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Body image is the way a person’s body feels to them.
Growing evidence shows that body image can be dis-
torted in people with pain, particularly chronic pain.
Most data relate to people with deafferentation via
amputation or neural injury, but deafferentation is nei-
ther sufficient nor necessary for distorted body image or
pain. In this review, we examine the literature relating to
body image distortion in people with pain, and we dis-
cuss three themes: 1) evidence of distorted body image
in people with pain; 2) evidence of distortion of the
neural representations of body image held in primary
sensory and primary motor cortex; and 3) clinical find-
ings that correlate with distorted body image, distorted
neural representation, or both. We then review the
emerging evidence regarding therapeutic approaches to
distorted body image in people with painful disease.

Introduction
Defining body image
In order to discuss body image and pain, we must first clarify
the term “body image,” which is a complex task, as it is used 
in many different ways. First, we examine how the term is 
used elsewhere and then explain how we define it here.

A very large body of academic and lay literature uses
the term “body image” to define how an individual per-
ceives the physical appearance of his or her own body.
Thus, in this sense, body image measures how closely
one’s perception of physical appearance matches the ideal.
Therefore, it is highly dependent on the individual’s idea
of perfection, a construct built on complex psychosocial
variables. This idea of body image has been mentioned
with regard to pain [1] and discussed anecdotally as it
refers to some people with complex regional pain syn-
drome (CRPS) [2•], but it is not the subject of this review. 

From a sensorimotor perspective, body image often refers
to the implicit maps that encode the position, movement, and

anthropometric characteristics of the body that are the basis
for motor commands. Therefore, this notion of body image is
not an explicit or conscious construct. It is integral to one as
yet unsubstantiated theory relating to pain [3], which we men-
tion later, but we do not use this definition of body image.

From a homeostasis perspective, body image has been
used to define both the capacity for the body to monitor its
own internal state (interoception) and the neural maps that
are thought to represent that physical state. This notion of 
body image has also been mentioned with regard to pain, 
in particular with regard to the interoceptive function of 
small diameter peripheral neurons [4], but again, this
notion of body image is not the subject of this review.

In this review, we define body image as the way one’s
body feels to its owner. Like pain, it is necessarily conscious.
It is probably important in sensorimotor control, but it may
involve neural networks distinct from those used for motor 
commands. Body image is thought to be maintained by 
ongoing tactile, proprioceptive, and visual input. It can be 
modulated by memory, belief, and psychosocial factors, and
it is reasonably labile. The extent to which and the speed 
with which different inputs influence body image varies. For
example, a blindfolded subject can quickly get the feeling that
their nose is getting longer by tapping a nose situated at arm’s
length while simultaneously receiving an identical tap on their
own nose. Also, consider the swollen lip you felt you had last
time you went to the dentist. Formal investigations have been
conducted of such body image distortion during tendon vibra-
tion and following anesthesia, neurosurgery, and electrical
stimulation [5,6,7•,8]. However, in most cases, body image
distortion resolves when the stimulus is removed.

To review body image within the context of pain in 
general and painful disease in particular, we adopt three
themes. First, we discuss evidence that people in pain report
a distorted body image. Second, we discuss evidence that
painful disease is associated with the disruption of the neural 
correlates of body image. Third, we discuss clinical findings
consistent with distortions of the body image, distortions of 
the neural correlates of body image, or both. We complete 
this review by briefly discussing therapeutic strategies to
rectify one or more of the above and the effect of those strat-
egies on pain and function in people with painful disease.

People in Pain Report Distorted Body Image
Distortions of body image are thought to be common in some
pain states, perhaps none as obvious as phantom limb pain.
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About 80% of amputees experience phantom limb pain; 
most of them describe it as moderate or severe and somewhat
or extremely bothersome [9]. In about 40% of amputees,
phantom limb pain rather than impairment renders them
completely disabled [10]. In addition to pain, many amputees
with phantom limb pain report that their missing limb feels
heavy, swollen, floating, stuck in a particular position, miss-
ing digits or entire segments (“telescoping”) [11], or stiff [12]. 
Unfortunately, incidence and prevalence data are incomplete
and little is known about the relationship between distorted
body image and pain. Because similar distortions of body
image are not uncommon after parietal infarction, in which
case they are only sometimes accompanied by pain [13,14], 
researchers have assumed that body image distortions result
from sensory deprivation and that pain results from neural
injury. However, recent observations in conditions involving
neither sensory deprivation nor neural injury suggest the need
for reconsideration of this assumption: deafferentation is nei-
ther sufficient nor necessary for distorted body image or pain. 

CRPS is a disease in which peripheral sensory input 
appears fully intact, cortical injury is very unlikely, and
neural injury cannot be identified. However, patients with 
CRPS often describe their limb as swollen when it is not.
When asked to select one of a number of photographs of the
affected and opposite limb, patients with CRPS tend to select 
a photograph that depicts the affected limb to be bigger than
it really is [15], and when asked to resize a photograph of 
both limbs to its correct dimensions, they tend to settle on
an image approximately 106% of its original size (Moseley, 
unpublished data). In addition to distortions of the size of 
the painful limb, some patients report distortion of its shape, 
such that they might describe the painful limb as being too
short or missing a segment. Some patients reported that they 
find it difficult to determine the position of the limb without
looking at it, and some patients report that it feels as if it is in
one position even though it is actually in another [16]. 

Data about distorted body image in other pain states
are lacking. In our experience, patients with spinal pain 
can report that their back feels swollen when it does not
appear to be. More commonly, however, patients report 
difficulty in feeling their back (ie, they have difficulty
“locating” it). To our knowledge, such distortions of body
image have not been formally investigated in patients with
spinal pain, but several studies touch on this issue by way 
of assessing proprioceptive acuity. For example, patients
with back pain have difficulty in matching postures on the 
basis of watching someone else model the posture [17] and 
in returning to set postures on the basis of proprioceptive
feedback [18]. Asell et al. [19] present an alternative view.

Cortical Representation of Body Image
Becomes Distorted in Some Pain States
The physical body is probably represented many times
throughout the central nervous system. The most studied
representations of the physical body are those held in the

primary (S1) and secondary (S2) somatosensory cortices 
and in the primary motor cortex (M1). Because activity in
S1 and S2 is thought to be important for the consciously
felt body (ie, for the notion of body image defined within
this review), and because S1 and M1 are functionally 
closely linked, this section focuses on these brain areas
and their role within the cerebral pain network.

Somatosensory and motor cortices, 
part of the cerebral pain network
The cerebral representation of pain can be considered
to consist of two neural networks: one representing the
discriminative dimension of pain and one representing
the affective dimension of pain. Although oversimplistic,
this model is useful when considering neural correlates of 
body image. Neurons in S1 and S2 would be considered
part of the discriminative network. Neurons in the ante-
rior cingulate cortex, insula (predominantly the anterior
regions), ventral prefrontal lobe, amygdala, and adjacent
hippocampus would be considered part of the affective
(or affective-motor [20]) dimension.

S1 and M1 probably hold the most precise represen-
tations of the body. They are tightly connected and are
functional entities for movement control and execution. This
somatotopic representation is thought to be maintained by
lateral cortical inhibition, whereby input from a particular
body part exerts an excitatory influence on its target S1
neurons and an inhibitory influence on neurons in adjacent 
representations. The likely biochemical candidate for this
mechanism seems to be the GABAergic system [21].

Cortical reorganization without pain or pathology 
Cortical representation behaves according to the “use it
or lose it” principle: training expands the S1 representa-
tion of the trained area and deafferentation by regional
anesthesia can shrink it [22]. Braun et al. [23] used source 
localization with magnetoencephalography of digits 1
(thumb) and 5 (little finger) before and after a somatosen-
sory discrimination training and found segregation of S1
representation between the fingers. In contrast, a stimula-
tion-alone condition led to functional integration of the
two-finger representations in S1. 

Later, the same group demonstrated that the S1-repre-
sentation of the fingers changed dynamically in reference
to the context in which the fingers are used [24]. Thus, S1
representation seems responsive to motor training as well
as sensory training. According to the proposed mecha-
nism of cortical representations—that of ongoing and
competitive lateral inhibition—increased input should
inhibit nearby representations, thus expanding the recep-
tive field of the former and reducing the receptive field of 
the latter [25]. Conversely, loss of this inhibitory control 
seems to lead previously silent thalamocortical projections 
to become active, which expands the receptive field of the 
intact representations and reduces that of the disengaged 
representations [21].
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Although elegant, this model may be overly simplis-
tic. Exceptions can be observed when increased sensory
input seems to lead to reduced [26] or unchanged recep-
tive fields. Nonetheless, attention to the sensory input or
a behavioral objective associated with sensory input or
motor output is important in evoking changes in cortical
representation [22].

Painful disease is associated with changes
in cortical representation
Phantom limb pain
Microelectrode studies in animals provided the first robust
data concerning changes in cortical organization after
amputation. For example, amputation of digits in an adult
owl monkey led to an invasion of adjacent areas into the 
cortical representation zone of the deafferented fingers
[27]. The larger the area deafferented, the greater the cor-
tical reorganization: deafferentation of the entire dorsal
root led to the cheek representation taking over the cortical
arm and hand representation, a shift of several centimeters 
[28]. These animal studies have been largely replicated in
humans who have sustained amputations. Imaging studies
have reported that upper limb amputees show a shift of the
mouth into the hand representation in S1 [29,30] (Fig. 1).

A case study of a patient with a traumatic upper limb 
amputation, in whom the authors mapped S1 and M1 dur-
ing craniotomy, corroborate this pattern of effect. When
the deafferented motor cortex was stimulated (ie, the M1
hand representation), shoulder movements were elicited; 
when S1 representation of the shoulder was stimulated,
the patient reported sensation in the hand and arm as well
as the shoulder [31]. Further imaging studies have demon-
strated that the extent of S1 reorganization relates to the 
intensity of phantom limb pain [32•]. 

M1 reorganization also occurs after deafferentation.
Using transcranial magnetic stimulation, Cohen et al.
[33] showed larger contralateral M1 representation sites,
larger motor evoked potentials, and a larger percentage
of motor neuron pool activation on the affected side than
on the intact side. Kew et al. [34] used positron emission
tomography and transcranial magnetic stimulation and
reported greater regional cerebral blood flow in the deaf-
ferented M1 than the intact M1 during paced shoulder
movements. Pascual-Leone et al. [35] reported an enlarge-
ment of the contralateral M1 representational maps of 
the lower face muscles and the biceps in a patient who 
underwent a traumatic arm amputation at the height of 
the middle upper arm.

More recently, researchers have investigated the rela-
tionship between M1 reorganization and pain. Some
report a close relationship. For example, Karl et al. [36]
observed larger motor-evoked potentials from the biceps 
brachii and greater shift in M1 representation of ipsilat-
eral face muscles in forearm amputees with phantom limb 
pain, than in those without phantom limb pain. Func-
tional MRI group analysis corroborates this differential

effect [37] and shows reorganization is reduced by usage
of a myoelectrical prosthesis [38]. Thus, even without a
limb, “use it or lose it” seems to hold.

One assumption that underpins interpretation of 
the above studies is that invasion from a nearby repre-
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Figure 1. A, Reorganization of the somatic representation of the
affected body part in a patient with unilateral complex regional 
pain syndrome of the upper limb. The location of the response in
primary somatosensory cortex (S1) to stimulation of the thumb (D1)
and little finger (D5) on the affected (filled shapes, right upper limb,
represented in left S1) and unaffected (open shapes) sides. Notice
that representation of the hand is smaller on the affected side than 
on the unaffected side. (From Juottonen et al. [41], with permis-
sion.) B, Artist’s impression of S1 and M1 reorganization showing 
a schematic version of the homunculus for a normal healthy right
hand (right) and the right hand of someone with chronic hand pain 
(left). (From Butler and Moseley [77], with permission.)
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sentation implies shrinkage of the representation of the
deafferented area. One way to avoid this assumption is via
motor imagery, which involves the same cortical networks
as executed movements [39]. Imaging studies of amputees
performing imagined movements corroborate the previous
findings: they show activation of M1 representation of the
neighboring face area, but in amputees without phantom 
limb pain, M1 activation is confined to the normal limb
representation area [37].

Complex regional pain syndrome
CRPS affects about 5% of the patients after limb trauma 
[40] and leads to chronic limb pain usually associated with 
sensory, motor, and autonomic dysfunctions. S1 reorga-
nization in CRPS is similar to that observed for phantom
limb pain: decreased representational area in S1 of the
affected part, which correlates with pain intensity [41] (Fig.
1). S1 reorganization normalizes when CRPS resolves [42].
Researchers have observed reorganization of M1 in CRPS
[43], and they have reported functional changes consistent
with motor disinhibition [44]. Although such distortions of 
the neural correlates of body image are related to pain, no
evidence exists that they cause or are caused by pain. 

Spinal cord injury
Although several parallels exist between spinal cord 
damage and deafferentation, and between peripheral 
deafferentation and damage, they seem to evoke different 
cortical effects. Spinal cord injury (SCI) results in both
nonpainful and painful phantom sensations. Severe pain
syndromes are present in approximately 20% of spinal
cord–injured patients [45], but those with and without
pain demonstrate displacement of movement represen-
tation. After SCI, M1 reorganization correlates with
clinical and demographic findings such as the level of 
injury, the severity of injury (in incomplete SCI), and the 
time at which a complete SCI is present [46,47]. Patients 
with chronic SCI show more cortical reorganization of 
areas adjacent to the deafferented region than those with 
acute SCI. We observed an average shift of elbow move-
ment representation maxima of more than 18 mm [46].

Low back pain
There are limited data concerning cortical organization
in patients with back pain. One study suggested that the
back representation in S1 in response to painful stimula-
tion is more medial in patients with back pain than in
controls, and that pain intensity relates to the extent rep-
resentational shift (r = 0.74) [48]. The authors interpreted
this dipole-shift as an enlargement of the representation
area of the painful back. The phenomenon of increased
somatosensory response amplitude seems ubiquitous
in patients suffering from chronic pain, whereas the 
increase or decrease of representation areas might be
related to immobilization and attentional factors. How-
ever, data are lacking. 

Possible mechanisms of changes in the
neural correlates of body image in pain states
In healthy subjects, training, deafferentation, and immobi-
lization can all evoke cortical reorganization. Essentially,
the same processes are thought to occur in pain states. 
For example, abnormal ongoing input from peripheral
neuropathy increases S1 representation of the affected
area [49]; selective loss of C-fibers, which occurs after 
amputation, might drive the decrease in S1 representation
[50]; and reorganization of the thalamus [51] and changes 
in the strength of the thalamocortical loops might cause
S1 reorganization [52]. Regardless of contributing factors,
a change in intracortical inhibition is probably the com-
mon mechanism. This may involve unmasking of latent
excitatory synapses via increased release of excitatory
neurotransmitters, increased density of postsynaptic
receptors, changes in conductance of the neuronal mem-
brane, decreased inhibitory inputs, or the removal of 
inhibition from excitatory inputs [53]. GABAergic systems
are probably key and may involve the entire contralateral 
hemisphere [37,54]. Finally, structural changes may occur
via axonal sprouting, and use-dependent plasticity might 
lead to additional changes based on Hebbian learning and 
long-term potentiation [24].

Currently, no evidence seems to show that cortical reor-
ganization causes pain, although it is possible. However, 
emerging evidence exists to suggest that pain may enhance 
cortical reorganization. That position is supported by
findings that patients with amputation of a limb without 
phantom limb pain also show marked alterations of the 
cortical representation maxima [55], but this reorganiza-
tion increases in line with phantom limb pain [56]. The 
fact that motor and sensory excitability is enhanced (or 
inhibition is inhibited) lends further support. For example,
amputees with phantom limb pain demonstrate larger M1
representation sites, larger motor-evoked potentials, and a
larger percentage of motor neuron pool activation on the
affected side than the intact side. Perhaps this increased
excitability enhances cortical reorganization processes in
S1 and M1, as it is observed in experimentally induced 
increased excitability [57]. Data from animal studies sug-
gest underlying reorganization processes are likely due to
cortical rather than subcortical mechanisms [58], which
suggests that the increased cortical excitability found in 
pain patients [59,60] may help drive cortical reorganiza-
tion. This finding might explain the rapid normalization
of S1 organization when pain is eliminated [61]. 

Quantifiable Clinical Findings Consistent
with Distortions of Body Image, 
Neural Correlates of Body Image, or Both
Mislocalization of tactile stimuli
Accurate perception of tactile stimuli relies on an intact body
image. In patients with chronic pain, tactile perception can 
be disrupted in two ways: mislocalization of tactile stimuli
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and reduced tactile acuity. Mislocalization has been reported
in patients with CRPS. For example, a single stimulus deliv-
ered to the affected upper limb of a patient with CRPS could
evoke sensation at other points on that limb [62]. Nota-
bly, Maihofner et al. [62] reported a positive relationship
between the extent of mislocalization and mechanical hyper-
algesia. In some patients with CRPS, tactile stimuli can be 
referred to remote locations. For example, stimuli applied to
the affected hand can also evoke sensation on the ipsilateral 
face, although no relationship seems to exist between the 
extent of mislocalization and pain intensity [63]. 

Finally, tactile stimuli applied to the contralateral limb 
can evoke sensation in the affected limb if the patient
looks at the reflected image of the contralateral limb being 
touched [64]. This clinical phenomenon, called dysynchi-
ria, depends on visual input. Therefore, it may depend on
enhanced sensitivity of the neural network that subserves
pain to input from bimodal visuotactile neurons, rather 
than on reorganization of centrally held somatotopies.

Mislocalization of tactile stimuli has also been reported 
in amputees with phantom limb pain. Although mislocaliza-
tion of tactile stimuli is common in healthy subjects when
the adjacent area is anesthetized [8], mislocalization of tac-
tile stimuli occurs when stimuli are delivered to the neurally
intact stump of amputees. These patients report a sensation
either elsewhere on the stump, proximal to the stump, or, in
the case of upper limb amputees, on the face [65]. The extent
of mislocalization relates to both pain intensity and the extent
to which the S1 representation of the lip has invaded that of 
the missing limb [66]. The pattern of cortical reorganization
and mislocalization is similar in patients with phantom limb 
pain and patients with CRPS. Acerra et al. [67] presented a 
review of commonalities between these groups.

Reduced tactile acuity
Reduced tactile acuity is often assessed by two-point dis-
crimination (TPD) threshold, or the distance between two
points at which the subject perceives two stimuli instead of 
one. Increased TPD reflects decreased tactile acuity. TPD 
on the stump of amputees is larger in those with phantom
limb pain than in those without phantom limb pain. TPD
correlates with pain and with the extent to which S1 rep-
resentation of the lip has invaded that of the missing limb 
[56]. In CRPS, TPD is larger on the affected limb than
on the unaffected limb, and the difference between limbs
relates to pain intensity and the reduction in S1 representa-
tion of the affected limb [68,69]. In patients with unilateral
back pain, TPD is larger on the painful side than on the 
nonpainful side. In patients with bilateral back pain, TPD
on the back is larger than that of healthy control subjects.
In both cases, TPD relates to pain intensity (Moseley,
unpublished data).

These data have important clinical implications. First,
TPD seems a reasonable and fairly simple clinical assess-
ment to provide insight into the likely state of S1. Second,
S1 organization can be improved via training. Third, if 

body image relates to pain, treating body image may reduce
pain, and treating pain may normalize body image.

Therapeutic Approaches Targeting
Distorted Body Image
Recently, several attempts to reduce pain have targeted
coexistent body image disruption. Justification of this
strategy is as yet undefined, but some experimental evi-
dence suggests it may be effective in select patients.

Tactile input can sharpen the receptive fields of S1
neurons, especially when the individual allocates attention
to the sensory input or a behavioral objective is associ-
ated with it. A landmark study applied this principle to 
patients with phantom limb pain after amputation [70]. 
Patients were randomly allocated to control or to a train-
ing program involving two different stimuli delivered to
four different sites on their stump. The behavioral objective
of the task was for the patient to identify the stimuli used
and the site being stimulated. Patients underwent daily 90-
minute sessions for 2 weeks. Over that time, performance
on the task doubled. S1 representation of the lip ipsilateral
to the amputated limb—which was encroaching the area
normally representing the arm (see above)—normalized.
Finally, phantom limb pain decreased or was eliminated. 
Moreover, these three variables demonstrated a strong rela-
tionship (r < 0.73,r P < 0.05). 

Recently, this S1 training paradigm was applied to 
patients with unilateral CRPS (Moseley et al., unpub-
lished data). In that study, patients received two different 
tactile stimuli at five points on their affected limb under
two conditions. The first condition simply involved the
stimuli, and in the second condition, the patient was
required to identify which site was stimulated and with
which stimulus. The duration of a baseline waiting period
and of each condition was randomized between 11 and 17 
days to control for any effect of time on symptoms. No
changes were observed in pain, function, or tactile acuity
during the waiting period nor during the stimulation-
alone condition. However, reduction in pain, increase in
function, and increase in tactile acuity were seen during 
the tactile discrimination condition (Fig. 2). Moreover,
these three variables were also related.

On the basis of a range of data that showed visual
input to have a potent effect on S1 activity and organiza-
tion [71], a subsequent study used visual input and spatial
attention to optimize the effect of tactile discrimination
training. The study showed that a single 30-minute train-
ing session can increase tactile acuity and decrease pain
for at least 48 hours (Moseley et al., unpublished data).

A separate approach attempted to utilize vision to 
normalize body image, without making the specific neu-
roanatomic assumption implicit in the above studies. That 
approach involved the use of visual illusion in paraplegic
patients with severe neuropathic pain [72]. The study 
consisted of two parts. The first compared “virtual walk-
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ing” to guided imagery and distraction. Virtual walking
involved patients sitting in their wheelchairs in front of a 
screen. A film of someone walking was projected onto the 
back of the screen and a mirror was placed over the top of 
the screen such that the patient could get the impression
that they were watching themselves walk. Pain reduced 
markedly in four of five patients (Fig. 3).

The second part of this study was a 3-week training
study in which the four patients who responded well to
virtual walking in the first experiment did it every day for
3 weeks. Each patient showed a gradual increase in the 
magnitude and duration of pain relief. 

An alternative application of the use of visual input to
reduce pain in patients with distorted body image aims to 
use the automatic activation of motor mechanisms during 

implicit motor imagery. This motor usage may provide an
opportunity to normalize the implicit maps of the body
by activating them without “igniting” the pain matrix. 
A graded motor imagery program was devised, such that 
patients with unilateral CRPS began by identifying pictured 
limbs as being left or right. This task, known as the left/
right limb judgment task, activates motor systems, because 
to make the judgment, one mirrors the posture shown in
the picture [73]. Patients with CRPS performed this task
hourly for 2 weeks, then performed imagined movements,
and then watched the mirror reflection of their unaffected
limb as they moved both limbs (so-called mirror move-
ments or mirror-visual feedback therapy). Two randomized
clinical trials show a substantial reduction in pain and dis-
ability in patients with CRPS [74,75], and a third showed
similar efficacy in patients with phantom limb pain after 
amputation or brachial plexus avulsion injury [76].

In summary, therapeutic approaches to targeting
distorted body image in pain rehabilitation are in their
infancy. Initial data are promising, but much work includ-
ing robust clinical trials of current approaches must
be done. Also, as our understanding of the relationship
between distorted body image and pain increases, so too
will the effectiveness of therapeutic approaches.

Conclusions
This review defined body image as the way one’s body 
feels to its owner. By doing so, we focus on a small part
of the substantial literature relevant to how the brain
represents, constructs, and controls the body and how
those processes might change when people are in pain.
Even that small portion of the literature is not completely
understood. We know that body image is labile, but we 
do not know exactly how it is constructed by the brain. 
We know that the neural correlates of body image, at least 
those held in S1 and M1, are also labile and distorted in
many pain states. 

A relationship seems to exist between the extent of 
the body image distortion, disruption of cortical repre-
sentation, and pain. It seems unlikely that the distortion
in body image or cortical reorganization causes pain, but
pain may contribute to them. Therapeutic approaches
based on these relationships seem effective, at least in
some patients, but we do not yet fully understand how 
or why they work. However, there is good reason to hope
that as our understanding improves so too will our treat-
ment of patients in pain.
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