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Abstract T regulatory cells (Tregs) represent a phenotypical-
ly and functionally heterogeneous group of lymphocytes that
exert immunosuppressive activities on effector immune re-
sponses. Tregs play a key role in maintaining immune toler-
ance and homeostasis through diverse mechanisms which in-
volve interactions with components of both the innate and
adaptive immune systems. As in many autoimmune diseases,
Tregs have been proposed to play a relevant role in the path-
ogenesis of systemic lupus erythematosus (SLE), an autoim-
mune disease characterized by a progressive breakdown of
tolerance to self-antigens and the presence of concomitant
hyperactive immune responses. Here, we review how Tregs
dysfunction in SLE has been manipulated experimentally and
preclinically in the attempt to restore, at last in part, the im-
mune disturbances in the disease.

Keywords Regulatory Tcells . Systemic lupus
erythematosus . Immunotherapy

Introduction

Systemic lupus erythematosus (SLE) is an autoimmune dis-
ease that associates with a progressive deterioration of the
mechanisms of immune tolerance. An impaired ability to dis-
criminate between foreign and self-antigens results in

autoimmune attacks in which both the innate and adaptive
arms of the immune system take part. The prevalent patholog-
ic manifestations of the disease result from aberrant produc-
tion of autoantibodies and the release of proinflammatory me-
diators that promote and/or exacerbate tissue damage.
Ultimately, these events can occur in multiple organs and
can cause a prolonged local inflammatory response that can
lead to compromised organ function.

Given that the severity and symptoms of SLE are often
heterogeneous among patients, the investigations on the mo-
lecular mechanisms of the disease pathogenesis have often
resulted in complex pictures that have included multiple com-
ponents. Among them, dysregulated numbers and/or function
of T regulatory cells (Tregs) have been reported by many
groups (reviewed in [1]), as well as impaired mechanisms of
Tregs activities on their target cells (Fig. 1).

Since the initial discovery of the Tregs, a dysregulation of
this cell subset has been identified in multiple autoimmune
diseases including type 1 diabetes, multiple sclerosis, inflam-
matory bowel disease, rheumatoid arthritis, and SLE [2].

The critical role of Tregs in immune homeostasis is best
exemplified by the syndrome named immune dysregulation,
polyendocrinopathy, enteropathy, X-linked (IPEX), a rare and
often fatal autoimmune disease caused by a loss-of-function
mutation in the FOXP3 gene (a transcription factor of the
forkhead box P family that is the master regulator for Tregs).
The degree of disease severity resulting from the mutation of
this single gene offers insights into how fundamental FOXP3
is in inducing immune tolerance [3].

Phenotypic Features of Tregs Tregs can be classified ac-
cording to their origin and then further divided according
to their phenotype and function. The broad categories
include tTregs (derived from the thymus), pTregs (in-
duced in the periphery), and iTregs (or in vitro-induced
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Tregs) [4]. However, there are no clear-cut phenotypic
markers that can distinguish one subset from another,
which is a problematic aspect for discerning effective-
ness of Tregs as suppressor cells (not last, for possible
use in immunotherapy). While it has been challenging to
find a phenotypic marker that can be unique to Tregs,
two main Treg markers have long remained important to
infer a rather reliable phenotype: the IL-2 receptor-α
(CD25) and FOXP3. However, these markers can also
be transiently expressed in activated T effector cells
(Teffs) [5] and may not be present in IL-10-producing
Tr1 Tregs [6].

Other molecules associated with Treg suppressive function
include CTLA-4, glucocorticoid-induced tumor necrosis fac-
tor receptor-related protein (GITR), LAG-3, OX40, CD73,
and CD39 but, again, these markers are also not exclusive to
Tregs [7]. While there have been several molecules purported
to be tTreg-specific, such as Helios in murine and human
tTregs and neuropilin-1 in murine tTregs, it has subsequently
been shown that these molecules may also be expressed on
Teffs [7]. A good marker for suppressor Tregs is GITR [8],
and another one for tTregs is the presence of the Treg-specific
demethylated region (TSDR) [9], which strongly correlates
with FOXP3 expression [10]. Nonetheless, the fact that
TSDR and FOXP3 are intracellular makes the sorting of live
Tregs using those markers problematic.

Given this scenario and the lack of markers exclusive
to Tregs, the most practical and common way to differen-
tiate Tregs generally uses a rather simplistic combination
o f marke r s—CD4+CD25+Foxp3+ fo r mice and
CD4+CD25highCD127-FoxP3+ for humans [5].

Physiopathology of Tregs in SLE

Data on Tregs in SLE have been at times controversial in
regard to the numbers and function of these cells in lupus
patients. Although most studies indicate a decreased frequen-
cy of Tregs in SLE [11, 12], with possibly greater decrease
during active disease [13], some studies have not confirmed
such correlations [14].

Assays evaluating Treg function in SLE patients vs.
healthy controls have also given varying results, although
most studies have reported a decreased suppressive function
of Tregs in SLE [15]. This has led to the complementary and
non-mutually exclusive possibility that a reduction in Treg
activity in SLE might in part also depend on the fact that
Teffs can acquire resistance to suppression by Tregs, at least
under certain circumstances [16]. In any case, the multifaceted
immune derangements in SLE seem to convincingly include
Tregs as major contributors to the pathologic events in the
disease.

Tregs Effects on Humoral Immunity

Scurfy (Sf) mice carry a missense mutation in Foxp3 [3] that
leads to the absence of tTregs and renders these mice incapa-
ble of producing iTregs. This indicates a requirement of Foxp3
for the generation and survival of Tregs [17]. Sf share features
with lupus phenotypes including lymphopenia, anemia, pneu-
monitis, arthritis, and nephritis, although their multiorgan in-
flammation also involves systems that are usually spared in
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SLE [17]. Notably, Sf mice have autoantibodies that are also
seen in SLE (anti-nuclear antibody (ANA), anti-Smith, and
anti-dsDNA) [17], suggesting that the absence of Tregs can
favor B cell dysfunction. This possibility has more directly
been demonstrated by studies that showed Treg-mediated sup-
pression of autoantibody-producing lupus B cells through
mechanisms including apoptosis of B cells and contact-
dependent cytotoxicity mechanisms mediated by perforin
and granzyme [18]. Those mechanisms could be complemen-
tary to the paracrine function of Tregs in the modulation of the
immune response that involves the release of the anti-
inflammatory cytokines TGF-β, IL-10, and IL-35 (e.g.,
TGF-β is essential to the peripheral induction of Tregs, and
its serum levels are decreased in lupus patients) [19].

Treg Effects on Cell-Mediated Immunity

Tregs from lupus patients also induce anergy in CD4+

Teffs that help lupus B cells to produce autoantibodies
[20]. CD8+ Tregs can also mediate apoptosis of CD4+

Teffs [21], and the frequency of these Foxp3-expressing
cells increases following tolerization protocols that pre-
vent the development of SLE manifestations [21]. CD8+

Tregs may facilitate induction of CD4+ Tregs in SLE
[22], and their frequency increases in renal tissue after
therapy with i.v. methylprednisolone [23] and in the pe-
ripheral blood after autologous HSCT [24].

Treg Effects on APCs

Antigen-presenting cells (APCs) mediate sensitization and ac-
tivation of Teffs and represent therefore important players in
immune regulation. Onemechanism bywhich Tregsmodulate
APC function is through CTLA-4, an inhibitory molecule
expressed on Tregs that can prevent the upregulation or down-
regulate the expression of CD80 and CD86 on dendritic cells
(DCs). CD80/CD86 can bind to CTLA-4 and serve as
costimulatory signals that are essential to the activation of
Teffs [25]. The importance of this pathway is highlighted by
the observation that genetic deficiency in CTLA-4 in mice
causes systemic autoinflammatory disease, and that CTLA-
4-deficient Tregs have reduced suppressive function both
in vivo and in vitro [26].

Additional mediators of APC-mediated regulation include
IL-10 and neuropilin-1. The latter is expressed on Foxp3+

cells and promotes long interactions with APCs that could
possibly give Tregs an advantage in competing for antigen
with Teffs, particularly under conditions of low antigen avail-
ability [2].

Effects of Proinflammatory Cytokines on Treg
Function

There is evidence that a proinflammatory cytokine milieu can
attenuate Treg function [27]. Serum levels of IL-6 are elevated
in SLE [28], and this cytokine renders Th17 cells more resis-
tant to the suppressive effects mediated by Tregs [29]. The
conversion of Tregs into Th17 in the presence of IL-6 is a
finding of particular interest, considering the abnormally in-
creased levels of IL-17 levels in lupus patients [30].
Interestingly, naturally and in vitro-induced Tregs respond to
IL-6 differently, since iTregs can resist conversion under de-
fined settings [29].

IFN-α i s ano the r p ro in f l ammato ry cy tok ine
hyperexpressed in SLE that reduces the tolerogenic effects
of Tregs on DCs and weakens Treg-suppressor activity [31].
Increased levels of TNF-α have also been associated by some
authors with an attenuated Treg-suppressive function as well
as a downregulation of Foxp3 [32, 33].

More recently, a Treg population operating in a proinflam-
matory environment has been described, the so-called effector
Tregs (eTregs). The broad, dichotomous classification of
Tregs into central Tregs (cTregs) and eTregs is based on lo-
calization and function. cTregs regulate T cell priming in sec-
ondary lymphoid tissue while eTregs, which express high
levels of molecules involved in cellular activation such as
ICOS, GITR, and CD69, typically home to non-lymphoid
tissue [34]. eTregs are also comparatively much more prolif-
erative and short-lived than cTregs are and express lower
levels of the antiapoptotic molecule Bcl-2 [35]. Additionally,
eTregs have the capacity to vary the scale of their effector
response in reaction to inflammation, using the transcription
factor IRF-4 to promote their own survival through the upreg-
ulation of autophagy genes [36•, 37].

Tregs and Teffs

Under normal circumstances, the balance between Tregs and
Teffs is finely regulated, and the plasticity of T cells allows
Teffs—or at least certain populations of them—to acquire
Treg functions, at least temporarily [38]. Investigations have
shown that the activation of self-antigen-specific CD4+ Teffs
results in an anergic response characterized by upregulation of
CD73 and FR4 in the presence of Tregs [39, 40]. These cells
can become precursors of pTregs lacking CD25 expression
and with TSDR hypomethylation profiles in genes related to
Treg function: Ctla4, Foxp3, Ikzf4, and Tnfrsf18 [40–42].

Also of note, cell metabolism seems to differ between Tregs
and Teffs. Comparative proteomic analyses of Teffs and Tregs
showed that both types of cells use predominantly glycolytic
pathways in vivo, with Tregs more metabolically active than
Teffs are at least under certain circumstances [43]. Of interest,
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metabolic intervention depressing FoxP3 expression reduced
Treg-suppressive function through a mammalian target of
rapamycin (mTOR)-dependent process [44]. Indeed, mTOR is
highly expressed in proliferating Tregs and is instrumental in
coupling TCR activation and IL-2 signaling for the suppressive
function of Tregs [45•]. In this sense, the balance between Tregs
and Teffs is highly influenced by the Teffs’ production of IL-2
required for Treg differentiation and survival [46]. This links
Teffs and Tregs in that a greater Teff activity results in increased
release of IL-2, which in turn promotes Treg activity. Thus, under
physiologic conditions, a rise in immunogenic activity of Teffs is
balanced by the activity of Tregs.

Tregs-Based Therapies in SLE

Most Treg-based therapeutic approaches build upon the pre-
mise that a reduced number and/or suppressive function of
Tregs can favor SLE pathology. Below, we summarize the
attempts designed thus far to increase the numbers and/or
function of Tregs in SLE (Table 1).

Adoptive Transfer of Ex Vivo-Expanded Tregs

Human Tregs expanded in vitro can display an enhanced im-
munoregulatory activity that has been observed when using
both autologous polyclonal and antigen-specific Tregs
[47,48]. The success of those experiments, as well as that of
adoptive transfers of Tregs in lupus mice [49], facilitated the
implementation of phase I and II clinical trials in other auto-
immune diseases. Adoptive transfers of Tregs in patients with
type 1 diabetes (T1D) and graft-versus-host disease (GVHD)
showcased the feasibility of generating therapeutic quantities
of sufficiently pure iTreg through polyclonal expansion. [50•,
51, 52, 53•]. Unfortunately, there was no evidence of clinical
improvement after adoptive Treg transfer in T1D, as measured
by C-peptide levels and HbA1C over a follow-up period of 1–

2 years [50•]. However, a small clinical trial using Tregs de-
rived from cord blood showed significant improvement in
patients with acute GVHD [53•]. These studies exposed a
critical aspect of adoptive Treg immunotherapy: the limited
survival of Tregs in vivo. Treg levels experience a dose-
independent dramatic decline by 14 days after treatment.
Despite the short life span of Tregs in vivo, up to 25 % of
the transferred Tregs survived for over 1 year after transplant
in some T1D patients [50•], leaving hope for future research.
However, for SLE, there are no available data at present on the
use of adoptively transferred iTregs in patients.

Hematopoietic and Mesenchymal Stem Cell
Transplant

Immune reconstitution through hematopoietic and/or mesen-
chymal stem cell transplant (HSCT and MSCT, respectively)
after chemotherapy has been a therapeutic option for patients
with severe autoimmune disease refractory to standard man-
agement. HSCT has been shown to be effective in inducing
long-term remission in SLE, and if disease returned, it tended
to be milder [54].

Mesenchymal stem cells (MSCs) have potent immunosup-
pressive function and do not require MHC restriction to oper-
ate, making them good therapeutic candidate agents [55].

MSCT/HSCTs have been successful in inducing remis-
sions in lupus patients refractory to treatment or with organ
damage [56]. The therapeutic benefits deriving from those
approaches seem to involve Treg modulation [24]. A clinical
trial employing autologous HSCT in 15 patients with refrac-
tory SLE found that the treatment increased the frequency of
CD4+CD25highFoxP3+ cells to levels comparable to those
seen in healthy patients [24]. It also induced a population of
CD8+FoxP3+ Treg that was absent in patients with active dis-
ease and that exerted powerful suppression through contact-
independent, TGF-β-mediated mechanisms that involved
antigen-specific and non-specific responses [24]. In contrast,

Table 1 Treg-based therapies in SLE

Therapy Mechanism Clinical trials
in SLE

Evidence of efficacy References

Adoptive Treg
transfer

Increased numbers of circulating Tregs No (but done
in GVHD)

Moderate [51, 54]

HSCT/MSCT Restored ratios of Tregs/Teffs Yes Low (small sample sizes,
inconsistent results)

[24, 55–60]

Low-dose IL-2 Enhanced survival and function of Tregs Yes Moderate [61–65]

Statins Increased Tregs numbers/function; suppressed
Th17 activity

Yes Low (small sample sizes) [72, 73]

Retinoids IFN-y, inhibition, antiproliferative effects Yes Low (small sample sizes,
inconsistent results)

[66–68]

Tolerogenic
peptides

Promoted CD4+ and CD8+ Treg activities/
numbers; tolerogenic effects on APCs

Yes Moderate (ongoing phase III
clinical trials)

[69, 70•, 71]
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a smaller trial of autologous HSCT in 12 patients with various
refractory autoimmune diseases (SLE, rheumatoid arthritis,
mixed connective tissue disease, systemic sclerosis) found
no changes in Tregs levels after transplant, although only three
SLE patients took part in that trial [57].

For MSCT in SLE, a 4-year follow-up on 87 patients
showed a 28 % remission rate at 12 months posttransplant
[58]. However, the effects of MSCT on Tregs were not
assessed. Instead, a case report of a refractory SLE patient
receiving autologous HSCT followed by MSCT did not show
a significant uptrend in Treg numbers but did demonstrate
persistently increased Tregs/Teffs ratios, peaking at 6 months
[59].

IL-2

As mentioned before, IL-2 has a crucial role in immune ho-
meostasis, promoting the differentiation and survival of Tregs
[60]. IL-2 levels are reduced in SLE, and administration of
low-dose IL-2 in SLE patients associated with disease im-
provement as manifested by reduced need for glucocorticoids,
normalized numbers of blood cells and platelets, and signifi-
cant reductions in SLEDAI score [61]. An expansion of
CD25highCD127low Tregs and a decrease in Teffs/Tregs ratios
were also observed [62, 63]. Also encouraging were the data
of low-dose IL-2 in GVHD, where significant increases in
numbers of CD4+CD25+FoxP3+ cells were observed [64].

Retinoids

Data from lupus mice and clinical studies suggest that all-
trans retinoic acid (atRA) can improve symptoms and lab-
oratory indices of SLE [65]. However, the benefits of this
therapy are inconsistent, and the small sample sizes used
in clinical studies does not allow conclusions on the use
of retinoids in SLE [66]. A combination of atRA and
prednisolone enhanced survival and improved proteinuria
in lupus mice as compared to prednisolone treatment alone
[65], and two lupus nephritis patients showed improve-
ment of urinary protein and anti-dsDNA titers after
6 month treatment with atRA [67].

Tolerogenic Peptides

Multiple tolerogenic peptides have been developed for possi-
ble therapeutic use in SLE. The concept behind this approach
is that a dysregulated immune system can modify a pre-
established response to a self-antigen through the induction
of tolerogenic responses to the same self-antigen. One require-
ment for a successful outcome using this approach requires the

maintenance of effective immune responses to unrelated ex-
ogenous antigens, i.e., lack of generalized immune suppres-
sion. The peptides hCDR1, pCons, P140, and nucleosomal
peptides H471-94 are based on amino acid sequences from
various self-antigens that are known to be targets of autoim-
mune attack in SLE. The tolerogenic activities of these pep-
tides are manifested by an expansion of Tregs and the sup-
pression of the production of proinflammatory cytokines and
effector immune cells [20].

Low-dose injections of nucleosomal histone-derived pep-
tide induced tolerance against this self-antigen, primarily via
splenic DCs which upregulated TGF-β expression and stim-
ulated the differentiation of antigen-specific CD4+ and CD8+

Tregs [68]. Other studies showed that the induction of CD8+

Tregs anticipated that of CD4+ Tregs [22].
Encouraging data inmouse models of SLE [20, 68, 69] also

led to clinical trials using two peptides, hCDR1and P140.
Edratide (hCDR1) underwent phase II clinical trials that did
not meet endpoints, while Lupuzor (P140) is undergoing a
phase III clinical trial after the phase IIb clinical trial indicated
efficacy of 3 month therapy, with an improvement rate of
84.2 % in peptide-treated patients vs. 45.8 % in the placebo
group [70•].

Statins

Increased numbers of Tregs have been linked to therapies
using statins, which are drugs used in the management of
atherosclerosis (and SLE is a known risk factor for atheroscle-
rosis). Statins have modulatory effects on Tregs and Th17
cells [71], and a trial on three patients with refractory lupus
found that 80 mg simvastatin o.d. for 8 days associated with a
significant improvement in proteinuria and downregulation of
the immune activationmarker CD69 [72]. Larger, mechanistic
studies are required to draw possible conclusions on the im-
pact of statins in SLE.

Effect of Common Lupus Therapies on Tregs

There are also studies investigating the effects of lupus thera-
pies on Tregs. High-dose methylprednisolone augmented
eTreg numbers, at least for the first 8 days after treatment
[73]. An increase in Tregs at day 2 associated with the absence
of acute disease for at least 1 year, suggesting that the body’s
capacity to generate Tregs after induction therapy in SLE may
be a key factor in maintaining immune homeostasis, as con-
firmed by the finding of significant increases in pTregs after
cyclophosphamide pulse therapy [74]. These observations al-
so raise the possibility of using Tregs for monitoring disease
activity in SLE, since changes in Treg numbers can reflect
changes of disease status.
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Interestingly, transient B cell depletion using anti-CD20
monoclonal antibody (rituximab) was found to enhance the
numbers and function of Tregs [75, 76] and FoxP3 expression
that persisted in patients with clinical remission [77].

Challenges in Using Tregs-Based Therapies for SLE

While preliminary data on the use of Treg-based immunother-
apies show promise and some potential in several autoimmune
diseases, for SLE, we have less information on the possibility
of whether beneficial effects can ensue from this approach.
This can be due to multiple factors. For example, Tregs types
include—in addition to CD25+FoxP3+ T cells—Tr1, Th3,
CD8+ and CD4+CD25lowCD127lowGITR+ Tregs, just to name
the best known subtypes [78], and one should evaluate which
subset(s) could have better potential in suppressing SLE
in vivo. Importantly, since SLE is a systemic disease in which
multiple self-antigens are targeted by the autoimmune pro-
cess, it may be more difficult to promote antigen-specific in-
hibitory responses resulting in beneficial clinical outcomes.
Additionally, it is not well known where Tregs distribute once
transferred and how they can preserve their phenotype and
regulatory function once exposed to the proinflammatory cy-
tokine environment in SLE. It is also not known how long
they can survive and maintain an immunosuppressive pheno-
type in vivo under the pressure of hyperactive immune re-
sponsiveness. To further complicate these aspects, tissue-
resident Tregs’ functions may associate with site-dependent
differences in the local immune response (see as an example
the eTregs).

This is in addition to considerations on practical aspects
such as optimization protocols to obtain sufficiently pure
Tregs in therapeutic quantities and in a cost-effective manner.
In all, these knowledge gaps and considerations have ham-
pered so far the implementation of therapeutic uses of Tregs
in SLE that have instead been faster for organ-specific auto-
immune disease.

Conclusions

Tregs utilize multiple mechanisms to maintain peripheral tol-
erance, including the suppression of multiple immune cell
types via cell contact-dependent and/or independent mecha-
nisms. Most studies have indicated quantitative and/or quali-
tative deficits in Tregs in SLE patients, yet the immunothera-
peutic use of Tregs in SLE is still at its beginnings, despite the
promise carried by successful preclinical studies in lupus
mice. Considerations should be made on whether adoptive
transfers of ex vivo-expanded Tregs could sort better out-
comes than protocols expanding iTregs in vivo, and which
approaches could favor Treg stability under unfavorable

inflammatory conditions. In any case, advantages that could
be envisioned from the use of Tregs in the immunotherapy of
SLE—most likely usable in combination with other thera-
pies—would be a lack of generalized immunosuppression as-
sociated with the current conventional therapies. Secondarily
to this, one might anticipate improved immune homeostasis
and lower risks of off-target effects.
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