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Abstract Calcium pyrophosphate deposition (CPPD) disease
(common in older adults) can be asymptomatic, associated
with osteoarthritis, or can present as acute/chronic inflamma-
tory arthritis. Due to the phenotypic complexity of CPPD, the
European League Against Rheumatism (EULAR) recently
made recommendations on terminology, diagnosis, and
management based on available research evidence and
expert consensus. There are no disease-modifying treat-
ments for CPPD disease, and therapy remains nonspecific
with the use of anti-inflammatory and analgesic drugs.
For years, it has been known that inorganic phosphate
and pyrophosphate regulate the formation of CPP or
hydroxyapatite crystals. The discovery of ANKH (human
homologue of progressive ankylosis) mutations in familial
CPPD disease confirmed the importance of phosphate/
pyrophosphate homeostasis in CPPD, with ANKH being
a regulator of inorganic pyrophosphate transport. Despite
progress in our understanding of the function of ANKH,
much remains to be investigated. This review summarizes the
genetic basis of this disease and focuses on the challenges of
research in this area.
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Introduction

Calcium pyrophosphate (CPP) crystals were first reported
in the early-1960s [1]. For 40 years, it was apparent that
the nomenclature of CPP deposition (CPPD)-associated
diseases was confusing and that many complex clinical
phenotypes were involved. Early in 2011, the European
League Against Rheumatism (EULAR) made recommen-
dations on terminology, diagnosis, and management of
CPPD disease [2••, 3••] based on expert consensus and
available research evidence. The spectrum of CPPD
includes asymptomatic/osteoarthritis (OA) CPPD and acute/
chronic CPP crystal arthritis. Eleven and nine recommenda-
tions were made for diagnosis [2••] and management [3••],
respectively. The presence of CPP crystals in synovial fluids
(SF) is the gold standard for a definitive diagnosis [4•].
Radiographic chondrocalcinosis (CC) often showed dis-
crepancies regarding the presence of CPP crystals in SF
and thus lacks specificity and sensitivity for CPPD diagnosis.
Management strategy is focused on relieving symptoms,
including pain, and preventing acute attacks. The recom-
mendation of a symptomatic control approach is due to
the lack of pharmacologic options to modulate the formation
or dissolution of CPP crystals. A better understanding of
mechanisms underlying CPPD pathogenesis would lead to
the development of novel and specific therapy.

CPPD can be sporadic, familial, and metabolic disease
associated. Metabolic disease–associated CPPD is not
discussed in this review. The prevalence of CPPD in
the general population remains unclear. Estimates from
several studies indicate that it is less than 10%. Age and
ethnic differences were reported [5].

Rare genetic diseases with known gene mutations are
extremely informative in unraveling the underlying disease
mechanisms. Earlier genetic studies on multiplex CPPD
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families revealed two disease loci: chromosomes 8q [6] and
5p [7]. Aside from the linkage of early-onset OA and CC
with DNA markers on 8q in a large New England family [6],
the identity of the gene involved remained unclear. Since the
molecular cloning of ANKH (human homolog of progres-
sive ankylosis, which is located on human chromosome 5p)
[8], several dominant ANKH mutations that cosegregate
with disease were identified in several multiplex CPPD
disease families from different countries [9–12]. ANKH
mutations are also found in a rare skeletal human disorder,
craniometaphyseal dysplasia (CMD) [13, 14]. In at least one
family, women with CMD were associated with CC [15].
The key lesson learned from these mutations relates to the
structure/function of the ANKH protein and its associated
protein. The general consensus is that CPPD-associated
ANKH mutations lead to a gain of function, while CMD-
associated ANKH mutations result in a loss of function. The
recessive ank/ank (progressive ankylosis) mouse with a loss
of Ank function is extremely informative for understanding
the function of Ank. However, considering that CPPD
crystals have never been detected in mice and other small
rodents, such as rats and rabbits, detailed work related to
this mutant mouse is not discussed here. Several recent
published reviews have discussed various aspects relating
to Ank/ANKH [16••, 17, 18]. The focus of this review
emphasizes outstanding issues regarding the structure of
the ANKH protein, its role in inorganic pyrophosphate (PPi)
and phosphate (Pi) homeostasis, and (most importantly) the
challenges in dissecting how CPPD disease–associated
ANKH mutations might lead to pathogenesis of the disease.

Structure/Function of Ank/ANKH

It is well-established that Ank/ANKH is a highly conserved
transmembrane protein [8]. However, the exact number of
transmembrane domains in this protein remains unclear.
Programs for structural prediction suggested that there are
7 to 12 transmembrane domains [10], though the favored
models involve 10 or 12 transmembrane helices. Known
gene mutations are extremely informative for structure/
function analyses of the gene/protein involved. In familial
CPPD, ANKH mutations are found at both the amino and
carboxyl termini of the protein. The hot spot of mutation is
on amino acid 5 (proline being changed to either leucine or
threonine) [11]. In a British family, the ANKH mutation
occurred in the 5′ untranslated region, resulting in four
more amino acid at the amino terminal of the protein.
These two types of amino acid changes are located in the
cytoplasmic end of ANKH. One British patient who was
initially thought to have sporadic CPPD had an ANKH
protein missing amino acid 490 (glutamic acid, located at
the cytoplasmic carboxyl end of the protein) [9]. Subsequently,

two unaffected family members were found to have the same
heterozygous mutation. In a French family, the methionine in
amino acid 48 was changed to threonine. We recently showed
that these mutant ANKH M48T proteins failed to interact
with the sodium/phosphate cotransporter, PiT-1 [19••]. It
is not clear whether ANKH binds to PiT-1 directly; if so,
M48 might be a crucial contact point of the interaction.
If the latter were true, M48 would be located intracellularly
and thus would favor the 7-transmembranemodel as predicted
by the PRED-TMR program [10]. However, based on the
favored models involving 10 or 12 transmembrane helices,
T48 of this mutant ANKH would be located on an extra-
cellular loop. ANKH M48T proteins are expressed on the
cell surface (Tsui, unpublished data), but it is unclear
whether this mutant protein has the same conformation
as the wild-type protein.

Distinct from the CPPD-associated ANKH mutations,
CMD-associated ANKHmutations are localized and clustered
in more internal (involving exons 7–10) and presumably
intracellular domains of ANKH (based on the 10- or 12-
transmembrane models) [13–15]. As with CPPD-associated
ANKH mutations, CMD-associated ANKH mutations (with
the exception of one family [20•]) are dominant in nature.
CMD is associated with aberrant bone remodeling with
reduced bone resorption [21]. This is supported by the
observed reduced osteoclast activities found in a knock-in
murine model with a CMD ANKH mutation (deletion of
aa377 [Phe] in exon 9) [22]. A complex CMD-associated
mutation (with amino acid changes and deletion in ANKH
exon 7) resulted in a mutant protein that was retained in the
cytoplasm, though the precise mechanism of this loss-of-cell-
surface expression has not been clarified [23•]. In one CMD
family with ANKH G389R mutation in which only affected
women showed symptoms of CC, it remains unclear whether
this represents a true or coincidental association [15].

Inorganic Pyrophosphate and Phosphate Homeostasis

To date, the pathological events leading to CPPD crystal
formation remain unclear. PPi and Pi have a central role in
mineralization, the former being a potent inhibitor of
mineralization, while the latter promotes the mineralization
process. The Pi-to-PPi ratio dictates the type of calcium
crystals to be formed: CPPD crystals are formed when
the ratio is less than 3, and hydroxyapatite (HA) crystals
are promoted when the ratio is greater than 100 [24, 25].
The Pi/PPi balance is controlled by a complex interplay
of proteins such as Ank/ANKH, ENPP-1 (ectonucleotide
pyrophosphatase/phosphodiesterase 1), PiT-1, and tissue
nonspecific alkaline phosphatase (TNAP). The best-studied
function of Ank/ANKH is regulating PPi transport. However,
it remains unclear whether Ank/ANKH is truly a PPi transporter
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or is merely a regulator of PPi transport. It has been
suggested that the Ank/ANKH protein also participates
in adenosine triphosphate transport [26]. In the extracellular
matrix, ENPP-1 generates PPi by adenosine triphosphate
hydrolysis. TNAP is regarded to be the key pyrophosphatase
and is tethered externally to the cell membrane via a phospha-
tidylinositol linkage. PPi is tightly regulated in most tissues
and serum. Formation of CPPD crystals would require PPi
levels of 50 to 200 μM (10- to 40-fold higher than normal
serum levels). Unlike other tissues, fibrocartilage and hyaline
cartilage have a very high matrix-to-cell ratio (~20:1). It is
possible that PPi can diffuse further into the cartilage matrix,
where it is bound and protected from hydrolysis into Pi by
pyrophosphatases (which are located closer to the cell
membrane). Cartilage is capable of binding in nonmineralized
form in high concentrations of calcium, magnesium, and
phosphate [27]. In the chondron, CPPD nucleation is likely
initiated at the pericellular matrix junction, and aggregation of
CPPD crystal leads to crystal shedding into the synovial fluid.
Inflammatory phagocytic cells clear the CPPD crystals via
phagocytosis and pyrophosphatase enzymes are released by
neutrophils/macrophages. In this model of CPPD crystal
formation, aberrant PPi transport leading to high extra-
cellular PPi (e.g., due to ANKH mutations) and inhibition
of pyrophosphatase activities (e.g., TNAP inhibitors such
as cysteine [28]) may contribute to CPPD crystal forma-
tion. Because in smaller animal species such as mice, the
matrix-to-cell ratio in the fibro- and hyaline cartilage is
lower (~5:1), it is possible that PPi were not sequestered
far enough away from pyrophosphatase activities located
near the cell membranes, and thus, CPPD crystal forma-
tion cannot be initiated. This possibility could be the
reason why CPPD crystals have never been observed in
mice and other smaller species, such as rats and rabbits.

Role of ANKH in Pyrophosphate and Phosphate
Homeostasis

Studies on the consequences of CPPD-associated ANKH
mutations revealed that expression of ANKH, TNAP, and
PiT-1 are coordinated and linked. We took advantage of
the inducible ATDC5 cells (via ITS [insulin, transferrin,
selenium]) to examine the effects of overexpressing ANKH
constructs (wild-type and mutant) on prechondrocytes
(uninduced) and chondrocytes undergoing hypertrophic
differentiation (induced by ITS) [19••, 29]. Alkaline
phosphatase is a key player in CPPD disease, as TNAP
in articular cartilage facilitates both CPPD crystal forma-
tion and dissolution [30]. In hypertrophic ATDC5 cells,
overexpression of ANKH wild-type proteins led to a
decrease in TNAP protein and alkaline phosphatase activity
[29]. If the TNAP level in the extracellular matrix becomes

limiting, this could lead to less PPi being degraded by TNAP,
thus favoring CPPD crystal formation. For stable ATDC5
transfectants with mutant ANKH constructs, both endogenous
Ank proteins and transfected human mutant ANKH proteins
coexist and thus mimic the dominant mutations found in
familial CPPD cells. Based on our results, stable ATDC5
transfectants with three different ANKH mutant proteins
(ANKH P5L, ANKH ΔE490, and ANKH M48T) all have
dysregulated PPi/Pi metabolism, albeit via different
mechanisms. The ANKH P5L transfectants had higher
alkaline phosphatase activities, as reported by others
[17, 31]. The ANKH ΔE490 transfectants had low alkaline
phosphatase activities throughout ITS treatment due to less
TNAP protein being expressed and the presence of yet-
unidentified intracellular low molecular weight inhibitors
[29]. The ANKH M48T mutant protein (but not the ANKH
P5L and ANKHΔE490 proteins) failed to interact with PiT-1.
Upon high phosphate treatment, the normally coordinated
upregulation of endogenous Ank and PiT-1 transcripts was
disrupted in the ANKH M48T transfectants [19••]. There are
limitations to this type of in vitro experiments. First, experi-
ments on our stable ATDC5 transfectants were carried out
under normoxic conditions. However, articular chondrocytes
in vivo are nonproliferative and exist under hypoxic condi-
tions. This is highly relevant, as Ank expression is repressed
in hypoxic conditions, being regulated by HIF-1 [32].
Second, we have not examined the extra- and intracellular
PPi and Pi levels. Earlier studies on CPPD-associated ANKH
mutations have been focused on the effect of these muta-
tions on extracellular PPi levels, and the results remain
controversial [9, 10, 12, 31]. These are complex experi-
ments, as the culture media and fetal bovine sera contain
Pi and PPi. Furthermore, the inconsistent and contradic-
tory results from different laboratories were probably a
result of the presence of intrinsic feedback loops in cell
culture systems. Many studies in chondrocytes [29, 33],
cementoblasts [34], and osteoblasts [25] have shown that the
expression profiles of genes regulating PPi and Pi levels
(e.g., Ank/ANKH, ENPP1, TNAP, and PiT-1) are in turn
modulated by PPi and Pi levels.

Although ANKH mutant proteins appear to have a
dominant role in familial CPPD disease, they are rarely found
in sporadic CPPD patients. A recent study suggested that
ENPP-1 and TNAP are not major determinants of sporadic
CPPD disease susceptibility [35]. However, ANKH, TNAP,
and PiT-1 are regulated by various cytokines, such as
transforming growth factor-β [36, 37], tumor necrosis
factor-α [38], and interleukin-1β [38]. ANKH transcripts
were upregulated in articular hyaline cartilage from
sporadic CPPD disease patients [39]. It is possible that
cytokines could be responsible for dysregulation of
players involved in Pi/PPi homeostasis, leading to sporadic
CPPD development.
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It has long been observed that both hydroxyapatite
and CPPD crystals are found in patients with CPPD
disease or OA. It is likely that in these patients, the
dynamic interplay of regulators of Pi/PPi homeostasis
(e.g., Ank/ANKH, TNAP, and PiT-1) led to a fluctuating
local Pi/PPi ratio, resulting in the formation in the joints
of either hydroxyapatite (when the ratio is ~100) or
CPPD crystals (when the ratio is <3). CPPD patients
usually have flare-up episodes that likely represent
situations in which the intrinsic feedback loops are
suboptimal.

Outstanding Questions

How Do ANKH Mutations Lead to Calcium Pyrophosphate
Deposition Disease Pathogenesis?

To date, the role of ANKH in CPPD disease pathogenesis
remains incompletely understood. Based on what we
learned from the biochemical defects of known CPPD-
associated ANKH mutations, there appears to be some
correlation between the degree of Pi/PPi homeostasis
dysregulation and the severity of the CPPD disease. For
example, the uncoupling of the ANKH and PiT-1 interaction
due to the ANKH M48T mutation resulted in earlier
disease onset (prior to 35 years of age) with acute articular
attacks [40].

It is generally thought that CPPD-associated ANKH
mutations resulted in gain of function of ANKH. However,
similar to the finding in Ank-deficient mice with an ANKH
M48T transgene [41], results from our stable transfectants
did not show any evidence that this CPPD-associated ANKH
mutation is an activating mutation.

Is ANKH Mutation Sufficient for the Development
of Calcium Pyrophosphate Deposition Disease?

In some familial CPPD disease, autosomal dominant
transmission has 100% penetrance (e.g., the English
kindred with a mutant ANKH protein that has four
additional amino terminal amino acids [9]). However,
in other multiplex families, the autosomal dominant
transmission has incomplete penetrance. For example,
the CPPD patient from which the ANKH ΔE490 muta-
tion was identified has two family members with this
heterozygous mutation, but with no clinical CPPD
symptoms [9]. It is possible that because of the modest
effect of this mutation (on Pi/PPi dysregulation), addi-
tional contributing genetic or nongenetic factor(s) might
be required before CPPD symptoms develop.

Challenges

Approach to Unraveling the Basis Underlying Calcium
Pyrophosphate Deposition Disease Pathogenesis

As CPPD arthropathy is seen in aged primates and canines,
but not in smaller animal species such as mice, canines
might be a good candidate to set up in vivo models and in
vitro systems to study mechanisms underlying the develop-
ment of CPPD disease.

Therapeutic Approaches to Calcium Pyrophosphate
Deposition

CPPD crystal deposition is restricted to articular tissues such
as fibro- and hyaline cartilage, synovium, and intervertebral
disc. Specific therapy for crystal dissolution or prevention of
crystal formation would require appropriate tissue targeting.
TNAP has the ability to modulate both formation and
dissolution of CPPD crystals in the articular cartilage
[30], and endogenous amino acids (e.g., cysteine [28])
could serve as TNAP inhibitors. Thus, this represents an
attractive area for therapeutic manipulations. There are
some indications that low-Pi diet could be beneficial in
some cases. For example, avoiding a high-Pi diet might
be beneficial to patients with the ANKH M48T mutations
[19••]. The notion that low-Pi diet could modulate the
balance in Pi/PPi homeostasis is exemplified in ank/ank
(with a loss of Ank function) and ENPP1-/- mice. On a
high-Pi diet, both types of mutant mice showed increased
bone hydroxyapatite mineralization and ectopic mineraliza-
tion in the extracellular matrix of arteries and skin [42].

Conclusions

Molecular studies on the consequences of CPPD-associated
ANKH mutations have confirmed that these ANKH mutant
proteins led to a dysregulation of modulators of Pi/PPi
homeostasis such as TNAP and PiT-1. The dynamic
interplay of these Pi/PPi modulators would result in
fluctuating local Pi/PPi ratio, leading to the formation of
CPPD/hydroxyapatite crystals in the joints under pathological
conditions.
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