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Introduction
Articular calcification frequently occurs in aging and osteo-
arthritis (OA). The most common calcium-containing

crystals involved in joint disorders are calcium pyrophos-
phate dihydrate (CPPD) and basic calcium phosphate (BCP)
crystals, which include carbonated-substituted hydroxy-
apatite (HA), tricalcium phosphate, and octacalcium phos-
phate (OCP). The latter are heterogeneous in terms of
structure, chemical composition, and biologic properties.
Often asymptomatic, calcium-crystal deposition can cause
acute attacks of inflammatory arthritis, such as pseudogout,
erosive arthritis, or periarthritis, and is associated with an
exaggerated form of OA [1••]. Although specific treatments
to reduce calcification are not well developed, recent studies
have further contributed to the understanding of calcification
mechanism and the pathogenesis of calcium-containing
crystal deposition diseases.

Calcification Mechanism: Role of 
Extracellular Inorganic Pyrophosphate
This subject was recently reviewed comprehensively [2,3].
Articular calcification results from an imbalance between
physiologic calcification inhibitors and mediators. Extra-
cellular inorganic pyrophosphate (ePPi) is now recognized
as an important factor for controlling calcium crystal
formation [4,5]. Specifically, sporadic CPPD crystal
deposition in aging is linked with excess ePPi generation
via the chondrocytes [6], and ePPi deficiency leads to HA
crystal deposition. Production of ePPi is the result of PPi-
generating nucleoside triphosphate pyrophosphohydro-
lase (NTPPPH) activity or anion transport of intracellular
PPi across the cell membrane by ANK protein, which is a
multipass transmembrane PPi transporter.

The linkage between HA crystal deposition and
deficiency of ePPi level has been described in several
animal models and human diseases. Experiments by Ho
et al. [7••] described the linkage of homozygosity for a
truncation mutation of ank with the hyperostotic, hyper-
calcifying phenotype of murine progressive ankylosis in
the ank/ank mouse. The defective protein of mutated
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ank did not support PPi transport, resulting in ePPi level
diminution and unrestrained HA formation in joint
capsules and ligaments. Mice deficient for PC-1, the NTP-
PPH isoenzyme plasma cell glycoprotein-1 (tiptoe walking
[ttw/ttw] mice and PC-1 knockout mice) [8,9], have a
similar phenotype to that of ank/ank mice, including
spontaneous HA crystal deposition in articular cartilage,
which is likely a consequence of decrease ePPi. The genetic
abnormality in ttw mice is a change of a codon for Gly568
to a stop codon in an NTPPPH. PC-1 is the specific form of
the NTPPPH that is truncated in ttw mice. Mutations of
the human ortholog of the murine ank gene have been
described in craniometaphyseal dysplasia [10,11]. Excess
bone formation is observed in affected patients and
is characterized by progressive thickening and increased
mineral density of craniofacial bones and hyperostotic
flaring at metaphyses in long bones. Another rare disease is
idiopathic infantile arterial calcification (IIAC; Online
Mendelian Inheritance in Man 208000) because of PC-1
deficiency [12,13]. Terkeltaub [3,4] and Nurnberg et al.
[10] analyzed affected individuals from 11 unrelated
kindreds and demonstrated that IIAC was associated with
mutations that inactivated ecto-nucleotide pyrophos-
phatase/phosphodiesterase-1 [14••]. This cell surface
enzyme generates PPi, and PPi regulates cell differentiation
and serves as an essential physiologic inhibitor of matrix
calcification with HA. Affected individuals had low levels
of ePPi, diminished PC-1 protein, and presented with peri-
articular and arterial HA formation early in life.

Excess ePPi has long been recognized as a likely cause
of CPPD crystal deposition disease, and recently ANKH
mutations were identified in UK, French, and Argentinean
families with chondrocalcinosis [15,16]. Pendleton et al.
[15] showed that intracellular PPi levels significantly
diminished in COS cells transfected with one of the
mutant ANKH protein. This suggested that gain of function
of ANKH PPi channeling activity, over a long period of
time, can lead to increased ePPi and CPPD deposition.
Another example of the effect of elevated ePPi is seen
in patients with hypophophastasia, a deficiency of the
tissue-nonspecific form of alkaline phosphatase, which
hydrolysis PPi to inorganic phosphate. This results in
ePPi accumulation and CPPD deposition in cartilage.
Recently, Hessle et al. [9] and Johnson et al. [17] demon-
strated a coregulation and antagonistic relation between
alkaline phosphatase and PC-1 in controlling ePPi and HA
formation in bone.

Numerous soluble factors modulate ePPi production,
as does aging. The primary stimulus of ePPi production is
transforming growth factor (TGF) [18]. The effect of TGF-β
to raise chondrocyte PPi rises in association with aging
[19], as does TGF-β–stimulated NTPPPH activity [20].
TGF-β enhances expression of cartilage intermediate layer
protein/extracellular NTPPPH [21], PC-1 [22], and ANK
[23], and the latter two directly increase ePPi levels. Trans-
glutaminase activates latent TGF-β to increase chondrocyte

ePPi production. Two dominant forms of transglutaminase
have been identified in articular cartilage—type II trans-
glutaminase and factor XIIIA [24]. Interleukin-1–beta
(as well as tumor necrosis factor–alpha, donors of nitric
oxide, and the potent oxidant peroxynitrite) induces
increased chondrocyte transglutaminase activity [20]. The
authors discovered marked upregulation of transgluta-
minase and factor XIIIA expression in hypertrophic cells in
the superficial and deep zones of knee OA menisci [20].
Increased factor XIIIA and transglutaminase activities
directly stimulated calcification by chondrocyte cells.
Other stimuli for ePPi production include ascorbate, retin-
oic acide, and thyroid hormone [5]. Negative regulators
include interleukin-1–beta, tumor necrosis factor–alpha,
some isoforms of parathyroid hormone–related peptide,
and insulin-like growth factor–1 [4,5].

New data on genetics of ANKH gene mutations
have been recently reported by Williams et al. [25] on two
US families with CPPD disease whose disease phenotypes
have been linked to chromosome 5p15.1. These US
families displayed unique haplotypes as distinct from
that observed in the Argentinean kindred. An amino
acid change in exon 1 was observed in both families,
generating a point mutation in the P5 codon to change a
proline to a threonine. All three of these mutations arose
independently, suggesting that this position in ANKH
may be a specific site for mutation. A newer large family
kindred from Tunisia has been recently reported [26],
with possible relationships with the previous described
Tunisian kindred [27], and is awaiting genetic study.
However, no relationship has been found with human
leukocyte antigen genes.

Pathogenesis of Calcium-containing 
Crystal Deposition Disease
Clinical observations support the hypothesis that crystal
deposition causes cartilage degeneration and differs from
primary OA by the distribution of involved joints and
the severity of the disease. Unusual sites of OA, such
as the elbow, the shoulder, or the ankle joint, should
lead to further investigation for evidence of CPPD or BCP
crystal disease.

A recent study by Derfus et al. [28] demonstrated
that calcium-containing crystals were found in synovial
fluids of up to 60% of patients at the time of knee
arthroplasty. The authors reported that presence of
calcium crystals was correlated with severe radiographic
scores. Similar results were observed by Nalbant et al.
[29], who found that aside from CPPD and BCP crystals,
the presence of fibrils also was correlated with higher
radiographic grades of OA. Fibrils were identified in
60% of synovial fluid samples. Moreover, the authors
reported that the apatite crystals and fibrils appeared
with disease progression. Apatite crystals bind avidly to
collagen fibrils [30].
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The pathogenesis of inflammation in calcium-containing
crystal deposition disease remains incompletely resolved
(see review by Molloy and McCarthy elsewhere in this issue),
and may be secondary to synovial lining cell stimulation
by calcium-containing crystals, resulting in synovial cell
proliferation, matrix-degrading molecule release, and
secretion of inflammatory mediators and cytokines that, in
turn, stimulate chondrocytes to generate matrix-degrading
molecules [31]. Because crystals were rarely seen in immedi-
ate contact with chondrocytes in pathologic specimens,
most studies have not yet considered chondrocytes as
a passive bystander in the pathogenesis of BCP crystal-
associated OA and CPPD disease. However, Cheung et al.
[32] demonstrated, via electronic microscopy, that porcine
chondrocytes could cause endocytosis BCP crystals. The
authors also reported that BCP crystals induced prosta-
glandin E2 and collagenase secretion by chondrocytes.
McCarty et al. [33] demonstrated that BCP crystals stimulated
production of matrix metalloproteinase (MMP)-1 and MMP-
13 by articular porcine chondrocytes.

The authors of this paper showed that BCP crystals
directly induced non-adherent bovine chondrocytes induc-
ible nitric oxide (NO) synthase messenger RNA expression
and NO production. According to BCP crystal type, the
response was different. OCP crystals induced two times
more NO production than carbonated-substituted HA
crystals, whereas HA crystals had no effect on NO stimula-
tion (Ea et al., Unpublished data). Using OCP crystals,
the authors demonstrated that NO production was
independent of interleukin-1–beta induction and involved
p38 and c-Jun-N-terminal kinase mitogen-activated
protein (MAP) kinase pathways, while the p42/44 MAP
kinase pathway was not concerned (Ea et al., Unpublished
data). Crystals such as monosodium urate crystals have
been recently shown to directly activate NO and MMP-3
production via articular chondrocyte through such a
specific signaling pathway, including Pyk-2, Src, and p38
MAP kinase [34]. These studies demonstrate that chondro-
cytes may play a direct and active role in cartilage destruc-
tion via specific microcrystals.

The molecular mechanism of BCP crystal effect is
complex. It can be secondary to intracellular calcium
increase, leading to the activation of calcium-dependent
pathways, the activation of the MAP kinase pathways by a
yet unknown receptor, or a cell membrane modification
induced by crystal contact. Halverson et al. [35] demon-
strated that BCP crystals induced a biphasic calcium
increase in human fibroblasts. An initial rapid rise in intra-
cellular calcium derived from extracellular calcium influx;
a later sustained rise in intracellular calcium resulted from
BCP crystal dissolution in lysosomes. The initial transient
rise probably served as a second messenger, leading
to activation of early cellular response, such as c-fos
expression. It has been demonstrated that endocytosis and
dissolution of BCP crystals were required for mitogenic
effect [36,37]. In contrast, intralysosomal dissolution

was not necessary to induce MMP synthesis, although
endocytosis was required [38]. BCP crystals, at least as
represented by a complex association, are able to stimulate
the endocytic activity of cells, small molecules, such as
DNA fragments, and also possibly peptides [39]. Phospho-
citrate, as discussed by Cheung [40], also was able to
inhibit BCP crystal–stimulated endocytosis [39], further
supporting its potential role as a disease-modifying drug
for BCP crystal–induced or associated arthropathies.

Recently, Sun et al. [41] also showed that the induction
of MMP-1 expression by BCP crystals in canine fibroblast-
like synoviocytes is p42/44 MAP kinase–dependent and
uses the Ras/MAPK/c-fos/AP-1/MMP-1 signaling pathway.
Nair et al. [42] demonstrated that BCP and CPPD crystals
activated MAP kinase p42/44, but not p38 protein
kinase cascade pathway in fibroblasts [42]; in contrast, the
authors showed that OCP crystal–induced inducible
NO synthase expression in bovine articular chondrocytes
involved p38 and c-Jun-N-terminal kinase MAP kinase
pathways and not p42/44 MAP kinase (Ea et al., Unpub-
lished data). These suggested a cell-specific response
triggered by calcium-containing crystals. Prudhommeaux
et al. [43] demonstrated the variation in the inflammatory
properties of basic calcium phosphate crystals according to
crystal type. The inflammatory potential increased with the
specific surface area of the BCP crystals. The authors of
this paper thought that a large crystal surface allowed a
greater amount of proteins to bound [44–46], leading to
an increased crystal-cell membrane contact. This could
trigger intracellular signaling via a cell surface receptor–
like receptor, or could modify the cell membrane proper-
ties, as was demonstrated by Sun et al. [39]. Other studies
have recently confirmed this biologic variability of
BCP crystals on monocyte activation on cytokine release,
such as tumor necrosis factor–alpha, interleukin-6, and
interleukin-10 [47], or MMP stimulation [48].

Clinical Manifestations Related to Basic 
Calcium Phosphate Crystal Deposition
Basic calcium phosphate crystals are associated with a
number of clinical syndromes, including calcific tendinitis,
Milwaukee shoulder syndrome, and a severe form of OA.
BCP crystals are mainly responsible for acute periarthritis
that involves all possible tendon or capsular sites. The
clinician should be aware of this critical point when facing
an acute inflammatory articular or periarticular attack
mimicking septic arthritic or abscess, and should consider
acute HA attack as a differential diagnosis [49]. Unusual
sites, such as toes (pseudo-pseudo-podagra), wrists,
elbows, and ankles, can be involved. One patient even
presented with a spontaneous coccygeal pain (precoc-
cygeal deposit). Diagnostic clues are the knowledge of
para-articular tendons, capsulae, and bursae, with the
typical aspects of plain radiographs showing calcifications
of varying size. These calcifications can be unfragmented
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and dense, with a round shape, at the very beginning
or in asymptomatic joints; conversely, they start to be
fragmented, with fluffy edges, when inflammation has
started. They can vanish within days or weeks, justifying
repetition of radiographs. This is very characteristic of
apatite calcification. It is often asymptomatic, but can be
associated with chronic pain, and provokes self-limited
episodes of acute periarticular inflammation that
corresponded to the resorption phase of the crystals with
migration in the subacromial bursa and acute bursitis.
Persistent calcification is rare and can lead to local tender-
ness, which becomes the priority of the treatment.
However, the natural course of the calcification is to
disappear spontaneously. Recently Lemaire et al. [50]
reported another possible outcome of the calcification.
Using computerized tomography (CT), they described
apatite crystal penetration within the trochiter into
the femoral head in two patients who presented with an
acute periarticular inflammation. This outcome is rather
rare, but the authors thought that it is under-recognized
because CT scan was generally not used in calcific tendini-
tis diagnosis.

Destructive arthropathy is not unusual, especially at
the shoulder joint, and is called Milwaukee shoulder
syndrom  in the English literature and l’épaule destructrice
rapide in the French literature [51]. Clinical presentation
nowadays is the following classical description: elderly
patients presenting with long-standing shoulder pain
complicated by a sudden joint effusion along with
hematoma. Bloody synovial fluid contains a large amount
of apatite crystals. This also could be associated with
large rupture of the rotator cuff. A large Italo-Argentinean
kindred with OA, chondrocalcinosis, and Milwaukee
shoulder syndrome was described [52]. Milwaukee
shoulder syndrome was seen in one member of the first
generation and six members of the second generation,
while eight members of the third generation showed an
incomplete form of Milwaukee shoulder syndrome. OA of
the spine and peripheral joints was seen in 31 affected
members, while chondrocalcinosis was only observed in
six members of the first generation. A search for linkage to
some potential candidate genes was inconclusive in this
peculiar family [52]. On rare occasions, diagnosis can be
uneasy when a pseudo-tumoral mass is present, alone or
associated with bone erosions, with respect to paradia-
physeal calcification (Fig. 1) [53].

The nature of the calcification also can play a role in
the crystal evolution fashion, because it has been demon-
strated that BCP crystals possessed variable inflammatory
potential [43]. Recently, Hamada et al. [54] reported that
calcium deposits in 34 patients with calcific periarthrtis
were composed of carbonated apatite.

Basic calcium phosphate crystals can cause acute
synovitis of small or large joints. This is difficult to
ascertain because BCP crystals are not detectable by light
polarized microscopy. Alizarin red S staining can provide

can disclosed small aggregates, coin-like objects of 1 to
5 �m in length. It is quite difficult or even impossible
to detect these crystals under polarized light, especially
at small digit joint [55]. These crystals have been most
closely associated with OA. Using Alizarin red S or electron
microscopy, they can be seen in up to 30% to 60% of
synovial fluids from patients with OA. Such an association
also has been observed between the presence of crystals
and the radiographic severity of OA [56]. As discussed
before, these BCP crystals could contribute to the disease
process because they can interact with articular cells
or shed from the subchondral bone. Furthermore, Nalbant
et al. [29] found that BCP crystals appeared with joint
degeneration. Some of the HA deposits seen in cartilage
in OA are caused by subchondral bone shards, but many
are perichondrocytic. These HA deposits are likely attribut-
able to mechanisms such as chondrocyte hypertrophy,
apoptosis, and also PPi excess, that help provide PPi for
HA crystal formation [57,58].

The management of crystal-associated OA remains
identical to primary OA because the prevention of calcifi-
cation is yet unavailable. However, recent research to
develop specific therapy to prevent BCP crystal deposition
disease is advancing. Specifically, the PPi analogue phos-
phocitrate, a natural compound in mammalian mito-
chondria and in the urinary tract, is a potent inhibitor of
HA crystal formation [40].

Treatment of calcific tendinitis includes symptomatic
treatment (nonsteroidal anti-inflammatory drugs, local
corticosteroid injection, physical modalities including
heat application, and range of movement exercises) and
specific treatment (needle aspiration, surgical or arthro-
scopic removal, shock-wave, and ultrasound). The capacity
of ultrasound to promote resorption of calcification is
noteworthy. Ebenbischler et al. [59] reported the results of
a randomized, double-blind comparison of ultrasound
therapy and sham treatment in 63 consecutive patients
with symptomatic shoulder chronic calcific tendinitis.
Ultrasound treatment was associated with increased rate
of resorption and greater reduction pain. There was,
however, no significant difference between the two groups
at 9 months.

Clinical Expression of Calcium 
Pyrophosphate Dihydrate Deposition
Calcium pyrophosphate dihydrate disease often presents
as 1) pseudogout attacks (25% of patients with CPPD
deposition exhibit this pattern), 2) pseudo-rheumatoid
presentation (5% of cases) with multiple joint involve-
ment, usually along an additive pattern, 3) progressive OA-
like joint degradation of numerous joints, especially
at unusual sites, 4) asymptomatic but radiologic disease;
and 5) chronic destructive arthropathies presenting
with geodes of various size. CPPD disease rarely affects
the spine. Two sites, the periodontoid region and the
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cervicothoracic spine, are prone to CPPD deposits. This
involvement has been increasingly recognized over the
past decade [60••]. Muthukumar and Karuppaswamy
[60••] reported six cases presenting with insidious myel-
opathy caused by CPPD mass deposits involving the
ligamentum flavum of the cervical and thoracic spine.
From the review of the l i terature,  i t  appears that
spinal involvement in CPPD is more common in Japanese
than other populations, although scattered cases have
been reported in the French Caribbean [61]. The cervical
spine is more frequently involved, followed by the thoracic
and lumbar regions. At the cervical spine, the presentation
could be a periodontoidal mass leading to foramen
magnum syndrome or calcification of the ligamentum
flavum. This tumoral CPPD deposit of the ligamentum
flavum occurs more commonly in middle-aged or elderly
women and presents with progressive myelopathy.

Imaging studies include magnetic resonance imaging
(MRI) and CT scan. A low-signal mass is displayed at MRI,
related to calcified tissues, and CT scan showed the origin
of the CPPD tophus, namely the ligamentum flavum, the
facet joint, or even the disk. Pathologic examination,
including giant cell granuloma, rarely demonstrated
foreign body reaction or, rather, a compact collagen-rich
tissue containing calcium deposits, and no inflammatory
infiltrates. Microscopic examination of the nodules with
the polarized light can revealed extensive deposition of
CPPD crystals. Occasionally, via radiograph diffraction
study, the crystal was determined to be CPPD [62]

Although this condition is rare, rheumatologists and
neurosurgeons should be aware of these complications,
because only a surgical procedure, including cervical or
thoracolumbar posterior decompressive laminectomy with
removal of the calcified nodule, can relieve the symptoms
and signs. Because the foramen magnum is involved, a trans-
oral decompression of the cervical region can be necessary.

Imaging
Because treatment aimed to control calcium deposits are
still under investigation [40], clinicians should keep in
mind any method to assess changes in calcification size.
Radiographs are not precise enough for assessment, but
sonography could represent an alternative technique.
Sonography is useful in evaluating the patellofemoral
joint, including the trochlear cartilage, which is often
difficult to image adequately on conventional radiographs,
because true tangential views of the patellofemoral joint
may be difficult to obtain. Several cases of sonographic
detection of cartilage calcification in the trochlea of the
knee, which was radiographically occult or even confirmed
radiographically, have been described. One can speculate
that CT scan could be another imaging procedure to
evaluate calcifications.

Conclusions
Calcium-containing crystals are an important mediator
of joint inflammation and cartilage degradation. Recent
studies have highlighted the role of extracellular inorganic
pyrophosphates in the mechanism of pathologic articular
cartilage calcifications, as well as the place of the transmem-
brane PPi transporter ANK protein and the ePPi generating
NTPPPH isoenzyme PC-1. The knowledge of the molecular
mechanism involved in articular damage triggered
by microcrystals has been expanded [65]. Specifically,
chondrocytes seem to play an active role and can be directly
stimulated by BCP crystals. Clinical presentation is ascer-
tained by identification of crystals under polarized light
and Alizarin red S staining, which should be more widely
used. A challenge for the upcoming years will be the devel-
opment of drugs targeted to modulate the calcification
processes and the development of radiologic procedures
and techniques to evaluate this effect.
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