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Abstract
Purpose of Review There has been great interest in understanding why T regulatory cells (Tregs) are reduced in number and/or in
function in several autoimmune diseases including systemic lupus erythematosus (SLE). Although research has provided some
answers, there is still much to learn.
Recent Findings Recent investigations on the mechanisms responsible for the impairment of the Tregs in SLE have identified
relevant abnormalities in cellular and molecular pathways that have been instrumental in the design of studies in animal models
and in the development of pilot immunotherapeutic studies in lupus patients.
Summary We review the progress made in the field in the last 5 years, discussing the mechanistic studies, together with the
preclinical and clinical works that are moving forward the understanding of the physiopathology of Tregs in SLE.
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Introduction

T regulatory cells (Tregs) comprise different subpopulations
of T lymphocytes that contribute to the maintenance of pe-
ripheral immune self-tolerance by suppressing the activation/
expansion of effector cells, and their production of proinflam-
matorymediators.While acknowledging the existence ofmul-
tiple types of Tregs (Tables 1 and 2), this review will only
focus on CD4+ Tregs—the most studied type of Tregs.

General Considerations on Tregs

Tregs can suppress the activation, expansion, and differentia-
tion of multiple types of cells including CD4+ T helper cells,
CD8+ T cells, and B cells [1–4]. Tregs are schematically di-
vided into thymus-derived (tTregs) and induced (iTregs), the
latter differentiating in the periphery upon stimulation of naïve
T cell precursors in the presence of TGF-β [5]. Interestingly,
TGF-β is not only required for the induction of iTregs but is

also involved in the mechanisms of Tregs suppression of CD4+

T effector cells and B cell production of antibodies [6], either
through soluble TGF-β or via a direct contact with TGF-β on
the cell surface of the Tregs [7, 8]. Importantly, the generation
(but also the suppressive function) of tTregs and iTregs is high-
ly dependent on IL-2 [9], where phosphorylated STAT5 repre-
sents a key intermediate between IL-2 signaling and FoxP3
gene transcription [10]. Of interest, the signaling lymphocytic
activation molecule family 3 (SLAMF3) can improve sensitiv-
ity to IL-2 in SLE, since SLAMF3 costimulation promotes the
differentiation of functional Tregs from naïve CD4+ T cells and
increases lupus CD4+ T cell proliferation to IL-2 through acti-
vation of the IL-2/IL-2R/STAT5 pathway [11].

FOXP3 is the lineage-specific and most important tran-
scription factor in the maintenance of phenotype and sup-
pressive function of both tTregs and iTregs [12]. Yet hu-
man T cells, differently from mice, can transiently upreg-
ulate FoxP3 without necessarily acquiring a suppressive
function [13]. For this reason, bona fide human Tregs are
considered those Tregs that, in addition to FoxP3 and high
surface levels of CD25, present hypomethylation of a con-
served region within the FOXP3 gene called Treg-specific
demethylated region (TSDR). This allows a good separa-
tion because CpG residues in this region are fully
demethylated in Tregs but methylated in non-Tregs (both
in humans and in mice), and the demethylation of this
region associates with elevated and stable expression of
FOXP3 [14].
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Tregs and SLE

In murine SLE, the protective role of Tregs is supported by
data from adoptive transfer experiments in lupus-prone mice
in which the transfer of Tregs delayed disease progression,
reduced renal pathology, and improved the survival of the
mice [15]. Conversely, a reduction of Tregs following injec-
tion with depleting anti-CD25 antibody in young lupus-prone
mice resulted in an accelerated development of lupus mani-
festations [16].

For human SLE, the data are less direct and the reports on
numbers and function of Tregs have been at times contradic-
tory. Although most studies reported reduced numbers or im-
paired function of circulating Tregs in SLE patients, some
others found no apparent abnormalities and even increased
levels of Tregs in SLE as compared with healthy controls
[17]. These discrepancies may have arisen from differences
in the use of selected phenotypic markers for the identification
of the Tregs (an aspect that was frequent before the relative
consensus reached among investigators in recent years), in
addition to the protocol of isolation or stimulation of these
cells prior to staining. Notwithstanding the recent improve-
ments in characterization, there is still a lack of consensus

about the optimal combination of markers to identify human
Tregs unequivocally. Given that CD25 and FoxP3 can be
expressed by activated T cells [13], CD45RA expression has
been proposed as a marker to distinguish naïve and effector
CD4+ cells from memory T cells (memory T cells lose
CD45RA to become CD45RO+). Specifically, three pheno-
typically and functionally different subsets can be recognized
on the basis of the expression of CD45RA and FoxP3 [18].
The subsets CD45RA+FoxP3low resting Tregs (group I) and
CD45RA−FoxP3high activated Tregs (group II) exert suppres-
sive activities in vitro. CD45RA−FoxP3low T cells (group III)
are cytokine-producing, non-suppressive cells that probably
correspond to effector cells where FoxP3 expression had been
induced by cell activation. Based on this phenotypic charac-
terization, active SLE patients’ blood appear to display de-
creased in percentages of group II Tregs (activated Tregs),
increased group I Tregs (resting Tregs), and a significant in-
crease in percentages of group III cells (cytokine-secreting,
non-suppressive, effector-like cells) [17]. Of note, the increase
in circulating group I Tregs positively correlated with disease
activity and serum anti-DNA antibodies [19].

Another proposed phenotypic characterization of human
Tregs considers that the transcription factor Helios is

Table 1 Summary of main types
of Tregs and their activities Type Markers Activity

CD8+ Tregs CD8, CD25, FOXP3 Suppress CD4+ T cells

nTregs CD4, CD25, FOXP3 Suppress multiple types of effector cells

iTregs CD4, FOXP3 Similar to nTregs

Tr1 CD4, CD25 Produce IL-10

Th3 CD4, CD25 Produce TGF-β and IL-10

CD45RA+FOXP3lo Tregs CD4, CD45RA, FOXP3 Resting Tregs

CD45RA−FOXP3hi Tregs CD4, CD45RA, FOXP3 Activated Tregs

IL-17+FOXP3+ Tregs CD4, FOXP3, CCR6, RORγt Suppress CD4+ T cell proliferation,
produce IL-17

CD4+FOXP3+Helios+ Tregs CXCR3, CCR4 Migrate into inflamed tissue

CD4+CD25−LAG3+ Tregs LAG3 Produce TGF-β3

Follicular Tregs CD4, FOXP3, CXCR5, Bcl-6 Regulate humoral immune responses in
germinal centers

Effector Tregs CD15s, FOXP3, ICOS, GITR Produce IL-10

Table 2 Effects of molecules
related to Tregs function on
FOXP3 gene regulation

Pathway FOXP3 gene target

TCR/MHC-peptide CNS1, FOXP3 promoter

TGF-β/TGF-β receptor FOXP3 promoter

Retinoic acid (RA)/RAR receptor FOXP3 promoter?

Other cytokines/cytokine receptors (e.g., IL-2, IL-27) CNS2, CNS3

Note: Conserved non-coding DNA sequences (CNS)1, CNS2, and CNS3 at the FOXP3 locus represent a line of
regulation of Tregs stability. CNS1 contains binding sites for NF-ATand AP-1; CNS2 for the Runx1 core-binding
factorβ (CBF-β) complex. Binding of Rel to CNS3 is required to open the FOXP3 promoter/enhancer region for
expression of FOXP3

6 Page 2 of 7 Curr Rheumatol Rep (2018) 20: 6



preferentially expressed (as mRNA and protein) in Tregs as
compared with naïve T cells [20]. CD4+FoxP3+Helios+ Tregs
have an elevated suppressive potential and display the charac-
teristic of remaining fully demethylated at the TSDR [20, 21],
in addition to expressing CXCR3 and CCR4—which allow
them to migrate into inflamed tissues [22]. The finding that
high percentages of FoxP3+Helios+ cells have been found in
active SLE patients and that their numbers correlate with dis-
ease activity (despite a full functional suppressive capacity
and migratory potential into inflamed tissues) [22] suggests
that these functionally active Tregs may not be sufficient to
effectively suppress the inflammatory responses in SLE.

O t h e r t y p e s o f T r e g s w i t h t h e p h e n o t y p e
CD4+CD25−LAG3+ (LAG3+ Tregs) are regulated by Egr2, a
zinc-finger transcription factor required for the induction of T
cell anergy, and produce TGF-β3 in an Egr2- and Fas-
dependent manner [23]. This cytokine is required for their
suppression of lupus B cells, whose suppression requires
PD-1 expression on the B cell. The frequency of LAG3+

Tregs that suppress antibody production is reduced in SLE
patients [23].

More recently, a population of Tregs called follicular Tregs
(CD4+FoxP3+CXCR5+Bcl-6+)—which similarly to T follicu-
lar helper (Tfh) cells express CXCR5—has been shown to
regulate humoral immune responses in the germinal centers,
suppressing local B cell production of antibodies and thus
limiting the germinal center response [24–26]. Other studies
identified CD4+CD25low/-GITR+ cells as suppressive Tregs
that expand in about half of SLE patients—all with inactive
SLE—suggesting that these cells can contribute to the sup-
pression of ongoing disease [27].

Finally, the screening of human T cells with a panel of
monoclonal antibodies identified CD15s (sialyl Lewis x)
as expressed by activated, terminally differentiated, and
highly suppressive FOXP3high effector Tregs (eTregs),
rather than FoxP3+CD4+ T cells in general [28], providing
a new specificity in phenotyping of Tregs with a suppres-
sive function. In this context, it has to be noted that Tregs
in inflammatory settings adapt to the unfavorable sur-
roundings by increasing the expression of effector
markers such as inducible costimulator (ICOS) and
glucocorticoid-induced tumor necrosis factor receptor
(GITR), to become eTregs [29]. Those eTregs produce
IL-10, whose expression is coordinated by the interferon
regulatory factor 4 (IRF-4)/BLIMP-1 axis. IRF-4 is mod-
ulated by interactions with its partners DEF-6 and switch-
associated protein 70 (SWAP-70) and has a central role in
the functional program of lupus eTregs through a fine
tuning of the function and survival of eTregs via mecha-
nisms that include a modulation of the eTregs autophagy
[30]. This allows eTregs to adapt to the unfavorable pro-
inflammatory conditions of SLE, maintaining fitness and
functional suppressive capability.

Recent Studies on the Suppression by Tregs
in SLE

In addition to T cells [8], tTregs and iTregs can directly sup-
press activation and proliferation of B cells. While nTregs
suppress B cell responses through cytotoxic mechanisms that
involve the expression of granzymes and perforin [4], iTregs
appear to suppress B cells directly in a non-cytotoxic fashion
that depends on TGF-β signaling [31]. Tregs can also inhibit
production of autoantibodies in lupus mouse B cells by pro-
moting B cell anergy, both in vitro and in vivo [32]. This
phenomenon associates with a reduction in Ca++ flux in B
cells, and CTLA-4 blockade inhibits the effects of Tregs on
the anergic lupus B cells [32].

The suppressive capacity of Tregs also depends on pro-
grammed death-1 (PD-1) signaling, which induces resistance
to apoptosis and prolongs the survival and suppression of
Tregs in lupus mice [33]. Moreover, ex vivo-generated
iTregs suppress upon transfer a lupus-like chronic graft-
versus-host disease by preventing the expansion of immuno-
genic dendritic cells (DCs) and inducing tolerogenic DCs
through TGF-β-dependent mechanisms [34].

At a molecular level, the activity of calcium/calmodulin-
dependent protein kinase IV (CaMK4) is increased in lupus
patients’ T cells, where it reduces IL-2 production by promot-
ing the effects of the transcriptional repressor cAMP-
responsive element modulator-α (CREMα) on the IL-2 pro-
moter. T cells from MRL/lpr lupus mice had increased levels
of CaMK4, and the genetic deletion of Camk4 improved mice
survival by restoring IL-2 production, reducing T cell activa-
tion, and favoring Tregs activity and number. In SLE patients,
the silencing of CaMK4 in T cells increased the expression of
FoxP3 upon cell stimulation [35].

Tregs also require protein phosphatase 2A (PP2A) to main-
tain their suppressive capacity in vivo [36••]. PP2A is elevated
in patients with SLE, where it contributes to reduced produc-
tion of IL-2 and increased IL-17, decreased CD3ζ and in-
creased FcRγ expression on T cells, hypomethylated lupus-
related genes, and increased expression of CREMα. The de-
ficiency of PP2A specifically in Tregs resulted in a severe
lymphoproliferative and autoimmune disease with autoanti-
bodies and clinical similarities to the phenotype of scurfymice
secondary to the loss of restraint on the mTORC1 pathway. As
a result, mice with PP2A-deficient Tregs had a greater activa-
tion of both CD4+ and CD8+ T cells and produced larger
amounts of proinflammatory cytokines [36••, 37].

Some studies have also pointed to the contribution of the
adipokine leptin in the pathogenesis of SLE. Leptin increase
in SLE patients seems to correlate directly with disease activ-
ity and inversely with Tregs frequency [38]. In (NZB ×
NZW)F1 (BW) lupus mice, elevated leptin levels correlated
with disease manifestations, and the administration of leptin
accelerated development of autoantibodies and renal disease
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through mechanisms that involved an inhibition of Tregs [39].
Conversely, leptin antagonism delayed disease progression
and increased survival of severely nephritic mice [39]. Since
during fasting there is a reduction of the levels of circulating
leptin, fasting-induced hypoleptinemia in BW lupus mice in-
duced an expansion of functional regulatory T cells that was
reversed by leptin replacement, explaining in part the known
beneficial effects of fasting in SLE patients [40].

In any case, it must be taken into account that some-
times lupus Tregs might not have functional defects.
Their impaired responses could simply be secondary to
an acquired resistance of the lupus effector T cells to sup-
pression by Tregs [41].

Recent Progress in Understanding the Role
of Epigenetics in Lupus Tregs

Epigenetic modifications include stable, reversible chang-
es in gene expression that result from DNA or chromatin
modification or post-transcriptional mechanisms (not as-
sociated with changes in DNA coding sequences) that can
be passed through cell divisions to cell progenies for
multiple generations or indefinitely. Therefore, the failure
to maintain epigenetic homeostasis can result in altered
cell nuclear activity, changed transcriptome, or aberrant
gene expression. Epigenetic changes typically include
nucleic acid methylation and histone post-translational
modifications, in addition to a modulation of microRNA
(miRNA) expression [42]. Considering that epigenetic
modifications impart critical changes on cell development
and function, as well as direct pathogenic changes, they
have been object of multiple studies in SLE, e.g., how
miRNAs can act as post-transcriptional regulators of spe-
cific aspects of the disease process [43]. A miRNA pro-
file studying abnormal expression of circulating miRNAs
in SLE patients as compared with patients with rheuma-
toid arthritis (RA) and healthy controls identified miR-
126 as specifically enriched only in the blood of the
SLE patients and other miRNAs (miR-21, miR-451,
miR-223, and miR-16) as upregulated in both SLE and
RA patients. In contrast, miR-125a-3p, miR-155, and
miR-146a appeared to be reduced levels in SLE patients
[44]. While preliminary and in need of further analyses,
these findings may be of interest for a better understand-
ing of the immune regulation in SLE, also considering the
recent findings that miR-125a can stabilize both the com-
mitment and immunoregulatory capacity of Tregs [45•].
In this sense, in the bm12→ B6 cGVHD model of SLE,
the deficiency in miR-21 associated with a reduction in
autoantibody titers and splenomegaly and an expansion of
Tregs [46].

Recent Developments in Tregs-Based
Therapies in SLE

Efforts to correct the impairment of Tregs in SLE have been
undertaken in multiple experimental models and preclinical
settings [17]. Considering that Treg deficits in SLE patients
associate with IL-2 deficiency, attempts have been made for
the restoration of Tregs activity through IL-2 therapy. The
treatment of MRL/lpr lupus mice after onset of disease with
an IL-2-recombinant adeno-associated virus resulted in an ex-
pansion of Tregs and decreased IL-17-producing
CD3+CD4−CD8− double-negative (DN) T cells that associat-
ed with significantly reduced organ damage in the skin, lungs,
and kidneys [47]. In humans, the findings in vitro that low-
dose IL-2 stimulation resulted in an increase of CD25 and
anti-apoptotic Bcl-2 expression in lupus Tregs prompted a
small study in five patients with refractory SLE. After giving
those patients a low-dose IL-2 regimen consisting of daily
subcutaneous injections of 1.5 million IU of IL-2 on five con-
secutive days (in analogy to the in vitro studies), an increased
proliferation of Tregs was observed in all patients [48•]. A
larger study investigating the effects of low-dose IL-2 subcu-
taneous treatment on Tregs from patients with active SLE
consisted of three cycles of administration at a dose of 1 mil-
lion IU every other day for 2 weeks, followed by a 2-week
break in treatment [49•]. Over the course of rhIL-2 adminis-
tration, a significant increase in the relative number of Tregs
accompanied an improved function of these cells in ex vivo
suppression assays. This associated with reduced relative
number of Tfh cells, Th17 cells, and DN T cells. All 38 pa-
tients who completed therapy showed decreased disease ac-
tivity at the end of study, as compared to baseline disease
activity, without no serious adverse events, and lupus mani-
festations improved in most patients as compared to controls
that had been recruited subsequently [49•]. Thus, the expan-
sion of Tregs in patients with active SLE through low-dose IL-
2 associated with quantifiable clinical changes, although ran-
domized trials are required to validate the potential therapeutic
effects of this therapy.

SLE patients’ T cell dysfunction is also regulated through
mitochondrial transmembrane potential and mechanistic tar-
get of rapamycin (mTOR) by glutathione (GSH). In a random-
ized, double-blind, placebo-controlled study with the GSH
precursor N-acetylcysteine, the reduced activity of mTOR as-
sociated with an increased FoxP3 expression in Tregs and a
reduction of DN T cells and anti-DNA antibody production
[50]. Indeed, blockade of mTOR has therapeutic benefits in
SLE patients, where mTOR complex 1 (mTORC1) activity
was increased and rapamycin inhibited mTORC1 in Tregs,
promoting their expansion [51]. Thus, in SLE, mTORC1 ex-
pands DN T and Th17 cells, and contracts Tregs [51, 52].

To improve current therapies, and with the knowledge that
SLE patients taking oral prednisone display a modest increase
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in the proportion of circulating Tregs, a study in 17 SLE pa-
tients investigated the effects of intravenous high-dose meth-
ylprednisolone (MP) on Tregs. MP infusions associated with
active proliferation and expansion of eTregs in the first 3 days,
to decline to baseline values at day 8. Of interest, the absence
of flare after 1 year of follow-up was associated with a higher
frequency of eTregs at day 2, suggesting that this increase may
contribute to the preventive effect of MP on subsequent flares
in SLE [53].

Other authors suggested that Treg-based immunotherapy
could help maintain disease remission in SLE [54], and exper-
imental testing in mice employed new approaches to possibly
enhance Tregs activities. A77 1726, the active metabolite of
leflunomide, attenuated the manifestations of lupus nephritis
and increased the frequency of Tregs, possibly because of an
ability of this molecule to potentiate the conversion of naïve
conventional T cells into iTregs through the inhibition of Akt
[55], also suppressing the expansion of DN T cells and
inhibiting T and B cell activation.

In MRL/lpr lupus mice, treatment with the CaMK4 inhib-
itor KN-93 favored the generation of Tregs in vitro and
in vivo, and this was accompanied by a reduced accumulation
of inflammatory cells in tissue, together with decreased skin
and kidney damage [56].

Tregs could also be induced by histone-derived peptides in
inactive SLE patients, and in active SLE, Tregs induction by
the peptides was unmasked by dexamethasone or
hydroxychloroquine [57]. The histone peptide-induced Tregs
depended on TGFβ/ALK-5/pSmad 2/3 signaling and sup-
pressed type I IFN-related gene expression in SLE patients.
Regarding the IFN signature, mice with established SLE treat-
ed with the anti-DNA peptide hCDR1 downregulated IFN-α
gene expression significantly and had improved clinical man-
ifestations. In human SLE, hCDR1 reduced IFN-α gene ex-
pression in vitro and in vivo in patients treated for 24weeks by
weekly subcutaneous injections, with resulting decrease of
disease activity [58].

Conclusions

The last 5 years has seen significant progress in understanding
the role of Tregs in SLE. Many investigations on the mecha-
nisms that are responsible for the impairment of Tregs in SLE
have led to significant progress in defining new cellular and
molecular events that lead and/or sustain the dysfunction of
these cells in the disease. Improved phenotypic characteriza-
tion and unveiling of cellular mechanisms have resulted in
new approaches that are now translating into strategies of
restoration of the impaired Tregs function in SLE. There is
hope that the near future will see implementation of some of
these strategies into clinical settings.
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