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Abstract
Purpose of Review Ankylosing spondyloarthritis (AS) is a chronic inflammatory disease that involves the axial joints and
entheses. Extra-spinal manifestations such as anterior uveitis, psoriasis, and colitis also occur frequently. This review on the
pathogenesis of AS includes an update on the recent discoveries within the field.
Recent Findings HLA-B*27 is still considered of major importance in the pathogenesis, and it has recently been shown to
profoundly affect the gut microbiome and its metabolites and the handling of bacteria during infection. Biochemical and
biophysical properties of HLA-B*27 influence its ability to misfold, to induce an endoplasmic reticulum stress response, and
to promote autophagy/unfolded protein responses (UPR). HLA-B*27 free heavy chains may induce inflammation through T
cells, NK cells, and myeloid cells. Induction of UPR genes results in release of tumor necrosis factor-α (TNF-α), interleukin-17
(IL-17), IL-23, and interferon-γ and increase in T helper (Th) 17 cells. Several other HLA-B and non-B molecules have been
associated with AS, although their role in the pathogenesis is unknown.
Summary Genotypes of endoplasmic reticulum aminopeptidases (ERAP) 1 and 2 have been associated with alterations in the
antigenic pool expressed by HLA-B*27 molecules. In the gut, innate immune cells type 3 (ILC3) influence T cell expression of
IL-17 and IL-22. Gamma-delta (γ/δ) T cells are induced by IL-23 to produce IL-17. IL-7 induces mucosa-associated invariant T
(MAIT) cells to produce IL-17. Besides the microbiome, zonulin may be important through its effects on the permeability of tight
junctions in the intestinal epithelial barrier.
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Introduction

In recent years, several studies have given information on the
pathogenesis of ankylosing spondylitis (AS). Until the era of
modern genetics, information on pathogenesis was primarily
based on clinical studies of heredity, biopsy studies of joint
synovium and gut mucosa, and animal models of AS.
Simultaneously, the continuous achievements in genetics

and development of novel targeted biological therapies have
also added valuable information, even though the pathogene-
sis of AS is still not entirely recognized. The current review
comprises a summary of our current understanding of the
pathogenesis of AS, and it particularly focuses on advances
in the last 2–3 years.

Epidemiology of Ankylosing Spondylitis
and Its Relation to HLA-B*27

In the early 1970s, a strong connection between AS and the
human leukocyte antigen (HLA)-B*27 was reported, which is
also reflected in the worldwide occurrence of HLA-B*27 and
AS [1]. HLA-B*27 and AS are common in native populations
of Western Canada, Alaska, and Siberia (occurrence of HLA-
B*27, 40–50%; occurrence of AS, 6–10%) and in the northern
part of Scandinavia (15–25% and 1.1–1.8%, respectively). In
Western Europe, the prevalence of HLA-B*27 and AS is low-
er (4–13% and 0.23–0.55%, respectively), and it declines
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further from Middle East/North Africa (2–5% and 0.07–
0.14%, respectively) to Japan, where it is uncommon (1%
and 0.0065%, respectively) [1]. AS also has a strong heredity
background [2], which is not only connected to the presence
of HLA-B*27, e.g., first-degree relatives of HLA-B*27-posi-
tive AS patients had a 6–16 times higher relative risk of the
disease as compared with relatives of HLA-B*27-positive
healthy subjects (HS) in the general population [3, 4]. In twin
studies, the disease concordance of AS was higher in identical
twins (50–63%) than in fraternal twins (13–20%) [5–7]. More
than 160 subtypes of the HLA-B*27 allele have been discov-
ered [8], but besides a few common subtypes, many of the
individual subtypes are too rare to be investigated for disease
associations. Not all subtypes are equally distributed in world
populations, and thus, AS is relatively more often observed
with HLA-B*27:05 in Caucasians (the ancestral subtype),
HLA-B*27:02 in Mediterranean, HLA-B*27:03 in sub-
Sahara/Middle Eastern populations, HLA-B*27:04 in
Chinese and Asian populations, and HLA-B*27:07 in South
East Asian populations [9]. Moreover, AS has been associated
with HLA-B*27:08 and HLA-B*27:10, whereas HLA-
B*27:06 and HLA-B*27:09 appear to be “disease neutral”
or less strongly associated with AS [9].

The Pathobiology of HLA-B*27 Subtypes

The physiological function of major histocompatibility com-
plex (MHC) class I molecules is to present antigenic peptides
to T cell receptors (TCR) of cytotoxic T cells. The HLA-B*27
molecules associated with AS differ only at a few amino acid
residues as compared with HLA-B*27 molecules not associ-
ated with AS. Examples are HLA-B*27:04 and HLA-
B*27:06, which only vary in the amino acids at positions
114 (histidine to aspartate) and 116 (aspartate to tyrosine)
[10]. Additional examples are HLA-B*27:05 and HLA-
B*27:09; they differ in a single amino acid at position 116
(aspartate to histidine) [10]. These amino acid residues are all
located in the same area of the antigenic peptide-binding
groove (the F pocket), and the change in amino acid has the
potential to induce conformational changes in the pocket [11].
A recent study investigated the ability of HLA-B*27:05,
HLA-B*27:06, and HLA-B*27:09 to assemble, dimerize,
and interact with chaperones [12••]. The HLA-B*27:06 and
HLA-B*27:09 molecules assembled more rapidly (30–
90 min) as compared with HLA-B*27:05 (3.5 h) and demon-
strated a reduced tendency to dimerize. HLA-B*27:05 formed
endoplasmic reticulum (ER) resident heavy chain dimers and
misfolded HLA-B*27 molecules. HLA-B*27:06 were only
transiently bound to ERp57 and binding immunoglobulin pro-
tein (BiP), whereas the other two subtypes had more
prolonged binding with ERp57 and BiP [12••]. Thus, subtype

differences in HLA-B*27 clearly affect its biophysical
properties.

Hypotheses on the Pathophysiological Role
of HLA-B*27

Numerous hypotheses have been suggested regarding the role
of HLA-B*27 in the pathogenesis of AS. These are mainly
based on animal models of rodents. One of the major hypoth-
eses is the “the arthritogenic peptide” hypothesis [13], which
proposes that alterations in the HLA-B*27 amino acid se-
quence change the specificity for peptides derived from cer-
tain bacterial proteins. This could result in cross-reactivity
with peptides in the joints and/or entheses by induction of
CD8+ T cell–mediated immune cross-reactivity. In the “ER
stress model” [14], misfolded HLA-B*27 accumulates in the
ER, where it induces a stress response that leads to an unfold-
ed protein response (UPR) and autophagy [15]. In an animal
model of AS, upregulation of UPR genes induced an increase
in T helper (Th) 17 cells and in the proinflammatory cytokines
IL-17, IL-23, and IFN-γ [16]. In the “HLA-B*27 homodi-
mer” hypothesis [17], free heavy chains of B*27 form
homodimers (B*272), which have other biologic functions
not related to presentation of antigens such as abnormal inter-
action with killer cell immunoglobulin-like receptor 3DL2
(KIR3DL2) [18] and leucocyte immunoglobulin-like receptor
molecules (LILR) [19]. This may increase expression of IL-17
and IL-23 through activation of CD8+ T cells and NK cells
[20]. In the “mucosal immunodeficiency hypothesis” [21],
HLA-B*27 fails to present bacterial peptides, which causes
an increased invasion in the mucosa, which may lead to up-
regulation of the IL-23 pathway. Antoniou et al. [22••] inves-
tigated HLA-B*27:05 and UPR in relation to the life cycle of
Salmonella in infected epithelial cells. In HLA-B*27:05-pos-
itive cells, Salmonella had augmented replication, which was
not seen in HLA-B*35:01-positive cells. Salmonella activated
UPR and induced misfolding of HLA-B*27, which was asso-
ciated with the induction of an ER stress response, thereby
facilitating the infection [22••].

MHC Genes Beyond HLA-B*27

Other MHC genes beyond HLA-B*27 have been associated
with AS. Robinson et al. in 1989 first reported that HLA-
Bw60, now renamed HLA-B*60 (which is the same as
HLA-B*40:01), increases susceptibility to AS in HLA-
B*27-positive subjects [23]. A subsequent study has con-
firmed the epistasis between HLA-B*27 and HLA-B*60 in
Caucasian patients with AS [24]. In Han Chinese and African-
American patients with AS, an increased frequency of HLA-
B*40:01 (i.e., HLA-B*60) and decreased frequency of HLA-
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B*07 were observed [25••]. HLA-B*60 and HLA-B*61 have
been associated with AS in HLA-B*27-negative Taiwanese-
Chinese patients [26] and HLA-B*39 in HLA-B*27-negative
Japanese patients [27]. A large cohort of Caucasian AS pa-
tients and controls were genotyped for MHC markers [28].
Regardless of their HLA-B*27 status, an increased risk for
AS was observed for HLA-B*13, HLA-B*40, HLA-B*47,
and HLA-B*51 subjects, whereas HLA-B*07 and HLA-
B*57 decreased the risk for development of AS [28]. Non-
HLA-B genes associated with AS comprise HLA-A*02:01
and the HLA-DRB1*01:03 and HLA-DPB1 alleles [28].
There was an earlier report of disease association of HLA-
A2 (now renamed HLA-A*02:01) among HLA-B*27-posi-
tive patients with AS and acute anterior uveitis [29]. A recent
study of HLA alleles in a large group of Caucasian HLA-
B*27-negative AS patients and controls demonstrated that
AS was positively associated with HLA-A*29, HLA-B*38,
HLA-B*49, HLA-B*52, HLA-DRB1*11, and HLA-
DPB1*03:01 and negatively associated with HLA-B*07,
HLA-B*57, HLA-DRB1*15:01, HLA-DQB1*02:01, and
HLA-DQB1*06:02 [25••]. This suggests an independent role
of both MHC classes I and II alleles in predisposition to AS,
but their further role in the development of the disease is
currently not known.

The Pathobiology of HLA-B Molecules

The association of AS with HLA-B molecules is primarily via
the amino acid located at position 97, where the presence of
asparagine or threonine is related with AS, and the presence of
serine or valine is not [28]. The amino acid at position 97 is
also located in the peptide-binding groove, and recent muta-
genesis experiments have demonstrated that a substitution at
this position to threonine was associated with increased
amount of free heavy chains on the cell surface [30], whereas
presence of protective amino acid residues (serine or valine)
and amino acids not related to AS (arginine or tryptophan) in
position 97 did not alter the expression of free heavy chains.
The AS-protective HLA-B*07 allele was associated with low-
er levels of free heavy chains than the AS associated HLA-
B*27 or HLA-B*51, but when the amino acid at position 97 in
HLA-B*07 was changed (from serine to asparagine), this in-
creased the expression of free heavy chains [30]. Similarly, the
HLA-DRB alleles are associated with AS through a change in
amino acid residue at position 11 or 70, respectively, which
are also situated in the peptide-binding groove [28].

Non-MHC Genes

Over 100 genes have been associated with the development of
AS [31]. It has been estimated that 27.8% of the heritability of

AS is known: 20.4% is considered associated with HLA-B*27
and only 7.4%with non-HLA-B*27 genes [32]. The first non-
MHC genes clearly associated with AS were ERAP-1 (endo-
plasmic reticulum aminopeptidase 1) [33], ERAP-2, and
LNPEP (leucyl/cysteinyl aminopeptidase) [34]. Moreover,
genes associated with AS included the IL-23 pathway genes,
e.g., IL-23 receptor (IL-23R) [33], IL-12B, IL-6 receptor (IL-
6R), TYK2, IL-27 receptor (IL-27R), IL-1 receptor type 2 (IL-
1R2) [35], IL-1 receptor type 1 (IL-1R1), and STAT-3 [33].
Genes associated with CD8+ T cell differentiation, such as
RUNX3 (RUNX transcription factor 3), T-bet (T-box tran-
scription factor/TBX21), EOMES (Eomesodermin)/TBR2
(T-box brain protein 2), IL-7R, and ZMIZ1 (zinc finger
MIZ-type containing 1), have also been associated with AS
[35, 36]. Two polymorphisms of RUNX3 have been associat-
ed with AS in UK patients (rs4648889 and rs4265380) [37•]
and one in Korean patients (rs11249215) [38•], but RUNX3
alleles were not associated with AS in Han Chinese patients
[39•]. RUNX3 is a central transcriptional factor for differenti-
ation of innate lymphoid cells types 1 and 3 (ILC1 and ILC3)
[40•], and it is also required for induction of the RAR (trun-
cated retinoic acid receptor) and RORγt (related orphan nu-
clear receptor gamma t) transcriptional factors in ILC3 cells
[40•].

ERAP-1, ERAP-2, and NPEPPS (puromycin-sensitive
aminopeptidase) are also associated with AS. ERAP-1 trims
peptides to a length of 10–16 amino acids so that they can be
presented by MHC class I molecules [41]. ERAP-2 trims the
N-terminal of precursors of antigenic peptides before they are
bound to MHC class I molecules. Thus, aminopeptidases
cleave the peptides before their binding to HLA-B*27, and
such alterations in their function may change the pool of pep-
tides (i.e., the peptidome) for presentation by HLA-B*27 [42,
43••]. There are significant interactions between the ERAP-1
non-synonymous SNP rs30187 and several HLA class I al-
leles, such as HLA-B*27 and HLA-B*40 in AS [26], HLA-
Cw6 in psoriasis [44], and HLA-B*51 in Bechet’s disease
[45]. The ERAP-1 allele variant rs30187 is only associated
with AS in the presence of HLA-B*27 or HLA-B*40 [45].
When HLA-B*51 is present, the ERAP-1 allele variant
rs30187 is associated with an increased risk of Bechet’s dis-
ease. In the ERAP-1 molecule, the amino acid variant of
rs30187 is located at the enzymatically active site [46], which
may therefore alter its function. This SNP has been associated
with decreased trimming of peptides in vitro (a 40% reduc-
tion) [47]. The disease-associated ERAP-1 SNP rs10050860
has been shown to be functionally silent [47].

ERAP-1 and ERAP-2 Functional Aspects

In a large group of AS families, one ERAP-1 SNP (rs30187
[C]) out of a total of three investigated SNPs (rs27044 [C/G]
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and rs10050860 [C/T]) and a specific ERAP-1 and ERAP-2
haplotype (rs30187 [T] rs27044 [G] rs2549782 [T]) were sig-
nificantly associated with AS [48]. ERAP-1 polymorphism
has also been associated with differential expression of
HLA-B*27. In patients with the ERAP-1 SNP rs27044 minor
allele [G], HLA-B*27 expression was lower, whereas the SNP
rs30187 did not affect the expression of HLA-B*27 and of
HLA-B*27 free heavy chains [49]. The interaction between
ERAP-1 and HLA-B*27 was functional, since inhibition of
ERAP-1 resulted in changes in cells expressing HLA-
B*27:04 or HLA-B*27:05, but not in cells expressing HLA-
B*27:06 or HLA-B*27:09 [49]. The function of ERAP-2 was
also investigated in AS patients homozygous for the ERAP-2
G allele [GG] (SNP rs2248374), which results in a non-
functional ERAP-2 enzyme [50••]. Patients with the [GG]
genotype had higher concentrations of HLA-B*27 free heavy
chains on peripheral blood mononuclear cells as compared
with patients that expressed other ERAP-2 alleles [50••].
Suppression of ERAP-2 induced numerous UPR molecules,
e.g., BiP, C/EBP homologous protein (CHOP-10), and X-box
binding protein 1 (XBP1) [50••]. Polymorphisms in ERAP-1
(SNP rs30187 and rs10050860) were associated with reduced/
no peptide trimming activity and had significant impact on
transcript and protein expression of ERAP-1 and ERAP-2
[51••]. The ERAP-1 SNP rs30187 changed the expression of
the molecule, and SNP rs10050860 resulted in two other iso-
forms of the protein and a significant change in the concen-
tration of the active ERAP-1 molecule [51••]. Thus, different
alleles coding for ERAP-1 and ERAP-2 have a substantial
impact on the function of the enzyme and on expression of
different forms of HLA-B*27 on the cell surface and in this
way may impact the pathogenesis of AS.

Gut Inflammation

AS and IBD are often seen in the same families, and relatives
of AS patients develop IBD three times more often as com-
pared with persons that are unrelated [52]. Studies based on
endoscopy have revealed that up to 60% patients with
spondyloarthropathy (SpA) have inflammation in the caecum
and/or ileum [53] and up to 6% will develop IBD [52]. In
genetic studies of AS patients with IBD, 20 of 31 genes asso-
ciated with AS were also associated with IBD [54, 55, 56].
The most consistently associated genes are all related to the
IL-23 pathway (IL-12B, IL-23R, IL-27, TYK-2, and JAK-2).
Other genes are associated with other aspects of gut physiol-
ogy such as mucosal immunity, differentiation and activation
of gut lymphoid cells, and bacterial sensing. The hypothesis is
that defective gut mucosal immunity is central in the patho-
genesis of AS [54, 55, 56]. This hypothesis has been partly
confirmed by Ciccia et al. [57•], who observed increased ex-
pression of zonulin in AS patients with bacterial ileitis. The

patients also had an intestinal mucosal barrier and gut vascular
barrier that were damaged. The concentration of zonulin and
bacterial products in the blood was increased. Zonulin mod-
ifies tight junction permeability [58]. In vitro, zonulin can
induce expansion of c-MAF+ CD163+ M2 polarized macro-
phages from blood mononuclear cells of AS patients [57•].
The presence of CD163+ M2 monocytes that produce IL-23
has been observed in peripheral blood, inflamed gut, and sy-
novial tissues of AS patients [59, 60]. The HLA-B*27-trans-
genic rat, which is a model of SpA associated with IBD [61],
does not develop inflammation in the intestine and peripheral
joints if maintained in a germ-free environment [62]. This
supports the hypothesis that exposure to microorganism(s) is
important in the pathogenesis of AS.

Microbiome

The microbiome in axial SpA has been investigated in a few
studies, which were all based on analyses of 16S ribosomal
RNA. A study of biopsies from the terminal ileum of 9 AS
patients and 9 healthy subjects (HS) showed that the
microbiome in AS patients differed from HS [63]. AS patients
had greater abundance of Bacteroidaceae, Lachnospiraceae,
Porphyromonadaceae, Rikenellaceae, and Ruminococcaceae
and lower abundance of Prevotellaceae and Veillonellaceae.
HS had higher abundance ofActinomycetaceae,Gemellaceae,
and Streptococcaceae. Tito et al. compared ileal and colonic
biopsies of 27 SpA patients (14 with histologic bowel inflam-
mation) and 15HS [64]. They observed that SpA patients with
versus those without bowel inflammation differed significant-
ly in microbial composition. The amount of Dialister corre-
lated with clinical disease activity [64]. Breban et al. com-
pared the microbiome of 49 HLA-B*27-positive SpA pa-
tients, 17 rheumatoid arthritis (RA) patients, and 18 HS [65].
Compared with HS, SpA patients had more Lachnospiraceae,
and SpA and RA patients had less Prevotellaceae and
Paraprevotellaceae. When compared with 41 matched sib-
lings, SpA patients had a significantly different bacterial com-
position, which however did not differ between HLA-B*27-
positive versus HLA-B*27-negative siblings [65]. Finally,
SpA patients had lower variety in the microbiome than HS,
with the most notable change being a 2 to 3-fold increase in
Ruminococcus gnavus, which correlated with disease activity
[65].

HLA-B*27 and Dysbiosis

Rosenbaum et al. have studied the impact of HLA-B*27 on
the intestinal microbiome of HLA-B*27/human beta-2-
microglobulin-Tg rats and observed that the microbiome
was significantly altered as compared with littermate controls

Curr Rheumatol Rep (2019) 21: 5858 Page 4 of 10



[66]. Microbial and host metabolites in the gut were altered
early in life such as the amino acid, carbohydrate, medium-
chain fatty acid, and xenobiotic metabolites [67••]. This alter-
ation was preceded by an inflammatory cytokine signature of
Th17 and Th1 cells before development of dysbiosis and gut
inflammation [68]. A similar inflammatory signature was seen
in a study of three different HLA-B*27-transgenic rat strains
that developed gut inflammation [69]. Surprisingly, the
dysbiosis differed substantially between the rat strains, sug-
gesting that numerous microbes influence the abnormal im-
mune response, rather than a single or limited number of mi-
crobial genera [69]. In a recent study of HS, the presence of
HLA-B*27 and HLA-DRB*1 RA-risk alleles for AS and RA,
respectively, significantly influenced the composition of the
intestinal microbiome [70••], and the intestinal dysbiosis as-
sociated with AS and RA is therefore not exclusively related
to having the disease. Moreover, the microbiome on mucosal
biopsies of the ileum differed substantially from biopsies from
other parts of the gut and from the stools, and since patients
with AS particularly have gut inflammation in the ilium, fu-
ture studies in AS should ideally examine samples from the
ileum [70••].

Innate Lymphoid Cells

Currently, innate lymphoid cells (ILCs) are considered impor-
tant in the pathogenesis of AS. ILCs are divided into three
categories: group 1 ILCs (ILC1s) that all have T-Bet as a
transcriptional factor and produce Th1 cytokines such as
INF-γ and TNF, ILC2s produce Th2-associated cytokines,
and ILC3 is characterized by the transcriptional factor
RORγt [71]. RORγt is crucial for lymphoid tissue inducer
(LTi) cells [72]. In T cells, RORγt also has effects on the
expression of IL-17 and IL-22 [73]. The most common type
of ILC1 cells are NK cells, whose numbers are increased in
ileal biopsies from AS patients [74]. ILC3 cells producing IL-
17 and IL-22 are increased in the gut, peripheral blood, syno-
vial fluid and bonemarrow of AS patients [75], and in the skin
of patients with psoriasis [76]. The ILC3 cells are also present
in soft tissue and bone adjacent to human entheses, where they
express IL-23R and where stimulation with IL-23 results in
upregulation of IL-17 [77]. Finally, ILC3s also play a central
role in gut homeostasis and in experimental animal models of
IBD [78]. The number of ILC3s in the gut and peripheral
blood is reduced after initiation of TNF-α inhibition [79].

Gamma-Delta (γ/δ) T Cells

Gamma-delta (γ/δ) T cells are a population of CD3+ T cells
that express a T cell receptor (TCR) with γ and δ chains. In
patients with Crohn’s disease and in SpA patients with ileitis,

γ/δ T cells are abundant in the epithelium and mucosa [80].
Compared with HS, axial SpA and AS patients have an ele-
vated number of γ/δ T cells that produce IL-17 and express
IL-23R [81]. Kenna et al. have studied the relation between
IL-23R signaling and IL-17 [82] and observed that in patients
with AS, the number of γ/δ Tcells was increased 3-fold in the
peripheral blood as compared with HS, and 3–5 times asmany
γ/δ Tcells in the patients expressed IL-23R as compared with
HS. The frequency of γ/δ T cells producing IL-17 was 5-fold
higher in AS patients, where only γ/δ T cells with IL-23R
produced IL-17. Stimulation of γ/δ Tcells with IL-23 resulted
in a 6-fold induction of IL-17, and when anti-CD3/CD28 was
added, this resulted in a 9-fold induction of IL-17 and a small
amount of IFN-γ. In HS, INF-γwas induced 20-fold by Tcell
stimulation and a further 1.5-fold by IL-23 stimulation, where-
as IL-17 only increased 1.5-fold. CD4+ T cells and IL-17+
CD8+ cells were not elevated. CD4+ T cells, CD8+ T cells, T
reg cells, and NK receptor–positive T cells expressed IL-23R
to the same extent [82]. Thus, IL-23 stimulates γ/δ T cells via
the IL-23R to produce IL-17 in the peripheral blood of pa-
tients with AS but not in HS. Verken et al. recently discovered
a novel innate-like Tcell subset, RORγt+TbetloPLZF− invari-
ant NK T cells (iNKT), and demonstrated that these cells, as
well as γ/δ T cells, responded rapidly to stimulation with IL-
23 with cytokine signatures like that of Th17 cells [83].

Mucosa-Associated Invariant T Cells

In the lamina propria of the intestinal mucosa, there are also T
cells that express invariant forms of the TCR [84]. In humans,
the mucosa-associated invariant Tcells (MAITcells) express a
single TCR-α chain characterized by Vα7.2 and either Jα12,
20, or 33 and a restricted β chain repertoire characterized by
Vβ2, Vβ8, Vβ13, or Vβ22 [85]. These TCRs are activated
by cells expressingMHC class 1-like molecule (MR1) follow-
ing infection with bacteria, and this results in production of
cytokines and in cytolytic activity [84]. Five studies have in-
vestigated MAIT cells in patients with AS [86, 87, 88•, 89,
90]. In two studies, the amount of MAIT cells did not differ
between SpA patients and control groups [86, 89], whereas
other studies found lower proportion of MAIT cells in the
circulation of AS patients than HC [88•, 90]. Gracey et al.
studied the functional phenotype of MAIT cells in AS, HS,
and RA patients [88•]. Compared with HS, AS patients had a
significantly higher proportion of IL-17+ MAIT cells in the
blood, whereas the proportion of IFN-γ+ MAIT cells was
significantly lower while the proportion of TNF-α+ MAIT
cells were similar. Male patients with AS but not female pa-
tients with AS had increased frequency of IL-17+MAITcells.
In the synovial fluid of AS and RA patients, the frequency of
IFN-γ+ and TNF-α+MAITcells was similar, but AS patients
had a significantly lower frequency of IFN-γ+ and TNF-α+
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MAIT cells in synovial fluid than in blood [88•]. Stimulation
with IL-7, a cytokine involved in T cell activation and homeo-
stasis, induced IL-7R on MAIT cells in both AS patients and
HS. However, expression of IL-7R was significantly higher in
AS patients. Induction of IL-17 in MAIT cells in AS patients
was dependent on priming with IL-7 but not with IL-23.
Moreover, the IL-7R SNP rs11742270 associated with AS
did not change IL-7R expression or function [88•]. Toussirot
et al. examined the functional capacity of MAIT cells to in-
duce cytokines such as IL-17A, IL-22, and IFN-γ [90]. AS
patients, independent of gender, had higher frequency of IL-
17A+/IFN-γ− MAIT cells and IL-22+ MAIT cells, whereas
only female patients had IL-17A+/IFN-γ− MAIT cells [90].
There was no association between disease activity and fre-
quency of IL-17A+ or IL-22+ MAIT cells [90].

Interleukin-17

In AS patients, IL-17 is produced by cells from the innate
immune system, such as neutrophils [91], mast cells [91],
ILC3 [75, 91], γ/δ T cells, MAIT cells, Tc17 (CD8+ T cells
that produce IL-17) cells, and Th17 cells [87, 88•]. The rela-
tion between IL-17, ILC3, MAIT cells, and γ/δ T cells is
described in detail in the previous sections. Facet joint histo-
pathology showed that the proportion of cells secreting IL-17
was significantly higher in the subchondral bone marrow in
patients with AS compared with patients with osteoarthritis
[91]. IL-17 has complex effects on bone metabolism. It is well
established as a cytokine promoting enhanced activity of os-
teoclasts. In a murine model of collagen-induced arthritis
(CIA) [92] and a murine model of antigen-induced arthritis
(AIA) [93], IL-17 inhibition suppressed joint inflammation
and reduced bone erosion. But IL-17A may also protect
against generalized bone loss by inducing osteoblast genera-
tion from mesenchymal stem cells [94]. It suppresses adipo-
genesis and promotes osteoblast differentiation from mesen-
chymal stem cells but also inhibits bone regeneration in a rat
model of calvarial defect [95••, 96]. The impact of IL-17A on
differentiation of osteoblasts may depend on the stage of dif-
ferentiation of the cell as well as the duration of exposure.
Both prophylactic and therapeutic administrations of an anti-
body inhibiting IL-17A in HLA-B*27/hβ2m-transgenic rats
led to diminished inflammation and new bone formation, the
latter being clearer in peripheral versus axial joints [97••].
Thus, it is possible that inhibition of IL-17A could reduce
new bone formation in axial SpA.

Interleukin-23

IL-23 is a heterodimeric cytokine composed of the IL-12B
(IL-12p40) subunit that is shared with IL-12 and the IL-23A

(IL-23p19) subunit that is specific to IL-23 [98].
Macrophages and dendritic cells produce IL-23 [99], and
it is also secreted by the gut epithelium [100]. Studies
have shown that IL-23 is present in the terminal ileum
of AS patients with subclinical intestinal disease as com-
pared with HS [101]. IL-23 can activate, expand, and
maintain Th17 cells that express IL-17, and it can induce
the immune-regulatory cytokine IL-22 [102]. IL-23 also
regulates IL-17 and IL-22 expression in γ/δ T cells, NK
cells, mast cells, and innate lymphoid cells (ILCs) [103,
104]. Further, IL-23 stimulates inflammation in entheses
via a previously unidentified population of CD3+CD4−CD8−

entheseal resident lymphocytes [105]. Neutralization of the
IL-23p19 subunit resulted in reduced clinical disease activity
and downregulation of mediators and genes involved in
bone erosion, such as IL-6, IL-1b, matrix metalloprotein-
ases, and RANKL [105]. This novel animal model of
SpA also developed sacroiliitis, spondylitis, and aortic
root inflammation [105, 106]. However, targeting IL-23
has not been a successful strategy in humans with AS.
This may reflect the importance of IL-17A expressing
cells that are not dependent on regulation by IL-23, such
as gamma-delta T cells [107].

Conclusion and Perspectives

The expression of both TNF and IL-17 cytokines is pivotal
to the development of axial SpA/AS, and it is now clear
that immune cells of the innate and adaptive immune sys-
tems secrete these cytokines. Clinical trials in humans have
revealed that IL-23 is not essential to the perpetuation of
axial SpA/AS, implicating IL-17 expressing cells that are
regulated by different mechanisms. A conundrum is that
such cells may also be important for maintaining normal
gut mucosal permeability. Key issues that remain unclear
are the mechanism by which HLA-B*27 causes an inflam-
matory response, the role of IL-17 in bone remodeling, and
mechanism(s) linking inflammation to the development of
pathological new bone formation.
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