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Introduction
Biomineralization is under cellular control; that is, cells are
required to generate a calcifiable matrix, and are responsi-
ble for initiating calcification at selected, nonrandom
extracellular sites. After initiation, cells regulate progressive
calcification by supplying sufficient extracellular Ca2+ and
PO4

3- plus other mineral supporting molecules, such as
substrates for alkaline phosphatase [1]. Cells also control
the rate and distribution of biomineralization through

localized synthesis and secretion of mineral inhibiting
molecules such as inorganic pyrophosphate (PPi) [2], pro-
teoglycans [3], and matrix Gla protein [4].

Mineralization is initiated in cartilage, bone, and
dentin in association with extracellular matrix vesicles
(MVs) [5••]. MVs are approximately 100 nM in diameter,
extracellular, membrane-invested particles that are gener-
ated by polarized budding and release from the surfaces of
chondrocytes, osteoblasts, and odontoblasts [5••]. This
process occurs as a temporal and spatial sequence in the
growth plate of growing animals. Chondrocytes of the
growth plate are arranged in columnar stacks, with prolif-
erating cells in an upper zone overlying daughter chondro-
cytes. The latter undergo maturation (in the upper
hypertrophic zone) and terminal differentiation and
programmed cell death (apoptosis) in the lowest region of
the growth plate [6]. A similar layering of less mature,
superficial chondrocytes over more mature, deep-zone
chondrocytes is seen in articular cartilage where MVs are
more numerous in the deeper, tidemark area [7].

Maturation and differentiation of chondrocytes in the
hypertrophic zone of growth plate is characterized by the
expression of alkaline phosphatase [8] and the synthesis
and secretion of type X collagen [9]. The tissue nonspecific
isomer of alkaline phosphatase is localized by electron
microscopic histochemistry at the outer surfaces of matur-
ing hypertrophic chondrocytes and adjacent MVs of
growth plate [8], where it is attached by a glycosyl linkage
to phosphatidyl inositol of the cell and MV membranes
[10]. Type X collagen is uniquely synthesized by hyper-
trophic chondrocytes, then secreted and incorporated into
the lower hypertrophic and calcifying zone matrix [9].

The balance between chondrocyte proliferation and
differentiation is regulated by a number of known and
unknown interacting hormones, cytokines, and morpho-
genetic factors. The mechanism in which these factors
interact to regulate growth plate cellular activities is just
beginning to be understood. Factors that promote chon-
drocyte proliferation (thus inhibiting differentiation and
MV biogenesis) include the following: parathyroid hor-
mone–related peptide [11•], Bcl-2 protein [12], transform-
ing growth factor [13], and fibroblast growth factor [14].
Factors that promote chondrocyte maturation and MV bio-
genesis include the following: thyroxine (T3) [15], retinoic
acid [16], Indian hedgehog [17•], and bone morphoge-
netic proteins, especially bone morphogenetic protein-6
(BMP-6) [18•].

Matrix vesicles (MVs) are extracellular, 100 nM in diameter, 
membrane-invested particles selectively located at sites of 
initial calcification in cartilage, bone, and predentin. The 
first crystals of apatitic bone mineral are formed within
MVs close to the inner surfaces of their investing mem-
branes. Matrix vesicle biogenesis occurs by polarized bud-
ding and pinching-off of vesicles from specific regions of the 
outer plasma membranes of differentiating growth plate 
chondrocytes, osteoblasts, and odontoblasts. Polarized
release of MVs into selected areas of developing matrix 
determines the nonrandom distribution of calcification.
Initiation of the first mineral crystals, within MVs (phase 1), 
is augmented by the activity of MV phosphatases (eg, alka-
line phosphatase, adenosine triphosphatase and pyrophos-
phatase) plus calcium-binding molecules (eg, annexin I and 
phosphatidyl serine), all of which are concentrated in or 
near the MV membrane. Phase 2 of biologic mineralization 
begins with crystal release through the MV membrane,
exposing preformed hydroxyapatite crystals to the extra-
cellular fluid. The extracellular fluid normally contains
sufficient Ca2+ and PO4

3- to support continuous crystal 
proliferation, with preformed crystals serving as nuclei 
(templates) for the formation of new crystals by a process 
of homologous nucleation. In diseases such as osteoarthri-
tis, crystal deposition arthritis, and atherosclerosis, MVs 
initiate pathologic calcification, which, in turn, augments 
disease progression.
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Matrix Vesicle Biogenesis
Matrix vesicles arise in skeletal tissues by budding and then
pinching off from the outer cell membranes of chondro-
cytes, osteoblasts, and odontoblasts [5••]. The process of
budding is polarized in all three of these cell types. Only a
specific region of the outer cell membrane gives rise to
MVs. With growth plate chondrocytes, MVs arise by
blebbing from the lateral surfaces that lie adjacent to the
vertically oriented longitudinal matrix septa [19]. In the
growth plate, entry into differentiation by chondrocytes
may be a prerequisite condition for MV biogenesis. Thus,
factors known to promote chondrocyte differentiation,
such as T3, retinoic acid, Indian hedgehog, or BMP-6,
should theoretically be able to promote MV biogenesis.
However, this hypothesis has not yet been adequately
tested because of the unavailability of an experimental sys-
tem in which the yield of mineralization-competent MVs
generated under different experimental conditions can be
quantified and correlated with the level of differentiation
induced by the discussed factors. Recently, methods for pri-
mary culture of chick [20] and rat [21] growth plate chon-
drocytes have been described in which it may be possible
to correlate the release of MVs with expression of alkaline
phosphatase or other markers of differentiation by the cul-
tured cells. In the case of rat chondrocytes, it was possible
to quantify the yield of calcifiable MVs [21]. Thus, it may
be possible to quantitatively relate the effect of chondro-
cyte differentiation on the rate of MV biogenesis.

In growth plates, it also has been suggested that MV
biogenesis is the result of programmed cell death (apopto-
sis) [5••]. This hypothesis would not account for MV bio-
genesis occurring in newly formed bone and dentin, where
most MV-releasing osteoblasts and odontoblasts appear
viable. However, in the deepest layers of the growth plate,
most chondrocytes exhibit a hydropic form of program-
med cell death [22]. Furthermore, cytoplasmic blebbing
and vesiculation is a well-known feature of the apoptotic
process that can be triggered in chondrocytes by increased
intracellular Ca2+ [23]. Recent studies from the author’s
laboratory have demonstrated positive TUNEL stains
(for apoptotic DNA fragmentation) in the nuclei of
approximately one third of proliferating zone chondro-
cytes, two thirds of the nuclei of early hypertrophic and
maturing chondrocytes (the level where MVs arise), and in
virtually all late hypertrophic chondrocytes in growth
plates of 3-week-old, rapidly growing rats. These data
suggest that growth plate chondrocytes release MVs during
an early stage of apoptosis. Later, the deep hypertrophic
chondrocytes undergo hydropic cellular disruption, that is,
a morphologic pattern unlike that of classical apoptosis
[22]. Although the majority of chondrocytes in the growth
plate die and are reabsorbed during vascular invasion from
the underlying metaphysis [6], there is accumulating
evidence indicating that the occasional chondrocyte may
bypass apoptosis, and through a process of asymmetric cell
division persist as an osteoblast [24].

Mechanism of Matrix Vesicle Calcification
There is considerable evidence indicating that MVs initiate
the first crystals of hydroxyapatite (HA) bone mineral
[5••]. During phase I of mineral initiation, Ca2+ is
attracted to MVs by calcium-binding molecules that are
concentrated in the MV structure. These include the follow-
ing: 1) calcium-binding acidic phospholipids, especially
phosphatidyl serine (PS) [25], which is concentrated at the
inner surface of the MV membrane, thus promoting the
ingress of Ca2+; and 2) calcium-binding proteins enriched
in MVs, including annexin II (calpactin), annexin V
(anchorin CII), and annexin VI plus calbindin D9K (see
[5••]). Annexins also can function as transmembrane Ca2+

channels [5••]. The local intra- and perivesicular PO4
3-

concentration is raised by the enzymatic activity of phos-
phohydrolases that are enriched in the MV membrane,
especially alkaline phosphatase [26], adenosine mono-
phosphate phosphodiesterase [26], adenosine triphos-
phatase [27],  and nucleoside tr iphosphate
pyrophosphohydrolase [28]. Uptake of PO4

3- also is facili-
tated by the action of a sodium-dependent PO4-transporter
that is present in MVs [29]. Elevation of Ca2+ and PO4

3-

within the protective microenvironment of the matrix vesi-
cle sap, when exceeding the solubility product of calcium
and PO4 ions, may lead to precipitation of the first CaPO4
mineral deposits near the inner surface of the MV mem-
brane where Ca2+- and PO4

3--concentrating molecules
coincide. The intravesicular pH may be raised by the action
of carbonic anhydrase that is concentrated in MVs [30],
and could stabilize the initial mineral crystals.

Phase II, the propagation phase of MV mineralization,
begins with the release of preformed HA crystals into the
extravesicular fluid. In normal animals, the extracellular
fluid bathing MVs contains homeostatically maintained
levels of calcium and PO4 sufficient to support continued
nucleation of new HA crystals on preformed HA templates.
Crystal perforation of the MV membranes would be aug-
mented by phospholipases [31] and proteases [32] that are
present within MVs. Propagation of mineral into the
perivesicular matrix would be facilitated by metallopro-
teinases of MVs, which are capable of degrading mineral-
inhibiting proteoglycans [33]. Electron microscopy of cal-
cified areas of growth plate cartilage matrix shows that MVs
are broken apart and degraded during advanced stages of
mineral propagation [19].

During initial mineral propagation it is typical for HA
crystals to form radial clusters at the periphery of MVs, not
only in growth plate, but also in newly forming bone and
predentin [5••]. Adjacent collagen fibrils play an impor-
tant role in regulating the ensuing biomineralization cas-
cade once this process has been initiated by MVs [34].
Recent work indicates that types II and X collagens are
bound to the outer surfaces of MVs and may serve as a
bridge for crystal propagation out into the extravesicular
matrix [35]. Collagen calcification would follow vesicle
calcification, with mineral deposition occurring in and on
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collagen fibrils in a spatially oriented array [34]. The vecto-
rial sequence of mineral propagation from MVs to adjacent
collagen is especially well illustrated in electron micro-
scopic studies of mineralizing turkey tendon [34].

Matrix Vesicle Involvement in Osteoarthritis 
and Crystal Deposition Arthritis
The pioneering work of Ali and Wisby [36] showed that the
pathogenesis of osteoarthritis is associated with excessive
and uneven calcification of the deep, tide mark zone of
articular cartilage. Matrix vesicles, isolated from the articu-
lar cartilage of patients with osteoarthritis were shown to
possess a markedly increased alkaline phosphatase activity,
and were more prone to initiate in vitro calcification
[36,37]. These observations support the hypothesis that an
irregular, hypercalcified, and physically hardened subchon-
dral tide mark in osteoarthritis joints creates abnormal and
excessive mechanical stress, which leads to premature
erosion of the overlying articular cartilage.

Recent studies of osteoarthritis cartilage also have dem-
onstrated an abnormally increased rate of chondrocyte
maturation [38] and apoptosis [39]. Premature maturation
of chondrocytes in osteoarthritis would be expected to lead
to the release of increased numbers of alkaline phos-
phatase–positive, mineralization-competent MVs. Further-
more, an excessive number of apoptotic chondrocytes in
osteoarthritis would release more proteolytic enzymes into
the matrix, especially matrix metalloproteinases [40] and
cathepsins [41]. These enzymes digest proteoglycans, elas-
tin, and collagen, thus provoking further degradation of
the articular cartilage matrix, as well as further mineral
propagation in the tide mark area because of the removal
of mineral-inhibiting proteoglycans.

A unique and poorly understood feature of osteoarthri-
tis is the overgrowth of subchondral bone and the forma-
tion of osteophyte bone spurs at the edges of affected
joints. It recently has been shown by immunohistochemis-
try that articular chondrocytes express and synthesize
BMPs [42]. Bone morphogenetic proteins are capable of
inducing ectopic bone formation, and they also promote
normal chondrocyte maturation [18•] and apoptosis [43].
Bone morphogenetic proteins generated by prematurely
differentiated osteoarthritis chondrocytes, and released
into the matrix in MVs [44], could stimulate the over-
growth of subchondral bone and the formation of periar-
ticular osteophytes.

Calcium pyrophosphate deposition disease, also known
as chondrocalcinosis and pseudogout, is the most prevalent
form of crystal deposition arthritis. This disease results from
the deposition of calcium pyrophosphate crystals into
midzone articular cartilage. The enzyme that generates PPi,
nucleoside triphosphate pyrophosphohydrolase (NTPPH),
is concentrated in the membranes of chondrocytes and MVs
[1,28]. Under normal conditions, the PPi that is generated
by NTPPH is broken down to inorganic phosphate by the

alkaline phosphatase of MVs and chondrocytes [45,46].
However, in calcium pyrophosphate deposition arthritis, it
appears that the balance of PPi formation versus PPi
hydrolysis is tilted toward excessive PPi formation [47], thus
leading to CaPPi deposition.

Crystal deposition arthritis caused by hydroxyapatite
deposition is a feature of calcifying tendonitis [48] and
Milwaukee shoulder syndrome [49]. In calcifying tendoni-
tis, tenocytes undergo chondrogenic differentiation and
generate a cartilage-like matrix containing MVs [48]. These
MVs then initiate HA deposition as in growth plate [19]
and turkey tendon [34]. The possible role of an altered
enzymatic balance favoring alkaline phosphatase over
NTPPH has not been extensively investigated in human
tendonitis. However, a potential new experimental model
of chondroosseous metaplasia of tendons, associated with
apatite deposition in joints, is presented in the phenotype
of “tiptoe walking” mice. These mice have a naturally
occurring null mutation of the gene for NTPPH [50],
which leads to excessive HA deposits in articular cartilage
and spinal ligaments. In “tiptoe walking” mice, it appears
that excessive calcification of joints and tendons results
from unopposed alkaline phosphatase–mediated genera-
tion of Pi caused by a deficiency of NTPPH, which nor-
mally generates sufficient mineral-inhibiting PPi to
prevent excessive calcium Pi deposition. A similar extracel-
lular PPi deficiency, associated with hypermineralization
of articular cartilage and spinal ligaments, is seen in ank-
deficient mice. The ank gene specifies the synthesis of an
outwardly directed plasma membrane PPi transporter,
which functions to maintain normal levels of extracellular
PPi [51]. In ank-deficient mice the level of extracellular PPi
falls, resulting in excessive, alkaline phosphatase-mediated
HA deposition in articular cartilage and tendons [52]. In
personal communication, Sampson [52] has indicated to
the author that mineralization in ank/ank mice is initiated
in association with MVs.

Conclusions
Matrix vesicles are released by chondrocytes, osteoblasts,
odontoblasts, and tenocytes into selected sites where
matrix calcification will occur. Matrix vesicles initiate depo-
sition of the first crystals of apatitic bone mineral through
the interaction of phosphohydrolase enzymes, especially
alkaline phosphatase and NTPPH, plus calcium-binding
molecules, all of which are enriched in MVs. Once initiated
within MVs, apatitic mineral crystals replicate through a
process of homologous nucleation and spread by propaga-
tion to involve large areas of the extravesicular matrix. The
rate of mineral propagation is controlled by homeostati-
cally supplied extracellular calcium and PO4 levels plus the
extravesicular concentration of naturally occurring inhibi-
tors of mineral propagation, notably PPi.

In osteoarthritis, hydroxyapatite deposition arthritis
(calcifying tendonitis) and ankylosing spondylitis of
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humans and of “tiptoe walking” and ank/ank mice, MVs
initiate pathologic articular calcification, which, in turn,
augments disease progression. Advanced chondrocyte dif-
ferentiation or apoptosis of chondrocytes in osteoarthri-
tis articular cartilage promotes the release of greater
numbers of alkaline phosphatase–enriched MVs, which,
in turn, cause excessive and irregular calcification of the
deep articular cartilage and excessive erosion of the over-
lying superficial cartilage. The release of BMPs by apop-
totic art icular chondrocytes into the matrix or
encapsulated in MVs may promote the hyperostosis of
subchondral bone and the formation of osteophytic bone
spurs typical of osteoarthritis.
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