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Abstract Osteoarthritis (OA) is a major chronic disease of
the joints, affecting mostly the articular cartilage but also all
the surrounding tissues including the subchondral bone,
synovium, meniscus, tendons, and ligaments. Despite the
availability in the clinic of a variety of therapeutic approaches,
there is crucial need for improved treatment to protect and
regenerate the cartilage with full integrity and function. In this
regard, combining gene, cell, and tissue engineering-based
procedures is an attractive concept for novel, effective therapy
against AO, a slow, progressive, and irreversible disease.
Here, we provide an overview of the treatment available for
management of the progression of the OA phenotype and
discuss current progress and remaining challenges for poten-
tial future treatment of patients.
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Introduction

Osteoarthritis (OA) is a highly prevalent, critical cause of
physical disability without a definitive cure. On onset OA is
mainly characterized by gradual loss of articular cartilage
because of impaired anabolic and/or catabolic balance; the
disease then further affects all other joint tissues (subchondral
bone, synovial membrane, capsule, menisci, tendons, ligaments

and periarticular muscles) [1, 2]. For patients who are too
young to undergo joint replacement or for individuals at earlier
stages of OA, in particular, there is a significant need to develop
novel therapy to protect the cartilage, inhibiting further loss or
even re-establishing its structural integrity. Such approaches as
structure and/or disease-modifying drugs have not yet been
successful, leaving joint arthroplasty as unmatched therapy
for restoration of function and alleviation of pain. A better
understanding of the factors and mechanisms leading to OA
has enabled significant advances in the design of novel treat-
ment for OA that has been tested in preclinical models. OA is a
highly complex, multifactorial disease with a substantial genet-
ic background [1, 3]. OA may be also caused by secondary
issues, for example axial malalignment, loss of meniscal tissue,
or repetitive stress injury. Pathological loading is another crit-
ical factor in OA [1, 4], because the response of cells in the joint
to mechanical signals is impaired during OA. Obesity and
production of adipokines also alter cartilage homeostasis in
the joint and lead to OA [4]. OA is also strongly linked to
aging processes, including mitochondrial dysfunction and
changes in signaling pathways [5, 6]. Epigenetic events con-
trolling a large group of disease-related genes have also been
reported to be critically important in OA [7]. On the basis of this
new knowledge, strategies using gene therapy and tissue engi-
neering have become very attractive for developing treatments
that could enable durable restoration of such joint tissues as
cartilage when OA becomes irreversible (Fig. 1).

Strategies Used to Treat OA

Target Cells

Although articular chondrocytes are the primary targets of
viral gene transfer approaches to treatment of OA, other cells
relevant to the pathogenesis of OA may be genetically mod-
ified to target different cellular processes or specific tissue
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types (Table 1). The many cell types present in subchondral
bone are important targets for correcting the disrupted physi-
ological relationship between the bone and the articular carti-
lage [2]. Pathological subchondral bone changes in OA that
must be addressed include, for example, increased bone for-
mation and turnover, changes in its microstructure, and the
formation of osteophytes [2].

Target Pathways

Reproduction of the native, structural, and functional cartilage
may be achieved by targeting different levels in the affected
cells via:

1. inhibition of inflammatory and catabolic pathways that
lead to joint surface degeneration;

2. stimulation of anabolic pathways for restoration of
the damaged cartilage by promoting the production

of essential components of the extracellular matrix
(ECM);

3. activation of cell proliferation and survival, while
preventing apoptosis and aging, to revitalize the resident
cells in cartilage in the early stages of OA disease, or in
the setting of transplantation;

4. prevention of endochondral ossification processes in-
volved in osteophyte formation, vascular invasion of the
cartilage at the subchondral bone junction, and cartilage
calcification;

5. modulation of OA-related epigenetic events that control
OA disease-related gene expression and post-translational
modifications;

6. modification of the multiple genetic, or hereditary, com-
ponents of OA; and

7. combination of strategies that by themselves do not en-
able complete reproduction of the original chondrocyte
phenotype and cartilage structure.

Fig. 1 Principles of gene
engineering, cell engineering, and
tissue engineering-based
approaches for treatment of OA
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Choice of a Gene Transfer Vector

Avariety of viral vectors are available to achieve this objective,
each of which has advantages and limitations because of the
biology of the viruses from which they are derived (Table 2).

Adenoviral Vectors

Adenoviral vectors enable very high transduction efficiencies
and levels of transgene expression in vitro (more than 80 %
and close to 100%) [8–41], but serious concerns remain about
their safety because of immunogenicity in vivo and short-term
efficacy (1 to 2 weeks maximum), which are critical issues in
the context of a slow, progressive disease such as OA.

Retroviral Vectors

These vectors can become integrated into the host genome,
enabling long-term maintenance of the transgenes delivered.

However, integration may lead to insertional mutagenesis and
activation of tumorigenic genes. Furthermore, retroviral vec-
tors can only transduce dividing cells and at relatively low
efficacy (<20 % before cell selection) [12–14, 24, 28, 42–44,
45•, 46–52], making them unsuitable for targeting adult
chondrocytes with low proliferative activity.

Lentiviral Vectors

Lentiviral vectors are good alternatives, because they can
become integrated into the genome of nondividing cells, and
have higher levels of transduction (at least 70%) [53•, 54, 55•,
56], although concerns remain about their potential for inser-
tional mutagenesis.

Recombinant Adeno-Associated Virus (rAAV) Vectors

rAAVare derived from a nonpathogenic, replication-defective
human parvovirus and are much less immunogenic than ade-
noviruses. Stable, episomal rAAV transgenes are expressed
with high efficiency (>65%) in dividing and nondividing cells
for extended periods of time (at least 150 days in situ) and can
access the cells via dense ECM [33, 57–87]. The use of self-
complementary AAV (scAAV) has enabled, at least in part,
circumvention of the step-limiting conversion of single-
stranded into double-stranded DNA [64, 66, 67, 69, 70, 86].
Trans-splicing systems have also been used successfully to
improve the size capacity of the vectors [88]. For these various
reasons, rAAV has become the vector of choice for clinical
applications.

Use of Biocompatible Materials

The advantage of using a biomaterial to treat joint disorders is
that it enables spatially and temporarily controlled delivery
and expression of the candidate therapeutic gene to the sites of
injury. Interestingly, despite the availability of many biocom-
patible materials in research on this topic, relatively few have
been used for treatment of OA as opposed to focal articular

Table 1 Target cells relevant to the pathogenesis of OA for potential
genetic modification

Cells Objective of the modification

Articular chondrocytes Repopulate the affected cartilage surface;
increase ECM biosynthesis

Osteocytes Reconstruct the subchondral bone

Osteoclasts Inhibit OA bone resorption

Periosteal cells Inhibit osteophyte formation at joint margins

MSCs Enhance potential (cartilage and/or bone)
for chondrogenesis and/or osteogenesis

iPSCs Enhance potential (cartilage and/or bone)
for chondrogenesis and/or osteogenesis

ESCs Enhance potential (cartilage and/or bone)
for chondrogenesis and/or osteogenesis

Meniscal cells Inhibit OA effects on meniscal cells

Ligament cells Inhibit OA effects on ligament cells

Tenocytes Inhibit OA effects on tenocytes

Muscle cells Inhibit OA effects on muscle cells

MSCs, mesenchymal stem cells; iPSCs, inducible pluripotent stem cells;
ESCs, embryonic stem cells.

Table 2 Overview of currently used viral gene transfer vectors for OA

Class Advantages Limitations Integration

Adenovirus • Very high efficiency • Potential replication competence
• Toxicity
• Immunogenicity
• Short-term transgene expression

No

Retrovirus or lentivirus • High efficiency
• Long-term transgene expression

• Potential replication competence
• Risk of insertional mutagenesis

Yes

Recombinant adeno-associated virus • Very high efficiency
• Long-term transgene expression
• Low immunogenicity

• Difficult to produce
• Size limitation
• Potential serotype-restricted cell specificity

Mostly episomal

Curr Rheumatol Rep (2014) 16:449 Page 3 of 9, 449



cartilage defects. They mostly include collagen gels [89, 90]
and hyaluronic acid [91].

Evidence in Vitro

Whereas most of the vectors mentioned above have been used
successfully to transduce most, if not all, of the cells relevant
to the pathogenesis of OA in experimental systems in vitro,
thus far, only rAAV vectors are capable of modifying the cells
in situ when they are located in their natural ECM environ-
ment. Table 3 gives an overview of the combined strategies
currently used in vitro.

Inhibition of Inflammatory and Catabolic Pathways

Many studies focusing on limiting or blocking cartilage loss
have been performed in vitro or in vivo, using viral vectors to
drive expression of inhibitors of matrix-degrading enzymes
and of inflammatory pathways (IL-1Ra, sIL-1R, IL-1-specific
shRNA, sTNFR, TIMPs, IκBα, NF-κBp65-specific siRNA,
kallistatin, thrombospondin-1, pro-opiomelanocortin, Dkk-1,
ADAMTS-5-specific siRNA, heme oxygenase-1) [8, 11, 17,
19, 20, 35, 49, 52, 54, 55•, 66, 69, 71, 77, 79, 80, 86]. Their
effects may be enhanced by using a three-dimensionally wo-
ven, porous, biomimetic poly(ε-caprolactone) (PCL) scaffold
[55•]. Alternatively, such chondroprotective cytokines as IL-4
and IL-10 can be delivered in viral vectors [52].

Stimulation of Anabolic Pathways

Successful activation of anabolic processes has been reported
upon viral delivery of enzymes that produce or process ECM
components [15], growth factors, including IGF-I, FGF-2,
BMPs, TGF-β, GDF-5, HGF, PTHrP, Indian hedgehog
(IHH), scleraxis [16–18, 22, 25, 26, 29–32, 36–38, 40, 41,
43, 47, 48, 53•, 58, 60, 64, 78, 83, 87, 92]. Because many of
these are involved in endochondral ossification during skeletal
development, osteophyte formation, cartilage calcification,
and abnormal bone changes may occur in vivo. Scaffolds such
as PCL scaffold [53•], or tissue-specific transcription factors

(SOX5, SOX6, SOX9) [9, 21, 23, 24, 45•, 51, 59, 63, 85] have
been used to enhance anabolism.

Activation of Cell Proliferation and Survival—Prevention
of Apoptosis and Aging

The restoration or activation of cell vitality and proliferation
can be achieved by application of IGF-I, FGF-2, BMPs,
TGF-β [58, 60–62, 72, 87, 92], telomerase (hTERT) [44,
50, 56], or inhibitors of apoptosis (kallistatin) [20].

Prevention of Osteophyte Formation and Cartilage Vascular
Invasion

Studies in vivo have provided antagonists of the TGF-β/BMP
pathway, for example latency-associated peptide and inhibi-
tory Smads, which inhibit osteophyte formation [34]. Inhibi-
tion of vascular invasion has been attempted using sFlt-1, a
soluble receptor that acts a vascular endothelial growth factor
antagonist, preventing angiogenesis and cartilage resorption
and resulting in persistent cartilage regeneration and repair in
a rat model of OA [48]. Similar results were obtained when
applying other types of inhibitor of angiogenesis, for example
thrombospondin-1, leading to reduced microvessel density,
inflammation, and suppression of the progression of OA in a
model of anterior cruciate ligament transection (ACLT) in rats
[19]. Gene transfer of chondromodulin has also been reported
to inhibit the invasion of vessel structures, endochondral
ossification, and terminal chondrocyte hypertrophy in porcine
cartilage lesions while stimulating chondrogenic differentia-
tion and the formation of hyaline-like matrix in the lesions
[70]. Also, remarkably, application of pro-opiomelanocortin
(POMC), a precursor of neuropeptides with potent anti-
inflammatory activity, has been shown to suppress
microvessel density, reduce NF-κB activity, and prevent the
progression and severity of ACLT-induced OA in rats [35].

Modulation of OA-Related Epigenetic Events

With the identification of functional miRNAs, new molecular
therapy can be envisaged, for example delivery of miRNAs to
modulate the production of proinflammatory cytokines [93],

Table 3 Overview of current OA treatments using viral gene transfer and tissue engineering approaches

Model Method Biomaterial System Ref.

In-vitro Lentiviral IL-1Ra transduction of bone
marrow-derived MSCs

PCL scaffold Resistance to inflammation challenge (IL-1) [55•]

Lentiviral TGF-β transduction
of bone marrow-derived MSCs

PCL scaffold Cartilage ECM formation [53•]

In-vivo Retroviral SOX trio co-transduction of
adipose-derived stem cells

Fibrin glue Healing and prevention of degenerative changes
in surgically induced OA (rats)

[45•]

449, Page 4 of 9 Curr Rheumatol Rep (2014) 16:449



down-regulate the expression of matrix-degrading enzymes
[94], or up-regulate type-II collagen expression [95]. Also,
remarkably, gene transfer of sirtuin 1, a histone deacetylase,
has been shown to protect chondrocytes under stress condi-
tions [96, 97]; it thus has strong promise as a new therapeutic
approach.

Modification of Genetic Factors in OA

Therapy compensating for loss of function or inhibiting un-
desirable gene overexpression in OA might be envisaged but,
so far, little work has been performed to address this crucial
issue.

Combined Approaches

Successful co-transfer of different factors has been achieved
by providing combinations of activators of anabolic and pro-
liferative processes [21, 61], inhibitors of catabolic pathways
[52], or inhibitors of catabolism with activators of anabolic
and proliferative pathways [17, 27, 30]. Another interesting
approach has been developed recently on the basis of co-
application of anabolic factors with specific silencers of po-
tentially undesirable cellular processes, for example a combi-
nation of TGF-β with a small hairpin RNA to silence type-I
collagen expression and thus minimize the formation of
fibrocartilage [98].

Evidence in Vivo

Gene engineering and tissue engineering-based treatment of
OA in vivo might, in theory, be achieved either by providing a
biomaterial coated with a gene-transfer vector (direct ap-
proach) or by using a scaffold carrying or seeded with genet-
ically modified cells (indirect approach). Direct procedures
are simpler and more convenient, because they are less inva-
sive, yet indirect strategies might be desirable in cases of
advanced, severe OA in which little cartilage surface and
few chondrocytes remain and when cell repopulation is
required.

In contrast with the literature on focal cartilage defects [9,
45•, 99–103], few studies have examined the benefits of
applying viral gene transfer methods concomitantly with a
biocompatible material (hydrogel compounds or solid scaf-
folds) to treat experimental models reflective of the complex
pathology of OA. So far, only Lee et al. [45•] have demon-
strated the benefits of injecting adipose-derived stem cells that
had been retrovirally-co-transduced with the SOX trio and
suspended in fibrin glue to prevent the progression of degen-
erative changes in surgically induced OA in rats (Table 3).
Therapeutic approaches for OA in vivo have, instead, focused

on administration of gene transfer vectors [11, 19, 20, 34, 35,
66, 80, 104] and of genetically modified cells [48, 52, 105] in
the absence of supportive matrices.

Conclusions

Because of the remarkable advances in experimental research
in cell biology, molecular biology (therapeutic candidate fac-
tors and genes), biomaterials, and translational science, gene
engineering and tissue engineering-based strategies are attrac-
tive approaches to repair of joint tissues in OA. There is a large
body of evidence showing the benefits of gene therapy for
OA, including two clinical trials of indirect administration of
retrovirally-modified, TGF-β-expressing chondrocytes [106]
and direct delivery of IL-1Ra via rAAV [107]. However, little
is known about the value of combining such a methods with
use of biocompatible materials both in vitro and in experimen-
tal models of the disease in vivo compared with current
knowledge on the advantages of this approach for focal carti-
lage defects. Among unanswered questions, the choice of an
appropriate scaffold for treatment of large OA lesions com-
pared with defined focal defects may be the most complex to
address, because such issues as the best source of cells,
candidate gene, and vector (most likely rAAV) have been, in
general, well investigated. It will also be important to keep in
mind that the products used to generate a new treatment will
need challenging approval by the regulatory organizations
before use in a clinical procedure. Only a combined effort
among scientists, clinicians, industry, and regulatory organi-
zations will enable us to address the crucial issue of treating
the slow, progressive disease in OA patients.
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