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Abstract Genetics unquestionably contributes to systemic
lupus erythematosus (SLE) predisposition, progression and
outcome. Nevertheless, single-gene defects causing lupus-
like phenotypes have been infrequently documented. The
majority of the identified genetic SLE risk factors are, there-
fore, common variants, responsible for a small effect on the
global risk. Recently, genome wide association studies led to
the identification of a growing number of gene variants asso-
ciated with SLE susceptibility, particular disease phenotypes,
and antibody profiles. Further studies addressed the biological
effects of these variants. In addition, the role of epigenetics has
recently been revealed. These combined efforts contributed to
a better understanding of SLE pathogenesis and to the char-
acterization of clinically relevant pathways. In this review, we
describe SLE-associated single-gene defects, common vari-
ants, and epigenetic changes. We also discuss the limitations
of current methods and the challenges that we still have to face
in order to incorporate genomic and epigenomic data into
clinical practice.
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Introduction

Systemic lupus erythematosus (SLE) is an autoimmune dis-
ease with a spectrum of clinical manifestations and outcomes.
In spite of this variability, epidemiological data indicating a
higher concordance ratio between monozygotic twins (24–
69 %) compared to dizygotic twins or siblings (2–5 %) have
made the role of genetics in SLE indubitable [1]. Neverthe-
less, single gene defects related to lupus-like phenotypes have
infrequently been described and patients with monogenic
causes of SLE are thought to comprise only about 1 % of
most adult SLE cohorts. The majority of the identified genetic
SLE risk factors are, therefore, common variants, with a
modest magnitude of risk, which suggests that different mech-
anisms contribute to the pathogenesis of this disease, includ-
ing epigenetic factors, which are just starting to be identified.

The proteins encoded by the SLE-associated genes partic-
ipate in a multiplicity of mechanisms, including: monocyte,
neutrophil, B and T-cell function; antigen presentation; type I
interferon, toll-like receptor (TLR) and NFκB signaling; apo-
ptosis, and clearance of cellular debris and immune complexes.
Some SLE susceptibility variants are also associatedwith other
autoimmune diseases, which may reflect common molecular
pathways.

The human leucocyte antigen (HLA) region is the most
gene-dense region in the human genome, including 120 func-
tional genes, many of those with a role in immunity [2]. This
region was identified as the strongest determinant of SLE
predisposition in all the genome-wide association studies
(GWAS) performed [3–6]. Furthermore, variants of HLA-
DRB1 were associated with SLE in multiple ethnic back-
grounds and an HLA-DR3 polymorphism (rs2187668)
seemed to have an impact on the propensity to produce
autoantibodies in SLE [7•].

In this review, we will focus on non-HLA genetic risk
factors for lupus. Single-gene defects will be briefly described,
followed by a summary of the variants and the broad epige-
netic changes that have been associated with SLE.
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Single Gene Defects and SLE

Single gene defects have been recognized as causing lupus
since the 1970s. Specifically, complete deficiencies of C1q,
C1r, C1s, C2, and C4 are strongly associated with SLE. A
penetrance higher than 90 % occurs in C1Q, with lower
penetrance for C4 (75 %) and C2 (10–30 %) [8, 9]. The role
of complement on immune complexes and apoptotic body
clearance is thought to be the underlying mechanism respon-
sible for this association. Although partial deficiencies of C4
and Mannose-Binding Lectin (MBL) have been described as
predisposing for SLE [10, 11], large-scale studies did not
support this finding, so it seems unlikely that they markedly
increase the susceptibility to lupus. They may, however, mod-
ify the disease phenotype [12].

Less commonly described are the associations of chronic
granulomatous disease (CGD) and the carrier state for X-
linked CGD with discoid and systemic lupus [13–16],
presumely due to an inability to clear apoptotic cells.

The apoptotic pathway is also affected in autoimmune
lymphoproliferative syndrome (ALPS). FAS and FASL are
the genes related to classic ALPS, which have been associated
with SLE predisposition [17–19]. Caspase 8 deficiency has
similar features and is often categorized as an ALPS disorder,
but the immunodeficiency dominates the phenotype. The
mechanism of autoimmunity is not fully understood, but
may relate to the excess of cytokines, like IL-10 and B-cell
activating factor (BAFF), that can break B-cell tolerance.

Finally, approximately 10 % of the patients with prolidase
deficiency develop lupus [20]. Cutaneous manifestations are
common, but nearly all of the lupus end-organ effects can be
seen. Prolidase participates in proline recycling, and its defi-
ciency is thought to lead to apoptosis of cells where collagen
synthesis is critical. The true mechanism, however, is not fully
understood.

SLE Associated Variants Divided by Their Proposed
Mechanisms

Apoptosis and Clearance of Nuclear Debris

In SLE, there is an imbalance of apoptosis and clearance of
nuclear debris, which increases the availability of autoantigens,
contributing to autoimmunity. Accordingly, several genes re-
lated to these mechanisms have been associatedwith SLE. One
example is ATG5 (autophagy related 5). Several variants of this
gene, which encodes for a protein that participates in caspase-
dependent apoptosis and autophagy, have been described in
European SLE patients [5]. Another example is TREX1 (three
prime repair exonuclease), which participates in DNA degra-
dation, granzyme A activated apoptosis and oxidative stress
response. TREX1 null mutations are associated with Aicardi-

Goutières syndrome, a disease with lupus-like features, and
familial chilblain lupus. Certain TREX1 variants were found to
be related to SLE suceptibility [21] and, in a large case–control
study, a TREX1 haplotype was found to be associated with the
risk of neurological manifestations in European SLE patients
[22]. In addition, mutations in ACP5 (acid phosphatase 5,
tartrate resistant), which encodes a protein that participates in
lysosomal digestion, were shown to cause bone dysplasia, as
well as an increase on α-interferon and multiple autoimmune
diseases, including SLE [23]. Although polymorphisms in
ACP5 have not been identified in GWAS, its major substrate,
osteopontin, has been found in several studies as disease
associated [24]. Finally, in a recent study of patients with
African ancestry, several novel associations were found be-
tween variants of genes associated with the production of
reactive oxygen species and SLE [25]. Collectively, these
findings demonstrate the critical role of clearing nuclear debris
in SLE pathogenesis.

Clearance of Immune Complexes

Genome-wide analysis and candidate gene association studies
of diverse human populations showed a consistent linkage to
1q21.1-24, a region that includes the receptors that recognize
the constant (Fc) portion of immunologlobulin (Ig) isotypes
(FcγRs).

FcγRs can activate (FcγRI, FcγRIIA/C, FcγRIII) or in-
hibit (FcγRIIB) cellular functions, such as phagocytosis,
antibody-dependent cellular cytotoxicity, degranulation, anti-
gen presentation, B-cell activation, cytokine production and
immune complex clearance. Numerous single nucleotide
polymorphisms (SNP) and copy number variants have been
characterized in the FcγR genes. Several of those variants
have been associated with an increased risk for SLE. For
instance, H131R of FCGR2A is a common variant that was
shown to have lower affinity for the ligand, leading to a pro-
found decrease on the phagocytosis of IgG2 opsonized particles
[26]. The also lower IgG binding FCGR2A allele 158 F was
associated with an increase risk for SLE in Caucasians [27],
but not in an African-American population [28]. Another
example is the single amino acid substitution that occurs on
the I232T variant of FCGR2B, which was also associated with
SLE in Asian populations [29, 30], but not in Caucasians [31].
Defective signaling by the risk FCGR2B variant increases the
inflammatory response of macrophages to immune com-
plexes, reduces the threshold for antigen presentation by den-
dritic cells and facilitates autoreactive B-cell activation [32],
thus contributing for autoimmunity.

FCγR variants are not only associated with disease suscep-
tibility, but also with disease progression and phenotypic
features. Variants of FCGR3A, for example, were associated
with end-stage renal disease in patients with lupus nephritis
[33, 34].
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Finally, copy number variation is common in regions of the
genome coding for immune related genes and it is also asso-
ciated with SLE predisposition, namely a low copy number
variation at the FCGR3B locus was associated with SLE and it
affected the immune complex uptake by neutrophils [35].

Complement has a dual role in SLE. On the one hand, there
is clear evidence that complement activation contributes to the
pathogenesis of the glomerular injury that occurs in lupus
nephritis. On the other hand, complement participates in the
clearance of immune complexes and apoptotic bodies. As pre-
viously discussed, complete deficiencies of complement are
among the strongest known genetic risk factors for SLE. More-
over, genes associated with the regulation of the alternative
complement pathway have also been recently found to contrib-
ute to SLE risk, namely genes encoding complement factor H
regulator (CFHR) and five-related CFHR-proteins [36].

Toll Like Receptors and α- Interferon Pathway

Type I interferons (α and β interferon) participate in anti-viral
immune responses as key regulators of the proliferation, dif-
ferentiation, survival and activity of the majority of the im-
mune cells [37]. Increased expression of α-interferon and its
regulated genes has been described in SLE [38–42] and pro-
pelled the development of α-interferon inhibitors for the con-
trol of this disease. A number of variants in the receptors that
recognize nucleic acids (TLRs), their regulatory molecules
(UBE2L3), downstream transcription factors (IRFs, ETS1)
and the interferon signaling pathway itself (TLK2) have been
described in association with SLE. This large family of vari-
ants is a testament of the importance of this pathway in SLE
etiopathogenesis.

TLR activation contributes to the production of type I
interferons, which may explain the solid evidence connecting
TLRs to SLE pathogenesis. One of the possible examples is
the association between a functional variant of TLR7 and SLE
in an Asian population [43]. Other robust SLE associations
were found with variations in genes coding for the interferon
regulatory factors (IRFs): IRF5, IRF7 and IRF8 [44], the
transcription factors downstream of TLRs. IRF5 is a transcrip-
tion factor that induces the expression of multiple pro-
inflammatory cytokines, including α-interferon, tumor necro-
sis factor (TNF)-α, interleukin (IL)-6, IL-17, IL-23, MCP1
(monocyte chemotactic protein-1), and RANTES (regulated
on activation, normal T cell expressed and secreted) [45].
IRF5 is associated with SLE, as well as other autoimmune
diseases, including rheumatoid arthritis, Sjogren’s syndrome,
systemic sclerosis, multiple sclerosis, and inflammatory bow-
el disease [46]. The IRF5 locus was implicated in SLE
through candidate gene analysis [47] and later confirmed by
multiple independent case–control cohorts [48–51] and
GWAS [4–6, 7•]. Several IRF5 insertion and deletion poly-
morphisms and SNPs have been described in association with

increased or decreased levels of IRF5, α-interferon and, con-
sequently, SLE susceptibility [52, 53]. Interestingly, IRF5 is
necessary for the development of lupus-like disease in mice,
which demonstrates the importance of this transcription factor
in SLE pathogenesis [54]. IRF7 variants also contribute for
SLE predisposition. An IRF7 SNP (Q412R) is associated with
an increase in IRF7 levels and SLE risk in several ancestral
populations [55] and additional IRF7 risk alleles have been
associated with anti-double stranded DNA antibodies and
anti-Sm antibodies [56, 57]. UBE2L3 (Ubiquitin-conjugating
enzyme E2 L3) is known to participate in the degradation of
TLRs and genetic variations in UBE2L3 were also identified
as predisposing for SLE and other autoimmune diseases [5, 6,
7•, 58, 59]. ETS1 (v-ets erythroblastosis virus E26 oncogene
homolog 1 avian) is a transcription factor that binds the
interferon-stimulated response elements, controlling type I
interferon-induced transcription. It also participates in the
inhibition of Th17 and B-cell differentiation. Evidence of
animal models supports the role of ETS1 in SLE, since Ets1-
deficient mice develop a lupus-like phenotype, characterized
by the production of autoantibodies, glomerulonephritis and
local activation of complement [60]. In humans, ETS1 was
identified as one of the loci associated with SLE predisposi-
tion [6, 61, 62]. Finally, TYK2 (tyrosine kinase 2) variants
were also associated with higher interferon production, SLE
and discoid and subacute lupus [47, 63].

NFκB Pathway

The NFκB pathway is triggered by multiple stimuli, including
TLR activation. Several genes that participate in NFκB sig-
naling were associated with SLE risk, namely IRAK1 (inter-
leukin-1 receptor associated kinase 1) [64, 65], TNFAIP3
(Tumor necrosis factor, alpha-induced protein 3) [3, 6, 66],
TNIP1 (TNFAIP3 Interacting Protein 1) [6, 58], SLC15A4
(Solute Carrier Family 15Member 4) [6] and PRKCB (Protein
Kinase C, Beta) [67].

IRAK1 is involved in α-interferon and γ-interferon induc-
tion and is a central regulator of NFκB pathway. Five SNPs
spanning IRAK1, an X chromosome-encoded gene, were as-
sociated with both adult- and childhood-onset SLE, in four
different ethnic groups [64].

TNFAIP3 encodes A20, an ubiquitin-editing enzyme,
which participates in the termination of NFκB signaling.
TNFAIP3 is an established susceptibility locus for SLE [68,
69]. Recently, a novel TT>A polymorphic dinucleotide was
found to be associated with SLE in subjects of European and
Korean ancestry [66]. This haplotype resulted in reduced
TNFAIP3mRNA and A20 protein expression and the enzyme
variant bound a nuclear protein complex, which included
NFκB subunits, with reduced avidity [66]. This haplotype is,
thus, associated with a decreased inhibitory activity of A20,
which consequently causes an activation of the NFκB
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pathway. The role of A20 in NFκB inhibition has been dem-
onstrated in animal models by the development of systemic
organ inflammation and death within six weeks of birth in A20
deficient mice [70], and by the existence of a lupus-like phe-
notype in mice with B lymphocyte specific A20 deletion [71].

Function of Monocytes and Neutrophils

The role of innate immunity in SLE has been increasingly
appreciated. Monocytes play essential roles in SLE pathogen-
esis, since they participate in lupus nephritis and atheroscle-
rosis, processes responsible for considerable morbidity and
mortality in SLE. Increased interest in neutrophils also arose
with the description of NETosis, the process by which neutro-
phils extrude fibrillary networks composed of DNA, histones
and granular antimicrobial proteins. These NETs trap micro-
organisms, decreasing their ability to spread, facilitate the
interaction with neutrophil-derived effector molecules and
induce the production of cytokines, such as α-interferon. A
positive feedback loop occurs, since this cytokine increases
NETosis. In SLE, circulating immune complexes activate
neutrophils and lead to an increase in the production of NETs.
The DNA present in the NETs is protected from nuclease
degradation, functioning as autoantigen and potentiating au-
toimmunity and chronic inflammation.

Genes coding for proteins related to adhesion and mi-
gration of both monocytes and neutrophils have been asso-
ciated with SLE. ITGAM (CD11b), a protein mainly
expressed by macrophages, monocytes and neutrophils,
encodes a leucocyte-specific integrin, important in the ad-
herence of neutrophils and monocytes to stimulated endo-
thelium. This receptor also participates in the phagocytosis
of complement coated particles and immune complexes,
since it is a receptor for iC3b. An association between
ITGAM variants and SLE susceptibility has been docu-
mented in multiple populations [4, 5, 7•, 72, 73].

B-cell Function

One of the hallmarks of SLE is the production of autoanti-
bodies and the formation of immune complexes that drive the
systemic inflammatory response. B-cells are thus key players
in the pathogenesis of this disease and the existence of effec-
tive drugs that target their function, as anti-BLyS (B lympho-
cyte stimulator) and rituximab (anti CD-20), further supports
their role in SLE. Numerous genes associated with B-cell
function and signaling have been found to predispose to
SLE [74•], including BLK (B lymphoid tyrosine kinase)
[4–6], BANK1 (B-cell scaffold protein with ankyrin repeats
gene) [7•, 75] and LYN (tyrosine protein kinase Lyn) [5, 76],
whose proteins participate in B-cell receptor signaling. The
SLE-risk variants found for BANK1 affect the regulatory sites
and functional domains of the protein and contribute to

sustained B-cell activation through a change in the intracellu-
lar calcium levels [75]. LYN, a src-tyrosine kinase, is a bind-
ing partner of BANK1, whose variants were also associated
with SLE in European-derived individuals, with rs6983130
described as a SLE protective factor [76]. The complement
receptor 2 (CR2/CD21) is a membrane glycoprotein, mainly
expressed onB-cells and follicular dendritic cells, that has also
been implicated in the tolerance to nuclear self-antigens such
as single and double stranded DNA, chromatin and histones
[77]. Reduced levels of CR2 have been described in SLE and
family-based analysis provided evidence for an association of
SNPs in CR2 and SLE in Caucasian and Chinese populations
[78]. This association was later confirmed in a case–control
study of a European-derived population [79]. NCF2, a cyto-
solic subunit of the NADPH oxidase, was found to participate
in B-cell activation and recently it was also implicated in SLE
susceptibility [44, 58]. IL-10 is a pivotal cytokine, responsible
for globally down-regulating the immune response. Interest-
ingly, IL-10 production by monocytes and B-cells has been
shown to correlate with disease activity in SLE. IL-10 poly-
morphisms were found to be associated with SLE in multiple
populations, including European and Asian [80, 81]. IKZF1
(IKAROS family zinc finger 1) is a transcription factor in-
volved in the regulation of lymphocyte differentiation and
proliferation, and B-cell receptor signaling. It also participates
in the control of STAT4 (Signal Transducer And Activator Of
Transcription 4) gene expression. Interestingly, the levels of
IKZF1 were found to be decreased in the serum of SLE
patients and, recently, a GWAS identified variants of IKZF1
associated with SLE in an Asian population [6] .

T-cell Function

The role of T-cells in the orchestration of the immune response
cannot be overstated, so, as expected, several genes implicated
in T-cell function have also been associated with SLE, includ-
ing PTPN22 (Protein phosphatase nonreceptor type 22),
TNFSF4 (Tumor Necrosis Factor (Ligand) Superfamily, Mem-
ber 4), STAT4 and CD247.

PTPN22 participates in the T-cell receptor signaling path-
way. APTPN22 SNP (rs2476601) was associatedwithmultiple
autoimmune diseases, including SLE [82]. This association was
shown in a GWAS [5] and verified in a replication study [58].

TNFSF4 is a co-stimulatory molecule found on the surface
of antigen-presenting cells. It binds to the T-cell receptor
OX40, contributing to the global activation of T-cells, with
the exception of regulatory T-cells, whose generation and
function is inhibited by this signal. Protective and risk haplo-
types of TNFSF4 have been reported for SLE [83].

STAT4 is a key regulator of IL-12, IL-17, IL-23 and α-
interferon signaling, having, therefore, a critical role in the
development of Th1 and Th17 immune responses. Associations
with SLE and multiple SNPs located within STAT4 gene have
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been found in different ethnicities, including African Ameri-
cans, Hispanics and Asians [4–6, 7•, 84, 85]. There is also
evidence of an associationwith other autoimmune diseases [85].

CD247 is a component of the T-cell receptor—CD3 com-
plex, which was found to be decreased in SLE. Aberrant
CD247 transcript variants were detected in SLE T-cells and
an association between a CD247 SNP and SLE was detected
on a recent GWAS [86].

Table 1 provides a comprehensive list of variants associat-
ed with SLE susceptibility, according to the proposed mech-
anism of action.

Genetic Susceptibility for SLE and other Autoimmune
Diseases

The clustering of multiple autoimmune disorders in families,
in addition to the identification of variants associated with

increased susceptibility for different diseases, created the no-
tion of a common autoimmunity-related genetic background.
PTPN2 is one of those examples, since variants of this gene
have been associated with juvenile idiopathic arthritis, rheu-
matoid arthritis, systemic sclerosis, generalized vitiligo, alo-
pecia areata, type 1 diabetes, Graves disease, Hashimoto
thyroiditis, myasthenia gravis and Addison disease [2]. PS
Ramos and collaborators, however, showed that only a partial
pleiotropy exists among autoimmune diseases [87]. For in-
stance, genes like ITGAM and TNFSF4, which have been
clearly associated with SLE, were not found to be associated
with other autoimmune diseases, and the opposite was found
for IL23R, one of the loci found to be shared among the
highest number of autoimmune diseases, but not SLE. Thus,
SLE seems to have a distinct pattern of genetic susceptibility.

The Role of Epigenetics in SLE

The phenotype of a cell is broadly determined by the
epigenomic landscape, which modulates gene expression and
may serve to perpetuate pathologic mechanisms. The epigenet-
ic changes, including histone modifications, DNAmethylation,
and the microRNA pattern, globally determine the set of tran-
scribed and repressed genes. DNA methylation and histone
modifications change the chromatin structure to allow or pre-
vent the access of the transcription machinery to DNA.
microRNAs are non-coding RNAs responsible for post-
transcriptional gene silencing, by blocking the translation or
causing mRNA degradation. These regulatory molecules are
involved in essential cell mechanisms, including proliferation,
differentiation and apoptosis. microRNAs also exert control on
the immune system, particularly on the maintenance of immu-
nological tolerance, participating in the regulation of T-cell
selection in the thymus, B-cell selection in germinal centers,
and development of regulatory T-cells.

Epigenetic mechanisms are particularly important for au-
toimmunity, since the expression of pro-inflammatory genes,
like TNF-α, is regulated at the level of the chromatin [88].

A very well characterized epigenetic change seen in SLE is
the hypomethylation of DNA in T-cells, causing a state of
euchromatin and, consequently, a global activation of tran-
scription, which correlates with disease activity [89•]. Interest-
ingly, procainamide and hydralazine, which induce lupus-like
syndromes, were both found to inhibit DNAmethyltransferase
1, the former directly and the latter through the inhibition of the
ERK (extracellular-signal, regulated kinase) pathway [90].
Recently, a genome-wide DNA methylation study of naïve
CD4+ T-cells from SLE patients and controls found significant
hypomethylation in interferon-regulated genes [91]. Hypome-
thylation is, therefore, another mechanism responsible for the
characteristic type-I interferon hyper-responsiveness seen in
lupus T-cells.

Table 1 List of genes whose variants were associated with SLE
susceptibility

Pathway Genes

Function of Immune Cells

Monocytes and Neutrophils FCGR2B, FCGR3A/B, ICAMs,
IL10, IRF8, ITGAM.

B-cells AFF1, BANK1, BLK, ETS1,
FCGR2B, HLA-DR2, HLA-DR3,
IKZF1, IL10, IL21, IRF8, LYN,
MSH5, NCF2, PRDM1, PRKCB,
RASGRP3.

T-cells AFF1, CD44, CD247, ETS1, FYB,
HLA-DR2, HLA-DR3, IKZF1,
IL10, IL21, PRDM1, PTPN22,
STAT4, TNFSF4, TYK2,
UBASH3A.

Signaling

Toll-like receptor and α-
Interferon signaling

ACP5, ELF1, ETS1, IFIH1, IRAK1,
IRF5, IRF7/PHRF1, IRF8,
PRDM1, STAT4, TLR7, TREX1,
TYK2, UBE2L3.

NFkB signaling IRAK1, PRKCB, SLC15A4,
TNFAIP3, TNIP1, UBE2L3.

Other pathways

Clearance of immune complexes C1Q, C1R/C1S, C2, C4A/B,
FCGR2A/B, FCGR3A/B,
ITGAM.

Apoptosis and clearance of
cellular debris

ACP5, ATG5, DNASE1,
DNASE1L3, FCGR2B, TREX1.

Production or regulation of
reactive oxygen and nitrogen
intermediates

GSR, NDUFS4, NOS1.

Loci with unknown function CLEC16A, JAZF1, PTTG1, PXK,
TMEM39A, TNXB, UHRF1BP1,
WDFY4, XKR6.

Adapted from Rullo and Tsao [100]
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Histone acetyltransferases and deacetytransferases also
control gene expression by adding or removing acetyl groups
on histone lysine residues. H4 acetylation is a histone modi-
fication associated with activation of transcription. This
epigenomic mechanism was found to be overall increased in
monocytes from SLE patients [92]. Notably, 63% of the genes
with a higher H4 acetylation had the potential of IRF1 regu-
lation. IRF1 is an interferon-inducedweak transcription factor,
which regulates the transcription of genes involved in immune
modulation. Interestingly, IRF1 can interact with p300 to
acetylate histones, which could explain the globally increased
H4 acetylation pattern seen in SLE.

MicroRNAs are also dysregulated in SLE [93•]. miR-146a,
which inhibits type I interferon expression by targeting IRF5
and STAT-1mRNA [94], was found to be decreased in SLE [94],
contributing, therefore, for the high levels of type I interferon
characteristic of this disease. Another example is miR-3148,
which was found to modulate the allelic expression of a TLR7
variant associated with SLE [95]. Finally, in a recent study a
four-miRNA SLE signature was identified in plasma [96].

The interactions and consequences of these mechanisms
are under intense study. Histone modifications and DNA
methylation can regulate the expression of microRNAs in
SLE, as is the case of miR-142 expression on T-cells from
lupus patients [97], while microRNAs, like miR-21 and miR-
148, which are increased in T-cells from SLE patients, de-
crease the expression of DNAmethyltransferase 1 [98]. These
findings suggest that the epigenome is globally affected in
SLE and that the persistence of the epigenomic changes could
lead to a durably aberrant gene expression, contributing to the
perpetuation of the disease mechanisms.

Limitations of the Current Methodologies

GWAS use a high throughput technology to analyze hundreds
of SNPs and capture genome common variants. Through this
approach, the joint effect of many weakly contributing vari-
ants across different loci can be studied and gene variants
associated with different complex diseases can be identified.
This type of study is particularly tailored for complex poly-
genic associations, being drastically more sensitive than fam-
ily studies. In comparison to linkage analysis and sequencing,
however, GWAS have less power in cases of allelic heteroge-
neity and may be affected by the occurrence of epistasis. The
majority of the variants associated with SLE susceptibility
only cause a modest increase on the risk, so large sample sizes
are necessary to find significant variations. Futhermore, since
the loci found by this kind of study have a weak additive
predictive power for a specific phenotype, their clinic rele-
vance may be small. Finally, occasionally results from GWAS
are not replicated across studies and in different populations.

Meta-analyses are an important tool to increase the statistical
power and analyze the effect of gene variations across groups of
different ancestries. Predictive mathematical models integrating
the weakly contributing loci may also be helpful. In addition, it
is necessary to understand how specific genetic variants are
responsible for the association and the biological effect. Finally,
fine mapping and resequencing studies are under way, as well as
new tools for the analysis of transcriptomics, proteomics and
metabolomics [99•], with the final goal of being able to risk-
stratify patents to truly develop a personalized approach to care.

Conclusions

For most patients the pattern of SLE heritability is not char-
acterized by a single gene with a causal Mendelian effect, but
by a multigenic mode of inheritance. Further studies are
necessary to understand how the identified susceptibility var-
iants contribute to SLE manifestations. Moreover, the major-
ity of the large-scale studies on SLE genetics were performed
in European and Asian populations. Since SLE is more fre-
quent and more severe in other groups, namely Hispanic and
African-American, new studies focusing on these populations
are essential. The trajectory of our understanding of the dis-
ease pathogenesis has been extraordinarily rapid since the
introduction of arrays, genomic approaches and epigenetic
strategies. Next generation sequencing efforts and other new
technologies are also likely to rapidly advance our knowledge.
The era of personalized medicine with genomic data incorpo-
rated into diagnosis, prognosis, treatment, and adverse event
prevention may truly be beginning.
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