using these approaches, the inves-
tigators were able to narrow down to a very short list of 
human and microbial proteins from the millions of possi-
bilities. The structural analysis of these proteins revealed 
that a shared binding motif present in both self-antigens and 
microbial antigens engages the BV9–CDR3β TCRs. They 
also observed that these patients showed striking similari-
ties in the structure of their TCRs, including those of the 
eye-specific clonal expansion in an HLA-B*27( +) patient 

Fig. 4  Generation of autoreactive CD8 + T cells and their role in dis-
ease. Legend: considering the subtle structural alterations that impact 
peptide binding and presentation, it has been proposed that disease-
predisposing HLA-B*27 subtypes may present currently unidenti-
fied non-self-derived peptide(s). This presentation could lead to the 
activation of CD8 + cytotoxic T-cell clonotypes, which, during thy-
mus ontogenesis, were not eliminated. The presence of these T cells 

in early life could potentially play a role in the development of an 
autoimmune inflammatory process leading to AS in individuals born 
with HLA-B*27 and other disease-predisposing genetic factors in 
later life. TEC = thymus endothelial cells, APC = antigen-presenting 
cells. (From: Khan MA, Mathieu A, Sorrentino R, Akkoc N. The 
pathogenetic role of HLA-B27 and its subtypes. Autoimmun Rev. 
2007;6(3):183–9. 10.1016/j.autrev.2006.11.003)
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with isolated AAU without AS [90••]. These distinctive 
peptide-binding and presentation characteristics are a hall-
mark of the disease-associated HLA-B*27:05 subtype but 
are absent in HLA-B*27:09, a subtype not associated with 
the disease, differing by only a single amino acid. This dis-
covery represents a significant advancement in unraveling 
the 50-year-old puzzle of how HLA-B*27 contributes to the 
development of AS.

These recent findings strongly support that AS is driven 
by the presentation of antigenic peptides by HLA-B*27 to 
the adaptive immune system and that there may be multi-
ple microbial triggers with shared structural features, thus 
broadening the concept of the arthritogenic peptide. Like-
wise, several self-peptides might be involved in cross-reac-
tivity, some derived from the entheses or joints and others 
from the eye (iris or ciliary body). Possibility exists that this 
inflammatory response may later become independent of the 
initial trigger. Autoimmunity in AS patients could also be 
caused by neoantigens formed due to post-translational mod-
ifications of proteins that break immune tolerance, according 
to Zhai et al. [91•]. This break in tolerance to the self-pro-
teome appears to be critical for autoimmune response in AS, 
just as citrulline-modified peptides are a critical source of 
neoantigens in RA, another autoimmune disease [92]. These 
discoveries will accelerate efforts to identify the involved 
antigens, discover more effective targeted treatments, find 
better tools for very early diagnosis, and identify people who 
are at high risk and discover preventive measures for them.

HLA‑B*27 and Other Biomarkers as Aids 
to Diagnosis

Diagnosing AS in most patients often relies on a combina-
tion of clinical evaluation and imaging, although an unnec-
essary delay of several years is sometimes encountered, 
more so among women. The presence of HLA-B*27, in an 
appropriate clinical context, can enhance clinical suspicion 
for difficult-to-diagnose cases, such as early or atypical pres-
entations, juvenile onset, or undifferentiated forms of SpA 
[93]. However, it is important to note that HLA-B*27 is not 
a definitive confirmation of the disease and cannot serve as 
a standalone screening test. This is because AS can affect 
individuals without this genetic marker, and conversely, over 
95% of those who carry this gene in the general population 
remain unaffected by the condition. Moreover, the strength 
of disease association can differ among the various forms 
of SpA and depends on the racial/ethnic background of 
the patient [20–23, 29, 42]. For example, only about 50% 
of African American patients with classical (primary) AS 
unassociated with psoriasis or Crohn’s disease possess 
HLA-B*27 as compared to approximately 90% of patients 
of Scandinavian, Chinese, and Korean ancestry [20, 21, 

28, 42]. It is worth noting that the HLA-B*27 test, being a 
genetic marker, does not require additional repetition unless 
specific technical or laboratory discrepancies arise.

Ophthalmologists commonly request HLA-B*27 test for 
patients exhibiting anterior uveitis [94]. The Standardiza-
tion of Uveitis Nomenclature (SUN) Working Group has 
proposed classification criteria for SpA- and HLA-B*27-
associated anterior uveitis [95]. Key criteria include (1) 
episodes of acute or recurrent acute unilateral or alternating 
unilateral anterior uveitis in conjunction with either SpA or 
a positive HLA-B*27 test result or (2) persistent anterior 
uveitis characterized by a history of the classic course along 
with either SpA or HLA-B*27 or (3) anterior uveitis occur-
ring simultaneously with both SpA and HLA-B*27 [95].

Special emphasis should be placed on swift referral and 
early diagnosis [96]. Early-stage axSpA has recently been 
defined as a duration of ≤ 2 years with axial symptoms 
[97]. Numerous potential biomarkers have been explored 
to facilitate early diagnosis. Acute phase reactants, such as 
erythrocyte sedimentation rate (ESR) and C-reactive protein 
(CRP), may not be elevated in up to 50% axSpA patients 
with clinically active disease. Genetic and “omics” profil-
ing (transcriptomic, proteomic, and metabolomic technolo-
gies, as well as microbiome analysis) have been investigated 
for early diagnosis and to enhance the prediction of treat-
ment responses and long-term outcomes [98–106]. A recent 
development in the field is the introduction of an innovative 
in vitro diagnostic analytical technique known as electric 
field molecular fingerprinting (EMF), which can detect 
biomarker changes in blood samples and other bioliquids  
[107••, 108•]. This breakthrough will enable personalized 
molecular fractionation (“fingerprinting”) for the very early 
detection of the disease.

Polygenic Risk Score

Polygenic risk scores (PRSs) are indeed a valuable tool in 
precision medicine, as they consider the combined influence 
of multiple genetic risk variants in polygenic diseases like 
AS and related SpA [109, 110]. It can be an effective tool 
for precision medicine wherein an individual’s genetics is 
used as an aid to diagnose disease. Its usefulness, as with 
any diagnostic test, depends on the prior likelihood of the 
disease in an individual versus that in the general population.

In the case of diagnosing AS, PRS has shown prom-
ise. It has an impressive area under the curve (AUC) of 
0.924 in receiver operator characteristics (ROC) analy-
sis among Europeans. This outperforms individual tests 
such as HLA-B*27 (AUC = 0.885), MRI (AUC = 0.869), 
or CRP (AUC = 0.700) [110] (see Fig. 5). It is worth not-
ing that the performance of PRS can vary based on the 
ethnicity of the subjects. For instance, among people of 
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East Asian ethnicity, the AUC for PRS is even higher at 
0.948, compared to 0.901 for HLA-B*27 testing alone 
[110]. Validated optimal- and population-specific PRSs 
have the potential for broad-scale clinical use as they are 
well suited for AS, a disease with a high heritability and a 
relatively low prevalence.

PRSs hold significant promise to help in early diag-
nosis, enhance clinical certainty for difficult-to-diagnose 
cases, improve the current disease classification, explain 
differences in response to treatment, and help in identify-
ing AAU patients who may eventually develop AS [111, 
112]. PRS can also be used to explore the interaction 
between genetic and epigenetic factors, but the epigenetic 
characterization is more complicated because it is affected 
by non-heritable variables including age, sex, diet, medica-
tions, and smoking status [61–63••]. The recent advances 
in our understanding of the polygenic architecture of AS/
axSpA can lead to the development of precision medicine 
to personalize disease management and hopefully preven-
tion [113, 114•].

Lifetime Disease Risk

HLA-B*27 carries a markedly increased risk for AS, with 
more than 120 odds ratios, and it remains to this day the 
strongest genetic association with a polygenic disease [28, 
56, 57, 58•, 59, 60]. Individuals homozygous for the HLA-
B*27 gene have approximately double the lifetime risk 
for AS when compared to the heterozygous subjects [115, 
116]. However, homozygosity does not influence disease 
manifestations and functional disability of the patients 
[117].

Family studies of HLA-B*27( +) patients with AS 
have highlighted a markedly increased familial occur-
rence of the disease [118, 119••, 120•]. A prospective 
family study of Swiss AS probands and their FDR has 
reported that, after 35 years of follow-up, 27.1% of HLA-
B*27( +) developed axSpA versus 1.6% of HLA-B*27( 
−) FDR [119••, 120•]. Since all the FDR in the study 
were older than 45 years of age by the study conclusion 
(with a mean age of 58.4 years), it is improbable that fur-
ther disease occurrence will take place among this group. 
The study also confirmed that affected mothers were more 
likely to pass on the disease to their offspring compared to 
affected fathers [119••].

The occurrence of AAU among FDR was identified as a 
potential indicator for prompt screening for axSpA [120•]. 
In contrast, chronic inflammatory back pain (IBP) alone 
was found to be an unreliable predictor for the subsequent 
development of axSpA in these families [120•]. Instead, 
a more reliable predictor was the combined presence of 
chronic inflammatory pain or discomfort in three regions 
of the axial skeleton: the lumbar spine and gluteal region, 
the thoracic spine, and the anterior chest wall, which was 
a better predictor of disease occurrence. This is referred 
to as the “3-Region Index” that defines “chronic IBP in 
the axial (spinal) region” with a sensitivity of 83.1% and 
specificity of 87.2%, with a positive predictive value of 
6.4 [120•].

Concluding Remarks

Genetic and epigenetic factors, microbiome dysbiosis, 
and entheseal micro-damage influence disease induction 
and progression [28, 54–57, 58•, 59–62, 63••, 121–123, 
124•].  HLA-B*27-presented microbial peptides seem 
to act as a trigger for autoimmunity by activating CD8 
+ T cells that cross-react with self-peptides and result in 
AS [90••]. The prospect of targeting and eliminating the 
disease- causing T cells presents the potential for both 
curing affected individuals and preventing the onset of the 

Fig. 5  Polygenic risk score (PRS) has higher discriminatory capac-
ity for AS than HLA-B*27. Legend: the area under the curve (AUC) 
in receiver operator characteristics (ROC) analysis among Europeans 
is 0.924 is better than for the HLA-B*27 test alone (AUC = 0.869). 
It is also better than MRI alone (AUC = 0.885) and CRP alone 
(AUC = 0.700). *The AUC among East Asians, which is 0.948, is not 
shown. (This figure is modified and used with permission of Zhixiu 
Li (Reference. Li Z, Wu X, Leo PJ, et al. Polygenic Risk Scores have 
high diagnostic capacity in ankylosing spondylitis. Ann Rheum Dis. 
2021 Sep; 80(9):1168–1174. Correction: 2021 Nov; 80(11): e187)
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disease in individuals harboring high-risk genetic variants. 
Identificationof these exogenous and endogenous antigens 
could help to identify cellular biomarkers for early and 
improved diagnosis and discover more effective targeted 
treatments. Better serum biomarkers are being identified 
to facilitate disease diagnosis and monitoring [98–106].

The use of TNF inhibitors and other biologics and, 
most recently, the oral treatment with Janus kinase (JAK) 
inhibitors has improved treatment outcomes [125–130]. 
However, only up to 50% of patients achieve good 
response, and most of them require lifelong medication 
with consequent potential adverse effects. There is a need 
to strategize and individualize optimal treatment initiation 
at the earliest stage of the disease.

The search continues for novel therapeutic targets 
by searching for additional susceptibility genes to identify 
new drug targets [125]. The association of IL23R with AS 
was the first clear evidence that the IL-23/IL-17 pathway 
was involved in the disease, and it stimulated the studies 
that led  to the approval of the first IL-17 inhibitor—
secukinumab—for the treatment of AS and related forms 
of SpA [58•, 59, 60]. Thus, even a small contribution of 
a risk locus may have substantial functional importance 
and could help discover highly effective novel therapies. 
Therapeutic potential of mesenchymal stem cells is also 
being investigated [131, 132•]

The identification of enhanced biomarkers, coupled 
with the emergent application of electric field molecular 
“fingerprinting,” holds the potential to greatly enhance 
early diagnosis capabilities [98–106, 107••, 108•]. Avail-
ability of ultra-low-dose CT, MRI-based synthetic CT, and 
the use of artificial intelligence–based “deep learning” algo-
rithms are expected to facilitate early diagnosis by detect-
ing inflammatory and structural lesions in patients with sus-
pected sacroiliitis [133–136].

Despite the availability of a growing array of more effec-
tive therapies spanning over five decades, the HLAB* 27( 
+) patients with AS continue to experience a shortened lifes-
pan [137, 138••]. It is noteworthy to emphasize that the 
presence of the HLA-B*27 gene in the general population 
does not result in a reduction of overall lifespan [138••]. An 
insightful paper titled “Fifty years after the discovery of the 
association of HLA-B*27 with ankylosing spondylitis” has 
recently been published, offering valuable additional insights 
into this topic [139•].

A very recently published groundbreaking paper has 
demonstrated the remarkable effectiveness of targeted 
depletion of TRBV9+ T cell in an HLA-B*27 patients with 
AS. This pivotal advancement not only signifies a paradigm 
shift but also bolster the potiential for preventing the desease 
in individuals high-risk genetic varriants [140••]

In conclusion, I would like to share a fascinating insight 
from my ongoing prospective study, spanning four genera-
tions within my own family. This journey began with my 
paternal grandfather’s diagnosis of AS, and it has revealed 
that 9 family members have subsequently developed AS or 
the broader spectrum of SpA (a finding yet to be published). 
Remarkably, one of these individuals lacks the HLA-B*27 
gene. This count of affected family members may grow, as 
only four individuals in the fourth generation have crossed 
the age of 45 and can now consider themselves beyond 
the typical risk threshold. It is worth mentioning that in 
1973, my elder son was born, inheriting from me his HLA-
B*27 gene, just days before reports linking this gene to AS 
emerged. Coincidentally, in the same year, I embarked on 
my academic career as a rheumatologist. It is truly intriguing 
to reflect on how medical knowledge and personal experi-
ences have intersected throughout my academic journey.
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