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Abstract Mechanical loading is a potent anabolic regulator
of bone mass, and the first line of defense for bone loss is
weight-bearing exercise. Likewise, protected weight bearing
is the first prescribed physical therapy following orthopedic
reconstructive surgery. In both cases, enhancement of new
bone formation is the goal. Our understanding of the physical
cues, mechanisms of force sensation, and the subsequent cel-
lular response will help identify novel physical and therapeu-
tic treatments for age- and disuse-related bone loss, delayed-
and nonunion fractures, and significant bony defects. This
review highlights important new insights into the principles
and mechanisms governing mechanical adaptation of the skel-
eton during homeostasis and repair and ends with a summary
of clinical implications stemming from our current under-
standing of how bone adapts to biophysical force.
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Introduction

The skeleton is a multifunctional system involved in locomo-
tion, protection of internal organs, hematopoiesis, immunity,
endocrine status, and mineral homeostasis. Bone, though
seemingly an inert tissue, has the ability to change in size
and shape in response to mechanical cues [1, 2, 3•]. In fact,
mechanical signals are primary regulators of bone mass and
architecture, a phenomenon better known as Wolff ’s Law [4].
Mechanical signals likewise influence bone regeneration and
repair by activating pathways involved in cellular recruitment,
proliferation, osteogenic differentiation, and angiogenesis
[5–8]. Thus, homeostasis and repair can be considered adap-
tive processes in which mechanobiochemical signals are inte-
grated to generate mechanically optimized bone [9, 10].

Bone tissue is composed of hydroxyapatite (hard matrix),
type I collagen, bone cells, blood vessels, nerves, and extra-
cellular fluid, which permeates the hard matrix and lacuno-
canalicular space [11]. It is a living viscoelastic material with
organizational units at the macro-, micro-, and nano-length
scales. In adults, its organization, shape, and size are governed
by global and local stimuli to meet changing physical and
biochemical demands. These changes in size and shape are
accomplished by groups of cells located throughout the min-
eralized matrix and on bone surfaces.

Osteocytes, which are dispersed throughout the bony ma-
trix and connected by the lacuno-canalicular network, com-
municate with one another and with cells on the bone surface
by way of gap junctions and paracrine signaling [12]. The
periosteum, a sheath of fibrous tissue covering bone, contains
bipotent progenitors that can form both bone and cartilage [13,
14]. Likewise, the bone marrow (BM) is a rich source of self-
renewing, multipotent skeletal progenitors for bone, cartilage,
fat, and stroma [15]. Bone, the home of hematopoiesis, is a
highly vascularized tissue. The complex vessel network in
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bone and marrow is a conduit through which paracrine and
endocrine signals, as well as circulating cells, can access the
bone microenvironment [16, 17]. Osteoblasts, derived from
the mesenchymal lineage, and osteoclasts, derived from he-
matopoietic stem cells, are the workhorses of bone formation
and bone resorption, respectively.

How these Beffector^ cells and other Bsupporter^ cells
sense and respond to mechanical cues driving new bone for-
mation has been comprehensively reviewed in several previ-
ous papers [7, 8, 18–20]. With the advent of genetically
engineered mice and the use of advanced computational
methods, our understanding of the complex processes in-
volved in mechanical adaptation of bone has advanced signif-
icantly. This review highlights some of these important new
insights into the principles and mechanisms governing me-
chanical adaptation of the skeleton during homeostasis and
repair.

Bone Adapts to Mechanical Cues as Part of Its
Homeostatic Program

Principles of Mechanical Adaptation of Bone

Load-induced mechanical signals in bone, or the absence of
those signals (e.g., disuse), result in either new bone formation
or bone loss, respectively, with consequent changes in bone
mechanical properties. Principles that govern this adaptive
response have been formulated using data from in vitro and
in vivo experimentation and are reviewed in detail elsewhere
[18, 21, 22]. These principles are as follows: (1) Bone re-
sponds to dynamic, rather than static, loading; (2) bone re-
sponds only when strain magnitude or strain rate reaches dis-
tinct thresholds or mechanical set points—a paradigm first
coined by Frost as the mechanostat [23]; (3) the amount of
new bone formation correlates with strain magnitude and
rate—and thus in a site- (i.e., site along longitudinal axis of
bone) and envelope-specific manner (i.e., periosteal, endoste-
al, trabecular); (4) bone responds to short loading periods,
whereas longer loading periods have diminished returns; (5)
bone grows accustomed to routine mechanical signals; and (6)
bone is highly responsive to loading during the growth and
development phase, with effects maintained well into adult-
hood and old age [3•, 24, 25]. These principles guide devel-
opment of weight-bearing exercise protocols to minimize
bone loss in osteoporotic patients [26] and to enhance repair
in patients with fracture and large bone deficits [27–29].

Mechanical Signals Generated During Daily Activities

Deformation or strain at the tissue level on bone surfaces
during walking varies between 500 microstrain (με; 0.05 %)
and 2000 με (0.2 %) [30]. During vigorous activity, strains

can reach up to 10,000 με (1 %) [31]. Bone strain mediates
fluid flow within the hard matrix, lacuna-canalicular space
[32], and marrow [33], and is proposed to result in amplified
strain at the level of the cell due to fluid drag through glyco-
calyx proteoglycans and integrin attachments located along
the osteocyte processes [34, 35]. Using computational models,
the resulting flow-induced shear stress in the canalicular space
in bone has been estimated to be 0.5 to 2 Pa [34, 36]. Similarly,
estimated shear stress in themarrow near individual trabeculae
is 0.5 to 2 Pa [33, 37]. In some cases, shear stress may reach up
to 5 Pa when the marrow is modeled as a highly viscous
material [38]. Using bone explants, Verbruggen et al. [39,
40••] recently showed that application of uniaxial compressive
strains of up to 3000 με resulted in membrane strains in oste-
ocytes and osteoblasts of up to 30,000 and 25,000 με, respec-
tively, a 10× amplification. These estimated load-induced
strains at the tissue and cellular levels exceed the experimen-
tally determined anabolic strain threshold at the tissue level for
initiating new bone formation (>1050 με) [41] and activating
mechanoresponsive signaling pathways in bone cells (>10,
000 με) [42].

Anabolic Strain Threshold: Refinement
of the Mechanostat

The mechanostat theory predicts that bone formation and re-
sorption are each limited to specific strain ranges and that
there is a Blazy zone^ in which bone mass remains constant
[23, 43]. This theory further proposes that an age-related de-
cline in bone mechanoresponsiveness is a result of a shift in
the anabolic mechanical set point, that is, there is an increase
in the amount of strain required to elicit new bone formation
[43]. Seminal studies that demonstrate an anabolic strain
threshold [41, 44–46] compare bone formation rates to tissue
level strain (measured with uniaxial strain gauges) in young
adult rodent bones subjected to noninvasive mechanical load-
ing. Inherent limitations of these early studies are the averag-
ing of strain across a finite area (e.g., 0.38×0.51 mm gauge
area) and the variability in the strain measurement due to
operator-dependent gauge placement [47].

More recent in vivo studies incorporate finite element (FE)
models to more precisely estimate strain on complex bone
surface geometry and compare these data to bone formation
parameters. Sugiyama et al. [48] reported that cortical bone
formation rates in response to mechanical strain follow a con-
tinuous, linear response curve without an apparent lazy zone.
Using high-resolution microCT imaging and image registra-
tion, Schulte et al. [49] showed that regions of high local
mechanical strain coincide with trabecular bone formation
and regions of low local mechanical strain coincide with tra-
becular bone resorption with no apparent lazy zone. Impor-
tantly, mechanical stimulation enhances the mineralizing sur-
face (% of bone surface undergoing active bone formation) in
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cortical bone rather than increasing the rate at which new
matrix is deposited at a given location independent of age
[50]. The same group also showed that mechanical adaptation
occurred through short-term modeling events in which forma-
tion and resorption were decoupled [51•].

In a series of studies by Checa, Willie, and colleagues [52,
53••, 54], the effects of aging on tissue-level mechanical ad-
aptation in the mouse tibia were examined. Using novel image
registration techniques and FEmodels, Razi et al. [52] showed
that load-induced strain magnitudes at the cortical mid-
diaphysis were significantly reduced with aging (20 % lower
in adult versus young mice, 15 % lower in aged versus adult
mice) due to alterations of whole bone morphology. This shift
was also observed in trabecular bone. Next, they showed that
young, adult, and aged mice all exhibited new bone formation
and reduced resorption in response to loading [53••], which
corroborates previously published work showing that aged
bones can, in fact, respond to physical force [55–58]. Howev-
er, adult mice exhibited clear strain ranges in which formation
and resorption occurred, whereas the strain threshold in aged
mice was blurred rather than shifted, as proposed by the
mechanostat theory. That is, mechanical signals lost their
specificity to increase bone formation and reduce bone resorp-
tion, with formation and resorption occurring in similar strain
ranges. This preferentially puts aged bone at a disadvantage in
that increased amounts of high-load exercise (and strain) may
not significantly improve bone mass in the elderly long-term
[54].

Osteocytes as theMaster Regulator of Load-Induced Bone
(Re)Modeling

Osteocytes, the fully differentiated bone cells dispersed
throughout the bony matrix, play a critical role in bone
mechanoadaptation [12]. Osteocytes subjected to mechanical
stimulation respond rapidly by mobilizing a series of second
messengers, including calcium [59, 60], nitric oxide [61, 62],
and prostaglandins [63]; by activating kinase signaling cas-
cades, including the MAP kinase and PKC pathways [64];
and by exhibiting alterations in gene expression [65]. In addi-
tion, osteocytes respond to biophysical cues by releasing sol-
uble factors important for cellular proliferation and differenti-
ation and for recruitment of osteoblasts and osteoclasts
[66–70].

Leucht et al. showed that Cxcl12, the gene encoding the
chemotactic molecule stromal cell-derived factor-1 (SDF-1),
is upregulated in osteocytes and periosteal cells using in vivo
and in vitro mechanical loading models. Systemic inhibition
of CXCR4 (SDF-1 receptor) signaling attenuated in vivo load-
induced bone formation, suggesting that CXCL12 is an im-
portant paracrine regulator of osteoblast function. Using
in vitro techniques, Govey et al. [67] reported the altered ex-
pression of a variety of genes in osteocytes exposed to fluid

flow shear stress. The greatest increases were observed in
three chemokine genes (Cxcl1, 2, and 5) involved in chemo-
taxis and inflammation [71], suggesting that these factors may
also serve as important paracrine signals. Osteocytes also neg-
atively regulate osteoblast function through the basal expres-
sion of sclerostin, a known inhibitor of the pro-osteogenic
Wnt signaling pathway [72]. Robling et al. [68] and others
[73] have shown that in vivo mechanical loading suppresses
the expression of sclerostin in osteocytes, thereby removing
its inhibitory effect and permitting new bone formation to
proceed. More recent in vivo studies have been able to delin-
eate the osteocyte-specific factors that are important in me-
chanical adaptation by utilizing Cre-LoxP technology to
knock out genes in an osteocyte-specific manner. These fac-
tors include IGF-I [74],Wnt/β-catenin [75], and nuclear factor
erythroid 2-related factor (Nrf2) [76].

Mechanisms linking osteocyte damage and osteoclastic ac-
tivity have also been described. Kennedy et al. [69] showed
that in vivo fatigue-induced osteocyte apoptosis leads to in-
creased RANKL/OPG ratios in osteocytes adjacent to apopto-
tic cells. Dolan et al. [70] reported that thermally damaged
osteocytes in culture exhibit increased expression of pro-
osteogenic genes (decrease in RANKL/OPG, increase in
Cox2). Treatment of mesenchymal stem cells (MSCs) with
conditioned media from damaged cells leads to increased os-
teogenic differentiation. This link between osteocyte-
expressed paracrine factors in response to mechanical loading
and MSC recruitment and differentiation is the focus of new
and interesting ongoing work by various groups.

Load-Driven Differentiation of Multipotent Mesenchymal
Stem Cells

Applied mechanical stimuli and intracellular forces regulate
the differentiation of multipotent MSCs (reviewed in [19]).
Physical properties of the extracellular matrix also control cell
lineage specification [77] by regulating changes in cell shape,
density, and cell-cell contact [78]. Several signaling molecules
involved in load-driven differentiation include integrins [79],
cadherins [80], RhoA and ROCK [81], Wnt/β-catenin, and
Yes-associated protein (YAP)/transcriptional co-activator with
PDZ-bindingmotif (TAZ) [82], all of which regulate cytoskel-
etal dynamics. YAP/TAZ signaling localizes to the cell nucle-
us with increased matrix stiffness [82], and this translocation
is dependent on Rho activity and stress fibers, but not F-actin
polymerization, suggesting that force generation is required to
activate YAP/TAZ. Furthermore, the inhibition of YAP/TAZ
activity attenuates osteogenic differentiation and enhances
adipogenic differentiation on a stiff substrate. Recent studies
have shown that YAP/TAZ mediates pro-osteogenic Wnt sig-
naling [83, 84]. Wnt signaling results in accumulation of β-
catenin, YAP, and TAZ in the nucleus [83], thereby upregu-
lating β-catenin and YAP/TAZ target genes [85].
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The emerging paradigm is that osteocytes, the master reg-
ulators of re(modeling), regulate cellular recruitment and os-
teoblast function on bone surfaces and in the marrow. In re-
sponse to loading, osteocyte-osteocyte and paracrine signaling
[66, 67], via the release of soluble factors from osteocytes that
travel through the canalicular space to bone surfaces, are likely
key mechanisms in bone adaptation.

Bone Adapts to Mechanical Cues as Part of Its
Regenerative Program

Bone repair is acutely sensitive to the prevailing mechanical
environment [9, 10]. Compressive strain, tensile strain, hydro-
static pressure, shear strain, and fluid flow have all been im-
plicated as important mechanical stimuli regulating regenera-
tion and repair (reviewed in [86–88]), and there is a growing
body of quantitative work describing relationships between
mechanical factors, tissue formation, and tissue-specific dif-
ferentiation in bone healing.

In an early study, Bostrom and colleagues [89] used a
mouse tibial osteotomy model to investigate the load magni-
tude and the time post-fracture before initiation of loading
required for optimal healing. Compressive axial loading
(100 cycles/day, 1 Hz, 5 days/week for 2 weeks at 0.5, 1, or
2 N) was applied across the flexed knee and ankle using an
external loading device directly after fracture (0 day) or after a
4-day delay. They found that, of all combinations of load
magnitude and timing of load application, only a 0.5-N load

applied at 4 days post-fracture resulted in a stronger callus
relative to the nonloaded controls. Loading immediately after
fracture (0 day) inhibited callus formation regardless of load
magnitude; this may have been due to the disruption of early
vascularization, particularly if the tissue failure strain thresh-
old was exceeded. Callus strength and stiffness were reduced
in these groups compared to the nonloaded controls. Higher
loads applied after a 4-day delay also inhibited callus forma-
tion, which the authors also attributed to exceeding the tissue
strain threshold.

In a separate study, Morgan and colleagues [90] used a rat
femoral osteotomy model with external fixation to investigate
how mechanical stimuli may direct differentiation to the car-
tilage phenotype rather than to bone. They used a loading
protocol (cyclic bending, +35°/−25° at 1 Hz, 15 min/day for
5 consecutive days/week) beginning at 10 days post-surgery
and continuing for 1, 2, or 4 weeks. Cyclic bending enhanced
the cartilage formation and the expression of cartilage-related
genes, COL2A1 and COL10A1, and downregulated bone
morphogenetic genes (BMP)-4, BMP-6, and BMP-7.

Guldberg and colleagues [91] investigated the role of func-
tional loading across a 6.0-mm segmental defect in rat femora
that was fixed with either stiff or compliant plates. Compliant
plates allowed transfer of ambulatory loads to the defect at
4 weeks post-fracture. Compliant fixation resulted in in-
creased regenerate volume, which contains both bone and
cartilage, a greater relative amount of cartilage within the re-
generate, and decreased remodeling to lamellar bone com-
pared to stiff fixation. Torsional stiffness was almost 60 %

Table 1 Regulation of selected genes by mechanical loading in uninjured and injured bone. Bone-specific genes (BSP, COL1a1, BGLAP, SPP1) are
upregulated in response to loading in both uninjured and injured bone

Response to loading Reference

Uninjured Injured

α5β3 integrin Increase Unknown [5]

Bone morphogenetic protein-3 (BMP-3) No change Increase [90]

Bone morphogenetic protein-4 (BMP-4) Increase No change [6]

Bone morphogenetic protein-10 (BMP-10) Increase No change [6]

Bone sialoprotein (BSP) Increase Increase [6, 90]

Collagen type I (COL1a1) Increase Increase [7, 90]

Collagen type II (COL2a1) No change Increase [5, 90]

Collagen type X (COL10a1) No change Increase [5, 90]

CXCR4 Increase Unknown [66, 6]

Epidermal growth factor (EGF) Increase Unknown [5]

Fibronectin (FN) Increase Unknown [5]

Hif-1α Increase Unknown [5]

Osteocalcin (BGLAP) Increase Increase [6, 90]

Osteopontin (SPP1) Increase Increase [6, 90]

Sclerostin (SOST) Decrease Unknown [68, 6]

Tissue inhibitor of metalloproteinases (Timp1, Timp2) Increase Unknown [6]
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higher in the compliant-plate group, although failure torque
was not different between groups. The authors concluded that
the greater micromotion increased the amount and distribution
of bone formed. In addition, they found that functional load-
ing early in the healing process significantly inhibited vascular
invasion into the defect by 66 % and reduced bone formation
by 75 % compared to stiff-plate controls [92]. In contrast,
delaying the onset of loading by 4 weeks significantly en-
hanced bone formation by 20 % and stimulated vascular re-
modeling, that is, loading resulted in larger vessels.

Unsurprisingly, some of the same bone-specific genes are
upregulated in uninjured and injured bone in response to me-
chanical loading (Table 1). The effects of loading on other
mechanosensitive genes in injured bone are currently under
investigation. Ongoing studies are beginning to elucidate the
effects of mechanical stimulation on different phases of repair,
and there are current efforts to combine models of mechani-
cally driven repair with genetically altered mice to delineate
the roles of specific genes in the complex repair environment.

Clinical Implications

Family medicine doctors and orthopedic surgeons alike utilize
the concept of mechanoadaptation in their daily clinical prac-
tice. While the family practitioner will prescribe an exercise
program to prevent osteopenia or osteoporosis, the orthopedic
surgeon will advise the post-operative patient to perform
weight-bearing activity on the involved extremity in an effort
to enhance bone healing. Both scenarios employ activities that
result in high bone strains, while maintaining them below the
damage threshold. For the osteoporotic patient, these exercises
will focus on weight training, jumping, and plyometrics, with
a special emphasis on the skeletal elements that are most se-
verely affected by osteoporotic fragility fractures, such as the
wrist, the proximal humerus, and the hip [26]. On the other
hand, exercises serve a different purpose for the post-operative
fracture patients. In this case, exercises to maintain bone mass
are only of secondary importance, while the pro-osteogenic
effect of mechanical loading is the primary reason for early
weight bearing [28, 93]. Recent implant designs have taken
this stimulatory effect into account and now allow for imme-
diate weight bearing after surgical fracture fixation. This de-
velopment resulted in changes in post-operative care for many
fractures, resulting in decreased complications associated with
immobility. Ultimately, however, clinical experience and
patient-specific factors, such as comorbidities and compliance
issues, will determine how much weight and how early this
weight is applied to the injured extremity.

The recent understanding and knowledge of the effects of
mechanical stress on bone homeostasis has resulted in a change
in orthopedic implant material [94, 95]. While stiff, load-
bearing implants are known to result in significant stress

shielding, which is most commonly seen in the bone around a
total hip replacement and which can result in prosthetic loos-
ening and fracture [95], newer implant designs andmetal alloys
have resulted in reduced incidence of this inadvertent bone loss.

Conclusions

Mechanical loading in the form of functional weight bearing
and exercise is the first line of defense for mitigating age-
related bone loss and enhancing fracture repair. Seminal stud-
ies in the field provided the basis for the principles of bone
adaptation. Early in vivo studies used mouse bone loading
models and periosteal strain gauging to establish a relationship
between strain and new bone formation. More recent studies
have utilized FE models and high-resolution image registra-
tion techniques to more accurately predict load-induced strain
and to quantify new bone formation in a site-specific manner.
These studies are helping to refine the mechanostat theory and
the concept of the anabolic strain threshold, particularly in the
context of aging in which the responses to loading become
increasingly variable. In addition, signaling pathways critical
for bonemechanoadaptation in the context of homeostasis and
repair continue to be clarified using in vivo systems.
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