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Introduction
Crystals of calcium pyrophosphate dihydrate (CPPD) and
of basic calcium phosphate (BCP), such as hydroxyapatite
(HA), are the most common calcium-containing crystals
associated with joint and periarticular disorders. Deposi-
tion of these crystals is frequently asymptomatic or can be
intermittently symptomatic. However, common clinical
manifestations of the calcium-containing crystal deposits
can include primary manifestations of acute or chronic
inflammatory and degenerative arthritides, symptomatic
flares, and a contribution to the worsening of cartilage

degeneration in osteoarthritis (OA) [1,2], as well as rotator
cuff inflammation and certain forms of periarthritis. In
addition, focal or multifocal tumoral deposits of calcium-
containing crystals may become symptomatic.

Advances in Pathogenesis of Cartilage 
Calcification in Aging and Osteoarthritis
Role of plasma cell glycoprotein-1 and altered 
chondrocyte differentiation and viability
Recent studies have furthered understanding of the mecha-
nisms responsible for CPPD and HA crystal deposition in
OA and cartilage aging. Specifically, articular cartilage
matrix calcification can reflect deficiencies of certain physi-
ologic calcification inhibitors or upregulation of mediators
that actively drive stereotypical patterns of tissue injury cul-
minating in calcification within degenerating cartilage [1].
A special circumstance promoting chondrocalcinosis is the
relatively unique capacity of chondrocytes to produce copi-
ous amounts of extracellular inorganic pyrophosphate
(PPi) [1,3•,4•,5••]. The linkage with sporadic CPPD crys-
tal deposition in aging of excess chondrocyte PPi–generat-
ing nucleoside triphosphate pyrophosphohydrolase
(NTPPPH) activity, excess PPi generation by the chondro-
cytes, and cartilage supersaturation with PPi is well estab-
lished [3•,4•,5••,6].

The molecular mechanisms transducing excess chon-
drocyte PPi generation and the key role of the chondrocyte
growth factor transforming growth factor-beta (TGFβ) in
elevating chondrocyte extracellular PPi are now increas-
ingly understood [3•,4•,5••]. Specifically, the NTPPPH
isoenzyme plasma cell glycoprotein-1 (PC-1; also known
as NPP1) plays a critical role in sustaining and augmenting
extracellular PPi in chondrocytes and certain other cells
[7••]. The isoenzyme PC-1 plays a larger role than the
closely related NTPPPH isoenzymes autotaxin/NPP2 and
B10/NPP3 in augmenting extracellular PPi in chondrocytes
[3•,4•]. Cartilage intermediate layer protein, a secreted
matrix molecule unrelated to the NTPPPH isoenzymes, has
been claimed NTPPPH [8], but this claim has not been
adequately documented or substantiated elsewhere.

The major types of crystals containing calcium, which 
causes arthropathy and periarticular disease, are calcium 
pyrophosphate dihydrate and basic calcium phosphates, 
including hydroxyapatite. Exciting advances include the 
identification of mutations in the gene ANKH associated 
with disordered inorganic pyrophosphate (PPi) transport in 
some kindred with familial chondrocalcinosis linked to 
chromosome 5p. In addition, central basic mechanisms gov-
erning cartilage calcification and their relationship to aging 
and osteoarthritis have now been elucidated. These include 
the role of plasma cell glycoprotein-1, the PPi-generating 
ecto-enzyme, in chondrocalcinosis and the linkage of low- 
grade inflammation to expression and activation of two car-
tilage-expressed transglutaminase isoenzymes with direct 
calcification-stimulating activity. This review discusses clini-
cally pertinent new information on pathogenesis. The 
authors also address, in detail, current diagnostic and ther-
apeutic issues pertaining to calcium pyrophosphate dihy-
drate and hydroxyapatite crystal deposition in the joint, as 
well as possible therapeutic directions for the future.
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Expression of PC-1 is upregulated by TGFβ, and PC-1
expression, and subcellular movement toward the plasma
membrane plays a major role in the capacity of TGFβ to
elevate chondrocyte extracellular PPi [4•,9]. Interleukin-1
suppresses PC-1 expression and extracellular PPi in chon-
drocytes and blocks the effects of TGFβ on PPi [9]. The
capacity of TGFβ to raise chondrocyte PPi rises in associa-
tion with aging [10], as does TGFβ-stimulated NTPPPH
activity [11••]. At the same, the beneficial growth-promot-
ing effects of TGFβ decrease with aging in articular chon-
drocytes [10]. These effects likely reflect altered signal
transduction with chondrocyte aging, and, in this context,
protein kinase C and protein kinase A signaling differen-
tially affect PPi levels of chondrocytes [12].

Recently, it was demonstrated that the natural antago-
nist of PC-1-mediated PPi generation was tissue-nonspe-
cific alkaline phosphatase (TNAP) [13,14••]. Specifically,
PPi levels and mineralization disturbances in tissues of PC-
1 knockout and TNAP knockout mice were mutually cor-
rected by crossbreeding to generate double knockout mice
[14••]. The TNAP knockout mouse is a model for infantile
hypophosphatasia [14••]. Significantly, articular cartilage
PPi excess and chondrocalcinosis are associated with hypo-
phosphatasia, which further suggests the potential use of
PC-1 antagonism as a therapeutic strategy for certain forms
of chondrocalcinosis. An interesting finding in the afore-
mentioned study was that disordered growth plate chon-
drocyte organization in TNAP knockout mice was also
corrected, in large part, by breeding onto the PC-1 null
background [14••]. Hence, PC-1 plays a major role in PPi
metabolism, and PPi metabolism appears in the regulation
of chondrocyte differentiation.

Regulated changes in chondrocyte differentiation and
viability appear to mediate chondrocalcinosis. Such
changes include the development of chondrocyte hypertro-
phy associated with expression of stereotypic bone matrix
proteins, and the presence of heightened hypertrophy and
apoptosis of chondrocytes adjacent to articular cartilage
calcifications [15]. Chondrocyte hypertrophy is associated
with heightened PPi generation [16] and increased produc-
tion of calcifying cell fragments (matrix vesicles) [17].
Upregulation of local parathyroid hormone–related
protein expression also may be one of the shared features
driving sequential chondrocyte proliferation and altered
differentiation in growth plate chondrocytes and articular
chondrocytes [18,19].

Chondrocyte apoptosis is enhanced in OA cartilage
and is directly associated with HA crystal deposits [15]. In
this context, nitric oxide (NO), a mediator of OA patho-
genesis, also stimulates apoptosis in chondrocytes [20] and
NO donor treatment of cultured chondrocytes stimulates
calcification in vitro. Furthermore, upregulated expression
of the PPi-generating ecto-enzyme PC-1 directly promotes
chondrocyte extracellular PPi elevation and matrix calcifi-
cation and also apoptosis in vitro [3•,21•,22]. Hence, the
conjoint excesses in NTPPPH activity and extracellular PPi

generation characteristic of sporadic CPPD crystal deposi-
tion disease of the elderly could be one of the factors com-
promising chondrocyte viability in aging and OA.

Role of inflammation and transglutaminase activity
Inflammatory mediators that promote degradation of the
articular cartilage matrix may also help prepare the matrix
for calcification in OA. In this context, interleukin-1-beta
stimulates expression of other cytokines and matrix metal-
loproteinases, inducible NO synthase expression, and
increased NO generation, as well as factor XIIIA trans-
glutaminase (TGase) and tissue TGase (tTGase) expression
in cartilage [11••]. Interleukin-1-beta (as well as tumor
necrosis factor-alpha and donors of NO and the potent
oxidant peroxynitrite) induces increased chondrocyte
TGase activity, and may be modulated via NO and oxidant-
mediated TGase post-translational modifications [11••].
The authors discovered marked upregulation of tTGase and
factor XIIIA expression in hypertrophic cells in the superfi-
cial and deep zones of knee OA articular cartilage and the
central (chondrocytic) zone of OA menisci [11••]. More-
over, increased factor XIIIA and tTGase activities directly
stimulated calcification by chondrocytic cells [11••]. Trans-
glutaminase activity also promotes activation from a
latency state of TGFβ-1 [23], a factor that, as cited, upregu-
lates PC-1 expression and extracellular PPi levels.

Transglutaminase activity and extracellular PPi levels
are concurrently elevated in association with articular carti-
lage aging [10,11••,24–26]. Furthermore, OA severity-
related, donor age-dependent, and marked age-dependent
interleukin-1–induced increases in TGase activity also were
observed in chondrocytes from human knee menisci,
which is a major site for CPPD deposition disease in aging
and OA [11••]. Taken together, inflammation-induced
TGase activity appears to be a substantial factor driving car-
tilage calcification in OA.

Homologue ank gene 
mutations in chondrocalcinosis
Chondrocytes and other cells regulate extracellular PPi lev-
els by the generation of PPi and by PPi transport [5••].
Recently, Ho et al. [27••] cloned the multiple-pass trans-
membrane protein ank and described the PPi channeling
function of ank. Furthermore, the same study described the
linkage of homozygosity for a truncation mutation of ank
with the hyperostotic, hypercalcifying phenotype of
murine progressive ankylosis in the ank/ank mouse [27••].
Deficient channeling of PPi from the cytosol to the extra-
cellular space was implicated [27••].

Mice deficient for PC-1 (ttw/ttw mice and PC-1
knockout mice) [14••,28] have a remarkably similar
phenotype to that of ank/ank mice, including spontane-
ous HA crystal deposition in articular cartilage, which is
a likely consequence of decreased extracellular PPi and
loss of the physiologic function of PPi to suppress HA
crystal deposition [5••].
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The PPi channeling function of ank (and the human
homologue of ank, whose gene is termed ANKH by some)
has recently been modeled. There are 10 or 12 membrane-
spanning domains with an alternating inside-out orienta-
tion and with a central channel to accommodate the pas-
sage of PPi (Fig. 1) [27••,29]. Significantly, ank mutations
at different locations in the molecule can affect the skele-
ton in different ways, and this is schematized in Figure 1.
For example, there is an association of distinct regional ank
mutations with the ank/ank mouse (with truncation of C-
terminal putative cytosolic domain) compared with more
N-terminal human ANKH mutations in craniometaphyseal
dysplasia (CMD; widely known as “mask disease”) [29,30].
Craniometaphyseal dysplasia is a pediatric disorder charac-
terized by progressive thickening and increased mineral
density of craniofacial bones and hyperostotic flaring at
metaphyses in long bones, as well as the classic “mask
facies” [29,30]. The effects of the ANKH CMD mutations
on PPi transport and other potential functions of ANKH
are not currently understood, but may involve dysregulated
intramembranous bone formation.

The ANKH locus resides in human chromosome 5p.
Reports linking familial CPPD deposition disease to
human chromosome 5p (CCAL2) have been detailed in
studies of kindred from the UK, Argentina, France, and the
US [31–34]. Phenotypes of all affected individuals with
chondrocalcinosis linked to chromosome 5p are not com-
pletely identical. For instance, members of the UK kindred
with primary chondrocalcinosis also presented with infan-
tile recurrent febrile seizures [31]. Kindred from Argentina
and the Alsace region of France did not manifest a seizure
disorder, but had similar phenotypic features of chondro-
calcinosis, including early age at onset (third decade of
life), common but not universal premature OA, some cases
of pseudorheumatoid arthritic peripheral joint disease,
and radiographic evidence of fibrocartilage and hyaline
cartilage calcifications typical of CPPD deposition (and
without evidence that the crystal deposition was secondary
to chondrodysplasia) [32,33]. The most commonly
affected joints in these kindred were the knees and wrists,
and involvement of the pubic symphysis and intervertebral
discs also occurred [32,33].

Initial studies linked the chondrocalcinosis in the Brit-
ish kindred to a 5.6-cM locus of chromosome 5p15.1-15.2
between D5S810 and D5S416 [31]. The unrelated French
and Argentinean families had linkage to a 0.8-cM locus of
chromosome 5p between the polymorphic markers
D5S416 and D5S2114 [32,33]. A family of UK and German
ancestry from the US linked to chromosome 5p was identi-
fied; they displayed similar phenotypic features [34].

ANKH is nearly identical to mouse ank over its entire
length, with only 9 amino acid substitutions, and the
ANKH gene mapping on human chromosome 5 is closely
linked to D5S1954. Recently, mutations in ANKH were
identified in UK, French, and Argentinean families with
chondrocalcinosis (Fig. 1) [35••,36••]. Specifically, Will-

iams et al. [36••] reported linkage of a P5L mutation in
ANKH to autosomal dominant chondrocalcinosis in an
Argentine family of Northern Italian descent. Pendleton
et al. [35••] identified autosomal dominant ANKH
mutations in previously reported UK and French families
in whom CPPD crystal deposition had been clinically
characterized. They also tested 95 subjects with sporadic
chondrocalcinosis in whom they found one subject, a 79-
year-old man, with an ANKH mutation [35••]. This
group found that all affected members of the French
family were heterozygous for a T-C nucleotide base change

Figure 1.  Model for ank/ANKH and for associations of distinct mouse 
ank and human ANKH mutations with different phenotypes of skeletal 
disease. The figure schematizes the putative structure of ank/ANKH 
and the multiple-pass transmembrane protein that appears to function 
in inorganic pyrophosphate (PPi) channeling from the cytosol to the 
extracellular space. As illustrated, distinct mutations in ank or ANKH 
promote distinct phenotypes. Impairment of ank function via homozy-
gosity for a C-terminal cytosolic domain truncation mutation in 
murine progressive ankylosis mice leads to a decrease in extracellular 
PPi. Because PPi is a potent natural inhibitor of hydroxyapatite crystal 
deposition, this results in deposition of hydroxyapatite crystals in artic-
ular cartilage and other sites, and also results in peripheral synovial 
and intervertebral bony ankyloses. The figure summarizes sites of 
known ANKH mutations associated with autosomal dominant familial 
chondrocalcinosis (calcium pyrophosphate dihydrate crystal deposi-
tion disease) and with sporadic chondrocalcinosis in one subject (as 
discussed in the text). It is believed that most if not all of the autoso-
mal dominant human chondrocalcinosis mutations lead to excess 
extracellular PPi, promoting calcium pyrophosphate dihydrate crystal 
formation. The sites of autosomal dominant ANKH mutations impli-
cated in human craniometaphyseal dysplasia (CMD) also are 
depicted, and CMD is discussed in the text. The effects of the CMD 
mutations on PPi transport and other potential functions of ANKH are 
not currently understood.
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in exon 2, which causes the substitution of threonine for
methionine in a predicted transmembrane domain
(M48T). In a UK family (that also manifested febrile sei-
zures), all affected individuals were heterozygous for a –11
C-T base change capable of giving rise to an alternative
ATG initiation codon, thereby adding four amino acids to
the N-terminus of ANKH. The sporadic chondrocalcinosis
subject displayed heterozygosity for a 3-bp deletion in
exon 12, which deletes a glutamate residue (E490del) three
amino acids from the C-terminus of ANKH.

Reconstruction of the –11CT, M48T, and E490del muta-
tions and preliminary evaluation of their effects on intra-
cellular PPi levels in transfected COS cells were performed
[35••]. The authors determined that each of the three
mutant ANKH proteins lowered intracellular PPi [35••];
however, only the –11CT ANKH mutant appeared signifi-
cantly more potent at promoting intracellular PPi lowering
than wild-type ANKH in their cell system [35••]. Cell lines
from the affected subjects in the UK kindred were not
tested for PPi levels.

The Pendleton et al. [35••] and Williams et al. [36••]
papers do lend credence to the possibility that subtle “gain
of function” of intrinsic ANKH PPi channeling activity
may, over long periods of time, lead to chondrocyte “PPi
leakiness” and matrix-saturating increases of extracellular
PPi that result in CPPD crystal deposition and degenerative
joint disease in 5p familial chondrocalcinosis. Limitations
in the Pendleton et al. [35••] and Williams et al. [36••]
studies also included the reliance on transfection of cells
other than chondrocytes, and the absence of results for
extracellular PPi (and, therefore, incomplete evidence of
altered PPi channeling). The Pendleton et al. [35••] paper
addressed intracellular PPi, but there was a lack of demon-
stration of significant functional effects for the M48T and
E490del mutations. Significantly, nonchondrocytic cell
lines from the French family had previously been deter-
mined to have markedly elevated intracellular PPi [37,38].
Thus, ANKH PPi channeling function may have be defi-
cient in some of these subjects rather than overactive
(“leaky”) for PPi transport to the cell exterior, and elevated
intracellular PPi could provide substrate for intracellular
and extracellular CPPD crystal formation. Alternatively,
transport of another solute modulating CPPD deposition
may be affected by the M48T mutation, or the effects of ank
on PPi channeling may be different in chondrocytes than
in other cells.

Expression of ank and PC-1 is highly regulated. Thus,
researchers speculate that secondary alterations in chon-
drocyte expression of wild-type ank (or PC-1) in OA and
aging are significant factors in promoting a significant frac-
tion of sporadic CPPD crystal deposition disease.

The heterogeneity of familial chondrocalcinosis is
noteworthy [39]. This observation is illustrated partly by
linkage of early onset osteoarthritis and chondrocalcinosis
in a New England family with chromosome 8q (CCAL1)
[40], but this study is limited by absent crystallographic

studies. Better definition of whether the crystal type depos-
ited in cartilage in specific familial chondrocalcinosis kin-
dred is CPPD or HA. Thorough assessment for extracellular
PPi deficiency (as in the ank/ank and PC-1 knockout mice)
compared with extracellular PPi excess may help in future
definitions of candidate genes other than ANKH and PC-1
in individual forms of familial chondrocalcinosis.

Update on Other Clinical Issues in Calcium 
Pyrophosphate Dihydrate Deposition Disease
Clinical features and diagnosis
The clinical manifestations of CPPD deposition disease
vary widely. The disease can be asymptomatic or can
mimic OA, gout, acute-onset or insidious rheumatoid
arthritis, or neuropathic joint disease [41]. The contribu-
tions of the forms of CPPD deposited and of host factors to
these wide differences in clinical manifestations are not
clear, but they potentially include variations in deposition
of more inflammatory monoclinic CPPD crystals com-
pared with less inflammatory triclinic CPPD crystals. It
remains unexplained why cartilage degenerative changes in
CPPD deposition disease can be observed in typical joints
for primary OA, such as the knee and hip, and atypical pri-
mary OA joints, such as the shoulders, elbows, wrists, and
metacarpophalangeal joints. Systemic disturbances in PPi
metabolism clinically manifested primarily in the joint
may help account for such findings.

Degenerative cartilage disease associated with spo-
radic CPPD crystal deposition disease may be less or
more destructive than that observed in primary OA. Pro-
spective analysis of CPPD deposition disease that princi-
pally involved the knee has suggested that radiographic
worsening of degenerative changes may be slow [42].
The disease also may not appear to be clinically progres-
sive in the involved knee after substantial periods of fol-
low-up in a subset  of patients,  though cl inical
involvement may spread to other joints in the same time
frame [42]. Most patients develop changes in radio-
graphic extent of chondrocalcinosis over time [42], but
there is no clear correlation between the extent of calcifi-
cation and progression of CPPD deposition arthropathy.
Patients with initial presentation of CPPD deposition
disease in the knee as acute pseudogout attacks alone
may do particularly well [42].

In primary OA, the presence of CPPD crystals has been
reported as an adverse prognostic factor. For example,
Reuge et al. [43•] reported that patients with primary OA
and CPPD crystals needed more knee replacement surgery
compared with primary OA without crystals. In addition,
Derfus et al. [44•] found that 60% of their patients under-
going joint replacement had pathologic calcium crystals
(CPPD or basic calcium phosphates, such as HA) in their
knee synovial fluids. The authors reported that higher
mean radiographic scores correlated with the presence of
calcium-containing crystals [44•].
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Calcium pyrophosphate dihydrate crystals affect periar-
ticular structures more frequently than generally appreci-
ated. Recently, Canhae et al. [45•] reported in a cross-
sectional study that 52% of subjects had periarticular
involvement. The most common forms of periarticular
involvement were carpal tunnel syndrome (24%) and peri-
arthritis of shoulder (20%); less commonly seen were
anserine bursitis and epicondylitis [45•]. Calcium pyro-
phosphate dihydrate crystal deposition may also involve
the sacroiliac joints and spine, where radiographic find-
ings, such as linear calcification and bony ankylosis, occa-
sionally appear [46]. Clinical manifestations resembling
ankylosing spondylitis, as well as acute pseudogout of
lumbar facet joints, were reported recently [46,47].

The ability of CPPD crystals to cause tumoral deposits
was recently reviewed by Yamakawa et al. [48••], who also
reported clinicopathologic analysis of five of their own
cases. They divided the reported cases into two main cate-
gories according to the anatomic distribution of tumoral
CPPD crystals—61% central (head and neck) and 39% dis-
tal (in an extremity). The authors pointed out that the
most common anatomic locations involved with tumoral
CPPD crystals were the temporomandibular joint (37%),
cervical spine (22%), and hand (18%) [48••]. Less com-
mon locations included the toe, hip, wrist, shoulder,
elbow, and parotid gland. Painful mass and neurologic dis-
turbances were the most common signs observed in
patients with the central type, whereas painless mass or
swelling without neurologic findings, or acute arthritic
attacks similar to tophaceous gout, were more characteris-
tic of the distal type.

Several recent papers have reminded clinicians of the
potential development in CPPD deposition disease of cer-
vical myelopathy, foramen magnum syndrome, and odon-
toid fractures caused by the calcification of cervical
ligamentum flavum, the transverse ligament of atlas, and
the atlantoaxial joint, respectively [49–51,52•]. Thus,
CPPD deposition disease can factor in the differential diag-
nosis of patients with neurologic disturbances, especially
in the elderly.

Conventional radiography is usually the first method
to evaluate patients with suspected chondrocalcinosis.
Radiograph findings may not correlate with pathologic
and clinical manifestations. For example, the correlation
between radiographic and pathologic findings was only
39.2% in a study of patients using knee arthroscopy [53].
Radiographic diagnostic approaches to CPPD deposition
disease other than conventional radiograph have the
potential to improve sensitivity [53]. For example, com-
puted tomography, magnetic resonance imaging, and
ultrasonography are useful in determining presence of
CPPD crystals, particularly in the knee [53,54•,55,56].

Synovial fluid analysis for CPPD crystal deposition has
been further evaluated and refined [57•]. It has been sus-
pected that there is a decrease in the number of CPPD crys-
tals seen if synovial fluid wet preparations are not

analyzed. Recently, however, Galvez et al. [57•] reported
that CPPD crystals were detected equally well at 24 and 72
hours after arthrocentesis when samples were stored at
4ºC, whether or not anticoagulant was used. It has been
suggested that there is potential usefulness for Gram stain
and Diff Quick staining methods for crystal analysis in
synovial fluids under conditions where the specimens are
not fresh [58,59].

Demonstration of CPPD crystals in articular tissues is
generally difficult in specimens routinely stained with
hematoxylin-eosin, because the strong acidity of hematox-
ylin solutions promotes decalcification. Ohira and Ish-
ikawa [60] recently showed that the decalcifying effect of
hematoxylin could be lessened by limiting the staining
period with Mayer’s hematoxylin to 3 minutes.

Current and Future Therapies of Calcium 
Pyrophosphate Dihydrate Deposition Disease
As in gout, therapeutic approaches to patients with CPPD
deposition disease involve treatment and prophylaxis of
acute arthritic attacks, and therapy of chronic and anatom-
ically progressive sequelae of crystal deposition. For acute
attacks of pseudogout, Roane et al. [61] reported the effi-
cacy of one-two doses of 60-mg triamcinolone acetonide
by intramuscular injection. This approach is a potential
alternative in patients with polyarticular involvement in
whom nonsteroidal anti-inflammatory drugs are contrain-
dicated. In a 6-month, double blind trial, Robertson et al.
[62] reported that hydroxychloroquine, which is being
investigated for treatment of erosive OA [63,64], was effec-
tive in patients with chronic polyarticular CPPD deposi-
tion disease [65].

Oral low-dose colchicine is well recognized as effective
prophylactic treatment for gout and pseudogout attacks.
Recently, Das et al. [66,67] suggested some efficacy of
colchicine in chronic pain of primary knee OA (with and
without evidence of inflammation) in two different ran-
domized, double-blind, placebo-controlled 20-week dura-
tion studies. The prevalence of CPPD crystals in these knee
joints was relatively high in these studies [66,67]. However,
the study designs were complex and involved significant
concurrent nonsteroidal anti-inflammatory drug and intra-
articular steroid therapies. As such, the potential therapeu-
tic benefit of colchicine in knee OA is not clarified ade-
quately by these studies. Furthermore, it is not clear in
these studies that any effects of colchicine are attributable
to suppression of subclinical crystal-induced inflammation
in these knees.

Strikingly reduced meniscal calcification was reported
over a 10-year period in association with administration of
oral magnesium to a patient with secondary CPPD deposi-
tion disease caused by hypomagnesemia [68]. In addition,
pseudorheumatoid CPPD crystal deposition disease is
potentially responsive to methotrexate. However, effective
cartilage-preserving therapy is still lacking in idiopathic
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and metabolic disease–associated forms of chronic pro-
gressive CPPD deposition disease [69]. It has been sug-
gested that clinical trials of the anion transport inhibitor,
probenecid, which suppresses ank-induced and TGFβ-
induced increases in extracellular PPi [27••,35••,70], may
compel further clinical investigation. Prevention of CPPD
deposition by polyphosphates could provide another ther-
apeutic approach [71].

In view of cartilage degeneration in CPPD crystal depo-
sition disease, the use of intra-articular hyaluronan pre-
sents a potential treatment option. Though one study of
glycosaminoglycan polysulphate was interesting in chon-
drocalcinosis [72], there are numerous case reports of
acute arthritis in patients with chondrocalcinosis and of
pseudogout after intra-articular hyaluronan injections [73–
75]. Thus, the risk-to-benefit ratio for use of intra-articular
hyaluronan in joints with detectable chondrocalcinosis is
currently under question.

Kalunian et al. [76] demonstrated the efficacy of arthro-
scopic irrigation with 3000 mL of saline in a multicenter
randomized controlled trial of patients with early OA. In
this work, in which patients were evaluated at 12 months,
patients with synovial fluid crystals had statistically greater
improvements in pain [76]. Taken together, it is possible
that the subset of OA patients with chondrocalcinosis may
respond differently to some intra-articular treatments.

Articular and Periarticular 
Hydroxyapatite Crystal Deposition
Articular cartilage HA deposition is often concurrent with
CPPD deposition in OA and aging cartilage, and vice versa,
as has been recently re-emphasized [44•]. Some of the HA
deposits seen in cartilage in OA are caused by subchondral
bone shards, but many are perichondrocytic. These HA
deposits are likely attributable to mechanisms including
chondrocyte hypertrophy, apoptosis, and also PPi excess
that helps provide inorganic phosphate for HA crystal for-
mation [15,22,77]. It is believed that HA and CPPD crys-
tal-induced chondrocyte matrix metalloproteinase
expression promotes OA progression, as does the traffic of
HA or CPPD crystals from articular cartilage to synovium
[78–80]. The calcific crystal-synovial interactions likely
contribute to synovial proliferation and inflammation and
cartilage matrix–degrading matrix metalloproteinase
expression by synovium in a significant fraction of subjects
with OA [2,44•,78,81].

Hydroxyapatite crystal deposition in articular cartilage,
as well as synovitis and OA, are seen in association with
extracellular PPi deficiency in ank/ank and PC-1 knockout
and PC-1-deficient ttw/ttw mice [14••,27••,28]. These
findings illustrate that chronic extracellular PPi excess and
also extracellular PPi deficiency are deleterious for chon-
drocytes and promote calcification [1,5••]. Deficiency of
PC-1 in humans also has been associated with calcification

[7••]. Specifically, a PC-1-deficient male infant was
recently identified with idiopathic infantile arterial calcifi-
cation, which is characterized by large artery media HA
crystal deposition and smooth muscle cell proliferation
and by periarticular calcifications [7••].

Recently, Pons-Estel et al. [82] reported an Italo-Argen-
tinean kindred with familial OA and apparent Milwaukee
shoulder-knee syndrome associated with BCP crystals. This
family had an unusual type of degenerative joint disease
with secondary intra-articular and periarticular calcifica-
tions and Milwaukee shoulder-knee syndrome. Genetic
linkage was undefined in this kindred.

Hydroxyapatite and related BCP crystal deposits in
periarticular soft tissues can be asymptomatic or promote
clinical manifestations, including acute calcific periarthri-
tis, tendonitis and bursitis. Women tend to be affected
more commonly than men, and young people are affected
more often than the elderly. Hydroxyapatite crystal–associ-
ated inflammation of the rotator cuff and subacromial
bursa of the shoulder can be successfully treated using nee-
dle aspiration, irrigation, and steroid injections, and ultra-
sound-guided techniques can enhance the success of such
approaches [83–90]. The capacity of ultrasound to pro-
mote resorption of rotator cuff and bursal calcifications is
particularly noteworthy [89].

Conclusions
Fundamental research to develop specific therapy to pre-
vent BCP crystal deposition disease is advancing. In this
context, the PPi analogue phosphocitrate, a natural com-
pound in mammalian mitochondria and in the urinary
tract, is a potent inhibitor of HA crystal formation [91••].
Systemic phosphocitrate treatment also inhibits HA and
CPPD crystal–associated cell stimulation, including induc-
tion of matrix metalloproteinase-3 in fibroblasts that pro-
mote degradation of the carti lage matrix [80].
Phosphocitrate suppresses ankylosing ossification in
murine progressive ankylosis of ank/ank mice [92]. In addi-
tion, phosphocitrate inhibits NO-induced calcification of
cartilage [21•]. Thus, phosphocitrate and molecular thera-
peutics targeted to ANKH and PC-1 are prime examples
potential rational molecular therapeutic approaches for
calcific crystal deposition diseases.
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