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Abstract
Purpose of Review Osteoarthritis (OA) is the most common form of joint disease globally and is associated with significant
morbidity and disability. Increasing evidence points to an important inflammatory component in the development and progres-
sion of OA. The precise pathways involved in OA inflammatory processes remain to be clarified. Basic calcium phosphate (BCP)
and calcium pyrophosphate dihydrate (CPP) crystals can induce inflammation and arthritis and recent studies point to a potential
pathogenic role in OA. In the light of this evidence, we explore the relationship and potential mechanistic pathways linking
calcium-containing crystals and OA.
Recent Findings CPP crystals induce inflammation through the NLRP3 inflammasome while BCP crystals mediate both NLRP3
dependent and independent effects. BCP crystals have been demonstrated to induce key mitogenic and inflammatory pathways
and contribute to cartilage degradation.
Summary Calcium-containing crystals induce key inflammatory pathways and may represent an attractive novel target in OA, a
condition devoid of effective treatments.
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Introduction

Osteoarthritis (OA) is the most common form of arthritis
worldwide [1]. The increase in prevalence with ageing and
with obesity means that it is an even greater problem in the
developed world [2]. Anticipated demographic changes sug-
gest that we will experience an exponential increase in the
current OA epidemic over the coming years [3]. OA is asso-
ciated with both significant morbidity and disability [4].
Previous concepts of OA as a purely degenerative process of
“wear-and-tear” are outdated and incorrect. Evidence from
laboratory, imaging, and synovial biopsy studies demonstrate
the importance of inflammatory processes in the OA joint
[5–8]. Basic calcium phosphate (BCP) and calcium

pyrophosphate dihydrate (CPP) crystals are commonly found
in the synovial fluid and tissue of joints affected by OA [9].
BCP crystals are the cause of the extremely destructive
Milwaukee shoulder syndrome, while CPP crystals are the
causative agent in acute and chronic CPP arthritis [10, 11].
The potential importance of these two types of calcium crys-
tals in the pathogenesis of OA remain to be fully elucidated. In
this article, we present a conceptual framework for the role of
BCP and CPP in OA, as well as discussing key relevant re-
search which is progressing our understanding in this area.

Osteoarthritis

Worldwide, OA is the most common form of joint pathology
[1]. The majority of individuals over the age of 55 have radio-
graphic evidence of OA; 67% of women and 55% of men
have radiographic evidence of hand OA alone [12]. The prev-
alence of symptomatic OA is considerably less than that of the
radiographic changes. One fifth of those with radiographic
hand OA have symptoms [12, 13]. Globally, symptomatic
radiographic OA at the knee affects 3.8% and at the hip
0.85% of the world’s population [1]. In addition, OA at other
sites contributes significantly to other common health
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conditions such as low back pain, which is the leading global
cause of years lived with disability [14]. When symptomatic,
OA presents with symptoms of joint pain and stiffness. This
can be sufficiently severe to lead to significant debility and
difficulties with living independently [15]. Ultimately, symp-
toms of OA can be sufficiently severe to necessitate joint
replacement surgery with all the attendant risk and costs
entailed in major surgery [16].

The traditional view of OA as joint degeneration as an
inevitable sequela of ageing is inaccurate. While joint biome-
chanics play a role, increasing evidence points to important
roles for other aetiological factors such as genetics, and par-
ticularly joint inflammation [5–8, 17]. Serum C-reactive pro-
tein (CRP) is associated with both the development and pro-
gression of OA [7, 18]. How much of this effect is explained
by the correlation between CRP and obesity remains uncertain
[18, 19]. Other pro-inflammatory cytokines such as
interleukin-6 (IL-6) and tumour necrosis factor alpha
(TNF-α) have also been associated with the rate of OA pro-
gression [20]. The presence of inflammation in OA joints has
been demonstrated by a number of different imaging modali-
ties including ultrasound and magnetic resonance imaging
(MRI) [21, 22]. MRI detected synovitis is a predictor of OA
progression [21]. Synovitis is also detectable on arthroscopic
biopsies from OA joints, and histological synovitis is a pre-
dictor of OA progression [5]. While there is increasing evi-
dence that low-grade inflammation is important in OA patho-
genesis, the pathways responsible for this inflammatory pro-
cess are less clear. Calcium crystals, both BCP and CPP, are
one proposed link between inflammation and OA.

Basic Calcium Phosphate Crystals

BCP is an umbrella term for a heterogeneous group of crys-
talline non-acidic calcium phosphates [23]. BCP is com-
posed predominantly of hydroxyapatite with lesser quanti-
ties of other substances including octacalcium phosphate,
tricalcium phosphate, and magnesium whitlockite [24].
BCP crystals are individually small, 20–100 nm in size, and
therefore not detectable by conventional or polarised light
microscopy which has a limit of resolution of approximately
1 μm [25]. BCP crystals have a tendency to clump when
present in large volumes, and these aggregates may be suffi-
ciently large to be visualised [25].Notwithstanding this, both
their small size and the inherent difficulties with visualisa-
tion mean that BCP crystals are frequently unidentified even
when present in synovial fluid. An overview of methods
utilised for the detection of BCP crystals, and their advan-
tages and limitations is shown in Table 1. At present, due to
their individual disadvantages and limited availability, none
of these methods can be used in routine clinical practice, and
there remains a need for a simple, reliable, and inexpensive
method for BCP crystal identification (Table 1).

Intra-articular BCP crystals were first identified in cases of
OA with inflammatory features and subsequently in the rap-
idly destructive form of OA known as the Milwaukee shoul-
der syndrome [10, 26]. Originally described as a dramatic
destructive shoulder arthropathy, this condition may also af-
fect other large joints [27]. Large quantities of BCP crystals
are identifiable in joint aspirates from the affected joint [10]. A
presumptive role for BCP in the pathogenesis of the

Table 1 Methods for the detection of BCP crystals

Method Advantages Limitations

Light microscopy Inexpensive, widely available Individual crystals too small to visualise

Polarised microscopy Inexpensive, widely available Individual crystals too small to visualise, crystals non-birefringent

Alizarin red S staining Inexpensive, widely available,
can identify crystal clumps

High false positive rate, non-specific for BCP (stains CPPD also).
Time-consuming dye preparation

Electron microscopy Can detect very small crystals, high resolution Expensive, limited availability and expertise. Difficult sample preparation

Atomic force microscopy Can detect very small crystals, high resolution Expensive, limited availability, and expertise, difficult to use on
liquid samples

Infrared spectroscopy Relatively inexpensive and available,
can be automated

Requires that crystals are isolated from biological material. Indirect
identification of crystals. Complicated statistical methodology
and validation

Raman spectroscopy Relatively inexpensive, unique signature of
crystal types

Interference from other biological material in samples

Calcium and phosphate
analysis

Available, relatively inexpensive, determines
crystal composition

Interference from other particulate matter, requires
ionisation of crystals, identifies non-crystal ions

X-ray diffraction Accurate and specific identification of
crystalline structure

Difficult sample preparation, expensive, specialised
equipment, and training

Radioassay Quantitative estimation of BCP Radioactive reagents, limited availability, expensive

Tetracycline staining Inexpensive, widely available equipment High false positive rate
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Milwaukee shoulder syndrome is suggested by this abun-
dance of crystals and by commonalities in clinical presenta-
tion with other forms of crystal arthropathy. BCP crystals are
also frequently identified in joints without any overt inflam-
matory disease; detailed examination has revealed their pres-
ence in 58% of OA synovial fluid samples and 100% of car-
tilage samples at the time of joint replacement for OA [28, 29].
Studies such as these demonstrating the ubiquity of BCP crys-
tals have led to considerable debate as to whether their pres-
ence represents a pathogenic mechanism or merely a second-
ary consequence of joint damage.

Calcium Pyrophosphate Dihydrate Crystals

The identification of CPP crystals, while still requiring signif-
icant expertise, is considerably less complicated than BCP
crystals. Expert and diligent use of polarised light microscopy
will correctly identify CPP crystals in the vast majority of
affected cases [30]. The nature of the pathogenic role of CPP
crystals has therefore been somewhat easier to define. CPP is
the most common cause of chondrocalcinosis and CPP crys-
tals were first identified in 1962 in knee synovial fluid from
patients with chondrocalcinosis and acute arthritis [31]. CPP
arthritis takes on a variety of clinical presentations from an
acute monoarthritis (pseudogout) to an inflammatory
polyarthritis (pseudo-rheumatoid) and a more chronic

degenerative arthropathy (pseudo-osteoarthritis) [11]. CPP
crystals are found considerably less frequently than BCP crys-
tals in OA but are identifiable in 20% of menisci at the time of
joint replacement [28]. Both types of calcium crystals are also
frequently found together in OA joints [28]. The intra-articular
injection of CPP crystals in animal models of OA accelerates
disease progression [32].

Mechanisms Linking Calcium Crystals and OA

Both BCP and CPP crystals are commonly detected in OA
joints and cartilage, are associated with the severity of OA,
and may become easier to detect as OA progresses [28, 29].
As a general rule, CPP crystals appear to be more overtly
inflammatory than BCP crystals, for example in acute CPP
arthritis [11]. However, BCP has the capacity to induce sig-
nificant inflammatory reactions such as those seen in the
Milwaukee shoulder syndrome and in calcific periarthritis
[33]. At the same time, both types of calcium crystals can be
apparently inert bystanders in and around the joint [34]. The
reasons behind this dichotomy remain to be fully clarified but
may involve other proteins and cytokines synergistically
interacting with the crystals. The pathways currently
hypothesised to link calcium crystals and osteoarthritis are
summarised in Fig. 1.

Fig. 1 Proposed pathways
linking calcium crystals and
osteoarthritis. Basic calcium
phosphate (BCP), calcium
pyrophosphate dihydrate (CPP),
interleukin-6 (IL-6), tumour
necrosis factor alpha (TNF-α),
matrix metalloproteinase (MMP),
prostaglandin E (PGE),
nucleotide-binding
oligomerisation domain-like
receptor protein 3 (NLRP3),
interleukin-1 beta (IL-1β)
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Translational research has demonstrated the ability of both
BCP and CPP crystals to induce inflammatory pathways in
resident articular cells. CPP crystals constitute a damage-
associated molecular pattern (DAMP), and are capable of ac-
tivating the NLRP3 inflammasome through Toll-like receptors
(TLRs), the same mechanistic pathway as occurs in gout [35,
36]. In contrast, BCP crystals have the ability to operate
through both NLRP3 dependent and independent pathways
[37, 38]. Pazar et al. reported the key role of the NLRP3
inflammasome in BCP-induced IL-1β secretion from mono-
cytes and macrophages in cell line and ex vivo models [37].

Intra-articular injection of BCP or CPP crystals has been
showntoresult insynovial inflammationwith infiltrationofmac-
rophages and the formation ofmultinucleated giant cells [27, 32,
38]. BCP crystals increase mitogenesis and the secretion of the
matrix metalloproteinases (MMP),MMP-1, andMMP-13 from
human fibroblasts [39, 40]. Cunningham et al. showed in a mu-
rine model that the exposure of macrophages to BCP crystals
leads to increased release of pro-inflammatory cytokines and
the damage-associated molecule, S100A8, through activation
of Syk and PI3 kinase [41]. These results were subsequently
confirmed in human macrophages and dendritic cells by Corr
et al. [42•]. BCP particles have also been shown to induce
TNF-α release throughTLR-4mediatedmechanisms in the con-
text of hydroxyapatite coated implants [43]. BCP crystals in-
crease PGE2 production through upregulation of COX-1 and
COX-2 in OA synovial fibroblasts [44, 45]. The co-incubation
of cultured cells with BCP and known pro-inflammatory cyto-
kines such as TNF-α and IL-1α has a synergistic effect onmito-
genic and inflammatory pathways [39].

Sun et al. demonstrated that meniscal cells from OA pa-
tients calcify more readily than normal meniscal cells, and
have a corresponding upregulation of many genes involved
in biomineralisation including ENPP1 and ANKH [46].
Chondrocytes were long considered an inactive bystander in
the pathogenesis of inflammatory joint disease; however, re-
cent experimental work suggests that they are an active par-
ticipant in inflammatory pathways within the joint. McCarthy
et al. showed that BCP crystals increaseMMP-13 at both gene
and protein level in chondrocytes [39]. BCP crystals increase
nitric oxide production, expression of inducible nitric oxide
synthase mRNA, and IL-1β mRNA expression [47]. BCP
crystals stimulate IL-6 secretion from chondrocytes and result
in proteoglycan loss in human cartilage explants [48••].
Interestingly, IL-6 has also been shown to stimulate BCP crys-
tal formation and chondrocyte mineralisation [48••]. The end-
stage of OA is characterised by loss of articular cartilage; the
mechanisms behind which are unclear. BCP crystals have
been shown to increase chondrocyte apoptosis and cartilage
degradation [38, 49]. The exact pathways involved remain to
be fully elucidated but BCP-induced fluctuations in intracel-
lular ionised calcium concentrations in chondrocytes have
been associated with cartilage matrix degradation [50].

Akeyfeatureofmanycrystalarthropathies includinggoutand
the Milwaukee shoulder syndrome is bone erosion and destruc-
tion. Bone erosion is also a prominent feature of some forms of
OA, particularly erosive handOA. In this context, BCPandCPP
crystals have both recently been shown to have stimulatory ef-
fects on osteoclasts. In an in vitromurine cell linemodel, Chang
et al. demonstrated that calcium-containing crystals enhance
RANKL/M-CSFmediated osteoclastogenesis and bone resorp-
tion through extracellular-signal-regulated kinase and p38 path-
ways [51•]. BCP crystals have also been demonstrated to inhibit
anti-osteoclastogenic cytokine signalling [52•].

Targeting Calcium Crystals in OA

The identification of the potential importance of calcium-
containing crystals in osteoarthritis progression has opened up
the considerationofnew therapeutic avenues inadiseasewhich
has suffered from a dearth of treatment options. Therapeutic
strategies targeting various inflammatory pathways have been
trialled in OAwith limited success. A 12-month study of intra-
articular administration of an autologous interleukin-1 receptor
antagonist suggested modest potential benefits in 167 patients
with symptomatic kneeOA in a double-blind randomised con-
trolled trial (RCT) [53]. In a subsequent study intra-articular IL-
1 blockade with anakinra was well tolerated but showed no
significant improvement in Western Ontario and McMaster
Universities Osteoarthritis Index (WOMAC) score in a 12-
weekdouble-blindRCTof170patientswith symptomatic knee
OA[54].This suggests that targeting the ability ofBCPcrystals
to induce inflammatory pathways through non-NLRP3 depen-
dent pathways may be of greater importance in addressing the
inflammatory component of OA [38••]. Phosphocitrate (PC) is
a compound which has attracted attention due to its potential
beneficial effects on pathologic calcification. PC is a naturally
occurring small molecule which inhibits the formation of
calcium-containing crystals without influencing basal calcium
levels [55]. In animal models of atherosclerosis PC effectively
inhibited the formation of calcium-containing crystalline struc-
tures without any evident toxic effects [56]. In addition to its
direct effects oncalcification,PChas alsobeen shown to inhibit
calciumcrystal-inducedmitogenesis,celldeath,and theexpres-
sion of MMPs and other genes important in OA pathogenesis
[57–61]. In a guinea pig model, PC was shown to inhibit
meniscal calcification and OA progression in a crystal-
induced OA model but not in a control traumatic OA model
[62]. The majority of animal studies to date have focused on
the intraperitoneal administration of PC as a means of system-
icallydelivering thedrug[57,62]. Intra-articularadministration
of PC should be feasible in humans and would have the added
theoretical benefits of increasing the PC concentration at the
target site while minimising adverse systemic events.
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Conclusion

In conclusion, the precise nature of the contribution of
calcium-containing crystals to the pathogenesis of OA re-
mains to be fully defined. Recent developments in clinical
and translational research evidence provide support for a role,
particularly for BCP crystals. The relative importance of crys-
tals in overall OA initiation and propagation requires further
investigation.
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