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Introduction
In the past years, the importance of cell death and of the
removal of the dying cells for the homeostasis in the body
and for the maintenance of an intact immune status
advanced in the awareness of the researchers. By now, two
main forms of cell death are encountered in biology: apop-
tosis and necrosis.

Necrosis can be considered a form of violent cell death.
Cells that may have not yet reached their full lifespan are
hit by an external noxa that interrupts their vital functions
or disrupts their physical integrity. The intracellular con-
tents of necrotic cells are spilled into the microenviron-
ment since these cells loose their membrane integrity very
early [1]. Necrosis is often because of a drop of adenosine
triphosphate (ATP), the influence of certain pathogens,
and mechanical or oxidative stress.

In many cases cells are dying in a programmed way fol-
lowing the “Samurai law of biology”: it is better to die than to
be wrong [2–4]. Apoptosis is viewed as programmed cell

death or cellular suicide [5]. In contrast to necrotic cells,
apoptotic ones maintain their membrane integrity thereby
preventing the release of intracellular components. They are
usually cleared by macrophages through a noninflammatory
pathway [6,7]. Apoptosis is characterized by specific morpho-
logic changes of the dying cells including loss of membrane
asymmetry, nuclear condensation, and DNA fragmentation.

Apoptotic cells are rarely found in vivo because of their
rapid and efficient clearance by professional or even ama-
teur phagocytes like fibroblasts. The early recognition of
dying cells requires characteristic membrane surface
changes that do not occur on normal cells. One such event
is the exposure of phosphatidylserine (PS) in the outer
leaflet of the plasma membrane associated with loss of
phospholipid asymmetry [8,9]. Nevertheless, there is an
enigma in the recognition and uptake of PS exposing cells,
that is not yet resolved. There are also viable PS exposing
cells (eg, activated B cells, monocytes), that are not phago-
cytosed. Therefore, we analyzed the binding of Annexin V
(AxV), a protein that specifically binds to PS, to viable and
dying monocytes, to understand this controversial feature
of PS exposure.

Apoptotic cell engulfment and anti-inflammatory sig-
naling are mediated through PS and through PS bridging
proteins and their cognate receptors. Other early surface
changes that might be involved in the removal of apoptotic
cell are alterations of carbohydrates. Certain lectins such as
C1q and the mannose-binding lectin have been described
to bind and opsonize apoptotic cells and enhance their
uptake. Nevertheless, the exact role of altered carbohy-
drates in the apoptotic clearance process is elusive. Lectins
are, in general, carbohydrate binding proteins specific for
certain sugar moieties or carbohydrate linkages [10]. They
serve diverse functions in recognition, interaction, as recep-
tors, and as adaptor molecules [11]. We analyzed the lectin
binding of PI impermeable dying cells by flow cytometry
and confocal microscopy to characterize modified sugar
residues on cells undergoing apoptosis.

In addition, other adaptor molecules and receptors are
involved in the recognition of dying cells [12–17]. In
human systemic lupus erythematosus (SLE) decreased lev-
els of serum DNaseI activities along with deficiencies in
components of the classical complement pathway predis-
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pose for this disease. Others and we have suggested an
important role of complement (mainly C1q) and DNaseI
in the clearance process of dying cells and subcellular frag-
ments [18–26]. Patients with primary antiphospholipid
syndrome who have low levels of the complement compo-
nents C3 and C4 and low CH 100 values also show immu-
nologic alterations similar to those of SLE [27]. The fast
and efficient uptake of dying cells is of main importance to
prevent contact of the immune system with intracellular
autoantigens. Insufficient clearance of the latter is dis-
cussed to drive the humoral autoimmune response in SLE
[28–30]. We analyzed the phagocytosis potency of mac-
rophages differentiated from CD34 positive stem cells
derived from the peripheral blood from SLE patients and
normal health donors (NHD) to investigate whether the
clearance defect observed in some SLE patients is intrinsic.
In addition, we tested sera of SLE patients, RA patients, and
NHD in regard to their DNase and complement activity
and their capability to degrade nuclei derived from
necrotic cells. Furthermore, we examined factors responsi-
ble for the uptake of necrotic cells by human monocyte
derived macrophages (HMDM). This paper deals with
important features of dying cells and recognition mole-
cules of the latter leading to their effective clearance and
discusses clearance defects that might contribute to the
induction and maintenance of autoimmunity.

Results and Discussion
Dying cells are naturally and rapidly cleared by 
phagocytes. The role of phosphatidylserine
As part of the apoptotic death program, cells undergo rapid
surface changes such as modification of carbohydrates and
exposure of anionic phospholipids, especially PS. An
enigma exists with respect to the recognition and phagocy-
tosis of PS exposing cells: viable PS exposing cells (eg, acti-
vated B cells [31,32], neutrophils in Barth Syndrome [33],
or monocytes) are swallowed neither by amateur nor pro-
fessional phagocytes. In contrast, apoptotic and necrotic PS
exposing cells are efficiently taken up. What could be the
reason for that? We suggest that dying cells have cell mem-
branes with high lateral mobility of PS. We demonstrated
that AxV, a specific PS-binding protein, binds to viable
monocytes without co-operation whereas AxV binding to
dying (apoptotic and necrotic) monocytes proceed in a co-
operative manner (Appelt et al., In press). This suggests
that AxV needs a critical density or clustering of PS mole-
cules. It might also be that AxV needs a not yet defined co-
factor that is only present on dying cells.

Changes of the glycoprotein composition in 
membranes of dying cells
By now the exact role of altered carbohydrates in the apop-
totic clearance process is elusive. Carbohydrate binding pro-
teins, the lectins, are discussed as players of the innate
immune system. Binding of collectins, a family of collage-

nous calcium-dependent defense lectins in animals, to
microorganisms may facilitate microbial clearance and also
affects apoptotic cell clearance [34]. Galactose- and man-
nose-specific receptors are discussed to play an important
role for the recognition of dying cells [35]. We selected and
analyzed the lectin binding of PI impermeable, dying cells
of 20 lectins by flow cytometry and confocal microscopy, to
characterize modified sugar residues on cells undergoing
apoptosis. We observed an increased binding of Narcissus
pseudonarcissus lectin, Griffonia simplificolia lectin II, and Ulex
europaeus agglutinin I on apoptotic cells in comparison with
viable ones. According to their binding specificity we con-
clude that mannose-, N-acetylglucosamine- and fucose-con-
taining epitopes are increasingly exposed on dying cells
during the execution of apoptosis. We found that the exposi-
tion of these modified sugar moieties displays a delayed
kinetic compared with PS. Therefore, the exposure of modi-
fied sugars may represent a back-up mechanism for clear-
ance for cells that had escaped the early PS-dependent
phagocytosis by macrophages. Lectins on macrophages may
contribute in this way to the noninflammatory removal of
immune complexes and abnormal cells.

Complement and DNaseI are involved in the 
clearance process of dying cells
Many defects are known with respect to the clearance of
apoptotic cells, necrotic cells, and dying cell material, espe-
cially that of nuclear origin. Examples are low C-reactive
protein (CRP) levels in patients with SLE [36], reduced
activity and levels of DNaseI in serum [18], and comple-
ment defects [21,37–39]. The importance of complement
in the scavenging process is becoming more and more evi-
dent. Complement activation by apoptotic cells, eg, endot-
helial cells, lymphocytes, and polymorphonuclear cells
(PMN) was just recently reported by several groups inde-
pendently [23,40,41]. Furthermore, an impaired uptake of
apoptotic cells by human macrophages was to be observed
in human serum depleted of specific complement compo-
nents (C1q, C3) [20,42,43]. We also suggest an important
role of complement and DNaseI in the clearance process of
dying cells and subcellular fragments [26,44]. Disturbed
clearance of nuclear DNA-protein complexes resulting
from dying cells may initiate and propagate SLE [45].
Napirei et al. [46] showed that DNaseI deficient mice dis-
play classic symptoms of SLE. The absence or the reduction
of extracellular DNaseI may, therefore, be a critical factor in
the initiation of human SLE. This is further substantiated
by decreased levels of DNaseI activity that had been
observed in the sera of SLE patients. DNaseI, being the
major serum nuclease, may be responsible for the degrada-
tion of chromatin accidentally released by inappropriately
cleared dead cells [18,26,47,48].

We tested sera of SLE patients in regard to their capabil-
ity to degrade necrotic cell-derived chromatin. We found a
significant correlation between the percentage of hypo-
chrome nuclei and the total classic complement activity of



Invited Commentary 403
the sera (CH 100 values). Sera with CH 100 values lower
and higher than 50 significantly differed in their degrada-
tion capability (4.2 ± 3.6 and 27.9 ± 7.9 [T-test: P =
0.000013], respectively). We also observed a strongly
reduced degradation capacity of necrotic cells of sera from
SLE patients with inherited deficiencies for C1q or C2.

Furthermore, we found a significant activity reduction
of DNaseI in sera of rheumatoid arthritis (RA) and SLE
patients in comparison with NHD. Most of the sera with a
high activity reduction of DNaseI showed a strongly
reduced degradation capacity of necrotic cell-derived chro-
matin. Most interestingly, SLE sera showed a strongly
reduced degradation capacity of necrotic cell-derived chro-
matin in comparison with RA sera and NHD sera. Seven of
20 SLE sera led to a degradation of less than 20% after 1
day of incubation with necrotic cells. In contrast only one
of 20 RA sera and none of the NHD sera led to degradation
below 20% (Gaipl et al., Unpublished data). We conclude
that an additional protection from chromatin implicated
in the development of autoimmune disorders such as SLE
can be achieved by the C1q and DNaseI dependent clear-
ance of degraded chromatin.

Ligands and receptors involved in the uptake of 
primary necrotic cells
Many ligands, bridging molecules, receptors, and mechan-
sims involved in the clearance of apoptotic cells have been
described. The ligation of PS-receptor (PSR) by PS on apo-
ptotic cell surfaces is considered important for signaling
the anti-inflammatory uptake of dying cells that are teth-
ered to phagocytes through various other receptors [8,49].
However, as only recently shown, the phagocytosis and
clearance of apoptotic cells is normal in PSR deficient mice
[50]. This observation suggests that a yet unknown recep-
tor for PS exists that may act as primary PS recognition
receptor. The PSR on phagyoctes may serve a dual role on
the cell surface and in the nuclei, since the protein encoded
by the PSR cDNA was found to be localized in the nuclei
[51]. Further important recognition and uptake systems are
described. The latter include collectin receptors, calreticu-
lin / CD91, Fcγ -receptors, c-Mer, β2-glycoprotein I receptor,
integrins, lectins, CD14, ATP binding-cassette transporters,
and scavenger receptors including CD36 [13,14,52–55].
The ligands of some of these receptors have been identi-
fied. The thrombospondin receptor (CD36) and the vit-
ronec t in  r ecep tor  αvβ 3  coopera t e  in  b inding
thrombospondin, that interacts with apoptotic cells.
Thereby, thrombospondin forms a “molecular bridge”
between the phagocyte and the dying cell [16,56,57]. The
interactions can be efficiently inhibited by monoclonal
antibodies targeting the recognition and uptake machinery
of the phagocytes [58]. By now little is known about the
receptors and ligands involved in the uptake process of pri-
mary necrotic cells. We established a flow cytometric based
phagocytosis assay to quantitatively monitor the uptake by
HMDM of primary necrotic cells. Our results show, that

interaction of PS that is exposed on the surface of apop-
totic and on necrotic cells with HMDM, serves as a recogni-
tion signal for the rapid removal of primary necrotic cells
(Gaipl et al., Unpublished data). In addition, the CD36/
(αvβ3) / thrombospondin complex as well as CD14 and
the complement component C1q contribute to the engulf-
ment of primary necrotic cells. Therefore, at least some of
the ligands, bridging molecules, receptors, and mecha-
nisms involved in the uptake of apoptotic cells mediate
also the clearance of primary necrotic cells generated by
heat, methanol or ethanol treatment. These findings reveal
that recognition and uptake mechanisms for apoptotic and
necrotic cells are, at least partially, identical. The results
may have important implications for the etiopathogenesis
of autoimmune diseases such as SLE, where an impaired
phagocytosis of dead cells appears to present an important
step for breaking self tolerance.

Dying cells release extracellular danger signals
Through the constant interplay of cellular and extracellular
components, the microenvironment of tissues directs
immune responses. “Danger signals” released by dying
cells are constituents of inflammatory environments.
Recently, it has been shown that primary necrotic cells
release the inflammatory high mobility group B1
(HMGB1) protein that is “frozen” on the chromatin of
apoptotic cells and remains immobilized even under con-
ditions of secondary necrosis [59,60]. During apoptotic
cell death, HMGB1 gets tightly attached to the hypoacety-
lated chromatin/histones and is not released, thereby pre-
venting inflammation [59,61]. However, in conditions
with impaired clearance of apoptotic cells, nucleosomes
with tightly attached HMGB1, acting as an adjuvant, may
contribute to break T cell tolerance towards histones and
other chromatin associated proteins. We detected HMGB1
in polyethylene glycol-precipitated immunocomplexes
from SLE patients (Unpublished data). The circulating
DNA/nucleosomes contain HMGB1 and, therefore, may be
predominantly derived from late apoptotic cells (second-
ary necrotic) rather than from (primary) necrotic cells.
Since primary and secondary necrosis involve the display
of different inflammatory signals, the fine-tuning of
responses against dying cells is of major importance.

Besides HMGB1, extracellular ATP has emerged as an
important regulator of inflammatory and immune
responses. It can affect the functions of various cells
through activation of P2 purinoceptors [62] ATP can be
released by regulated exocytosis, traumatic cell lysis, or pas-
sive leakage from damaged cells. Therefore, most likely, the
extracellular ATP concentration is raised during tissue
injury or inflammation [63].

The secretory phospholipase A2 (sPLA2) IIA is another
relevant secretory protein that floats freely in the serum
and strongly binds PS. sPLA2 IIA is not able to hydrolyze
efficiently the phospholipids of the outer membrane leaf-
let of normal intact cells. Thus, sPLA2 IIA is only able to
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react with phospholipids in the outer leaflet of normal
cells if they have undergone a flip flop from the inner leaf-
let as in apoptosis or necrosis. After interaction with sPLA2
IIA, cells are left with an increased proportion of lysophos-
pholipids like lysophosphatidylcholine (lyso-PC) in the
outer membrane leaflet. This modification disturbs the
packing of the phospholipids and generates binding sites
for the pentraxin CRP in the outer leaflet [64]. Once
bound, CRP induces complement activation through the
classical pathway, that in turn triggers the influx of neutro-
phils, decorates the surface of the ligand with opsonizing
complement fragments, and enhances phagocytosis of the
cells that have bound CRP and complement [65]. In addi-
tion to the membrane of intact injured cells, CRP also
binds to membranes and nuclear constituents of necrotic
cells. Several nuclear constituents, including histones,
small nuclear ribonucleoproteins and ribonucleoprotein
particles have been shown to bind CRP in a calcium-
dependent fashion [66]. Deposition of CRP to nuclei of
necrotic cells at sites of inflammation has been observed
while CRP does not cross the plasma membrane of apop-
totic cells. This might be considered another reasonable
mechanism of fine tuning the differentiation between
apoptosis and necrosis.

PTX3, being the prototypic long pentraxin, is structurally
related to, but distinct from CRP and serum amyloid P com-
ponent (SAP). PTX3 binds to necrotic cells to a lesser extent
then to apoptotic cells. Human DC failed to internalize
dying cells in the presence of PTX3, while they macropi-
nocytosed particulate substrates [67]. These results suggest
that PTX3 sequesters cell remnants from antigen-presenting
cells, possibly to prevent the onset of autoimmune reactions
in inflamed tissues.

Intrinsic clearance defects in some systemic lupus 
erythematosus patients
As mentioned before, apoptotic cells are usually cleared in
the early phases of apoptosis. Effective clearance of dying
cells induces neither inflammation nor immune responses
[7,68]. If apoptosis progresses, the cells can enter the stage of
secondary necrosis. During necrotic as well as apoptotic cell
death autoantigens are cleaved or otherwise modified [69–
72]. These modifications may render cryptic epitopes
immune dominant [73,74]. Dendritic cells may then acquire
modified autoantigens like apoptotic nuclei and chromatin
and consequently autoreactive T cells can be activated.
Impaired clearance functions for dying cells may explain
accumulation of apoptotic cells, and subsequently of second-
ary necrotic cells in various tissues of SLE patients [28–
30,75]. Increased levels of DNA and nucleosomes that have
been observed in some SLE patients [76,77] are most likely
because of secondary necrotic cells that are not able to retain
this material. Furthermore, it was recently shown that an
extranuclear accumulation of histones and nucleosomes is
an early event of apoptosis in human lymphoblasts. Dysreg-
ulation of early apoptosis might lead to an overload of

autoantigens (and in particular of nucleosomes) in circula-
tion or in target tissues [78] and support the induction of
autoimmunity against nuclear components [79]. We showed
that in a subgroup of patients with SLE apoptotic cells accu-
mulated in the germinal centers of the lymph nodes. The
numbers of tingible body macrophages usually containing
engulfed apoptotic nuclei were significantly reduced in these
patients. In contrast to all controls, apoptotic material was
observed associated with the surfaces of follicular dendritic
cells. This observation described for the first time the accu-
mulation of free apoptotic cells in germinal centers of the
lymph nodes in humans with SLE [30].

The next step was to investigate whether the impaired
clearance observed in certain SLE patients is an intrinsic
defect. We analyzed the phagocytosis potency of macroph-
ages differentiated from CD34 positive stem cells derived
from the peripheral blood from SLE patients and NHD,
respectively. SLE and NHD-derived stem cells showed simi-
lar proliferation in vitro. However, the differentiation into
macrophages was reduced in SLE stem cell cultures. Much
less macrophages differentiated from CD34 positive stem
cells. Furthermore, the macrophages of SLE patients
showed a different morphology: they are smaller and have
less differentiated “catching arms.” Most of the SLE stem
cell-derived macrophages also showed reduced phagocytic
capacity and died early. Taken together, in certain SLE
patients an intrinsic defect of particle phagocytosis and
dying cell clearance was found. Factors responsible for the
bad differentiation rate are currently under investigation.
Cytotoxic effects of ATP in the culture may play a role. In
contrast to fibroblast-like cells, hematopoietic cells, and
macrophages form under the influence of ATP4- (the fully
ionized form of ATP) lesions in their plasma membranes
[80]. Hemopoietic cells are highly sensitive to the cytotoxic
effects of ATP and its derivates [81]. Nearly all cells have
binding sites for nucleosides and nucleotides, the
purinoceptors (P2 receptors). The latter are discussed to be
potentially involved in the apoptotic process [82].

Heterogeneous clearance defects in some systemic 
lupus erythematosus patients
The next question was to investigate whether the clear-
ance defects in SLE patients is heterogeneous. We exam-
ined the uptake of various beads and dying cells by
phagocytes of SLE patients and NHD. In whole blood,
granulocytes of certain SLE patients show reduced uptake
of beads. Fifty percent of the SLE patients’ PMN showed a
reduced phagocytosis of albumin-coated beads. However,
the uptake of IgG-opsonized beads was only impaired in
approximately 20% of the patients’ PMN. We found that
macrophages and/or granulocytes of some SLE patients
showed a strongly reduced uptake of albumin beads,
polyglobuline beads, apoptotic and necrotic cells as well
as degraded chromatin. Very interestingly, phagocytes
from different SLE patients showed in part different
phagocytic defects.
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Conclusions
Efficient phagocytic clearance of dying cells is extremely
important in many biologic processes. The presented data
provide evidence that the early recognition of dying cells
requires characteristic membrane surface changes that do
not occur on viable cells, like altered carbohydrate compo-
sitions and high lateral mobility of PS. Evidence is accu-
mulating that complement proteins, besides others,
opsonize apoptotic cells, [23] leading to phagocytosis
mediated by well-defined “old-fashioned” receptors like
those for complement [83]. We observed a strongly
reduced degradation capacity of necrotic cells of sera from
SLE patients with inherited deficiencies for C1q or C2 or
low CH100 values. We showed that similar mechanisms as
for the phagocytosis of apoptotic cells seem to be involved
in the uptake of primary necrotic cells. Regarding the “late
phase clearance,” the complement component C1q and a
serum DNase, namely DnaseI, are the main players. We
further conclude that the defective clearance of dying cells
in a subgroup of SLE patients seems to be an intrinsic
defect since less macrophages differentiated from stem
cells and some of the generated phagocytes also showed
reduced uptake efficiency. Furthermore, the impaired clear-
ance capacities of granulocytes from some SLE patients
could play an important role in the development of
autoimmunity. Others and we conclude that altered mech-
anisms for clearance of dying material represent a central
pathogenic process in the development and acceleration of
autoimmune diseases like SLE [29,44,84].
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