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Introduction
Musculoskeletal pain is a common complaint during
patient-physician encounters. Moreover, the drugs avail-
able in the treatment of musculoskeletal pain conditions
are not optimal [1]. Therefore, deep pain is a diagnostic
and therapeutic problem. Further insights into the periph-
eral and central neurophysiologic mechanisms are neces-
sary to improve diagnosis and therapy, and to implement a
mechanism-based approach. This report discusses the pos-
sible involvement of peripheral sensitization versus central
sensitization underlying deep tissue hyperalgesia and

referred pain. This report also provides examples of how
these mechanisms can be assessed under experimental
conditions or in patients with musculoskeletal pain. How-
ever, this report does not discuss in detail the complicated
pathophysiologic mechanisms involved in acute and
chronic muscle pain. The terminology “hyperalgesia” is
used for pain evoked by normally non-nociceptive or noci-
ceptive stimuli (including allodynia).

Musculoskeletal pain disorders are often accompanied
by local and referred changes in somatosensory sensitivity.
However, most experimental pain research has been con-
ducted on cutaneous pain, although deep tissue pain is far
more clinically important. In contrast to sharp, localized
characteristics of cutaneous pain, muscle pain is described
as aching and cramping, with diffuse and referred localiza-
tion. Kellgren [2] was one of the pioneers to experimen-
tally study the characteristics of muscle pain and the
locations of referred pain to selective activation of specific
muscle groups. Firm neurophysiologically based explana-
tions for referred pain do not exist, but wide dynamic
range neurons and nociceptive-specific neurons in the spi-
nal cord and in the brain stem receive convergent afferent
input from the skin, muscles, joints, and viscera. This may
cause misinterpretation of the afferent information com-
ing from muscle afferents when reaching higher levels in
the central nervous system and thus be one reason for the
diffuse and referred characteristics.

The sensation of acute muscle pain results from the
activation of group III (Aδ-fiber) and group IV (C-fiber)
polymodal muscle nociceptors. The nociceptors can be
sensitized by the release of neuropeptides from the nerve
endings. This may eventually lead to central sensitization
of dorsal horn neurons manifested as prolonged neuronal
discharges, increased responses to defined noxious stimuli,
response to non-noxious stimuli, and expansion of the
receptive field. Extensive animal experiments have sup-
ported this notion by showing that the sensitization of
dorsal horn neurons may be a possible cause of muscular
hyperalgesia and referred pain [3]. The brain response to
standardized painful stimuli in musculoskeletal pain con-
ditions has not been studied extensively, although the tech-
niques are available and preliminary results suggest
abnormal processing of the nociceptive input (refer to

This report provides a brief introduction to the manifesta-
tions of peripheral and central sensitization involved in 
musculoskeletal pain disorders. It has become increasingly 
evident that muscle hyperalgesia, referred pain, referred 
hyperalgesia, and widespread hyperalgesia play an important 
role in chronic musculoskeletal pain. A better understand-
ing of the involved basic mechanisms and better methods 
to assess muscle pain in the clinic may provide new possibil-
ities for designing rational therapies and for targeting the 
pharmacologic intervention optimally. Peripheral sensitiza-
tion plays an important role for increased sensitivity of 
deep tissue. However, central sensitization may be equally 
important but less addressed. Quantitative sensory testing 
provides the possibility to evaluate these manifestations in a 
standardized way in patients with musculoskeletal pain or in 
healthy volunteers (eg, experimentally induced referred 
pain can be used to assess the potential involvement of 
central sensitization in musculoskeletal pain conditions). 
Central sensitization may play a role in the persistence, 
amplification, and spread of pain. Interventions should 
take this aspect into consideration.
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Bradley et al. [4] for a review). A hypothesized central
sensitization in spinal or brain stem neurons is depicted as
an abnormal brain response.

Induction and Assessment of Muscle Pain and 
Hyperalgesia in Humans
The ultimate goal of advanced human experimental pain
research is to obtain a better understanding of the mecha-
nisms involved in pain transduction, transmission, and per-
ception under normal and pathophysiologic conditions.

Experimental muscle pain research involves two sepa-
rate topics. One topic is standardized activation of the
muscle nociceptive system, and the other measurements of
the evoked responses. Experimental approaches can be
applied in the laboratory for basic studies (eg, central sen-
sitization or preclinical screening of drug efficacy) and in
the clinic to characterize patients with sensory dysfunc-
tions and musculoskeletal pain.

Because pain is a multidimensional perception, the
reaction to a single standardized stimulus of a modality
can represent only a limited fraction of the entire pain
experience. It is neccessary to combine different stimula-
tion and assessment approaches to gain advanced differen-
tiated information about the nociceptive system under
normal and pathophysiologic conditions. For musculo-
skeletal pain research, muscle sensitivity and possible
modality-specific somatosensory changes in the referred
areas should be assessed. A major advantage of experimen-
tal muscle pain models is that isolated aspects of muscle
pain mechanisms can be investigated in a standardized set-
ting without confounding factors.

Various methods can be used to induce and assess mus-
cle pain. Usually, the techniques are divided into methods
with (exogenous) and without (endogenous) external
stimuli [5]. The following is a summary of the available
methods based on Arendt-Nielsen [5], Svensson and
Graven-Nielsen [6], and Graven-Nielsen et al. [7].

Endogenous models
The endogenous methods are characterized by a high
response rate and are suitable to study general muscle pain
states. However, they have the disadvantage of involving
several or all muscle groups within the region investigated.
Pain from other somatic tissues often cannot be excluded.

Ischemic muscle pain is a classic experimental pain
model and has been used for many years as an unspecified
pain stimulus. The method is found to be reliable and has
been used for human analgesic assay. This is an efficient
model to induce pain in muscles, but skin, periosteum,
and other tissues will contribute to the overall pain percep-
tion. The model is applicable in experimental studies
requiring a general tonic pain stimulus.

Various forms of heavy and unaccustomed exercise can
evoke exercise-induced pain in specific muscles. Together
with overloading and insufficient resting periods, concen-

tric dynamic and isometric contractions can elicit muscle
pain, which may share the same physiopathogenetic
mechanisms as ischemic pain.

In contrast, eccentric contractions induce a delayed
onset of muscle pain or soreness. The mechanisms under-
lying this kind of muscle pain after excercise seem to be
different from those of ischemic muscle pain and are prob-
ably related to ultrastructural damage resulting in the
release of algesic substances. This may produce an inflam-
matory reaction because nonsteroidal anti-inflammatory
drugs (NSAIDs) appear to have an effect on this type of
muscle soreness.

Exogenous models
Mechanical stimulation is another method for excitation
of muscle nociceptors. Pressure algometry is the most gen-
erally applied technique for quantification of tenderness,
which in clinical practice is assessed by palpation. Using
this technique, it can be difficult to distinguish between
peripheral and central sensitization unless the sensitiza-
tion is restricted to a single muscle or joint. Therefore, con-
trol determinations from unaffected, extrasegmental areas
are important. The pain and tolerance thresholds can be
measured easily; the stimulus-response functions can pro-
vide important information on muscle hyperalgesia. Nor-
mally, hand-held algometers are used [8], with which the
rate of pressure increase and absolute values can be moni-
tored. It has been difficult to compare thresholds from var-
ious clinical pressure pain studies because different
instrumentation, different probe diameters and shapes,
and different force increase rates have been used. The
diameter is most important because there is not always a
simple relationship between diameter and threshold; spa-
tial summation plays an important role for pain. The shape
and contour of the probe are important because sharp
edges may excite more cutaneous receptors as a result of
high shear forces compared with blunt probes. Attempts
have been made to standardize the technique. In addition,
normal values for various muscles have been published
[8]. Hopefully, quantitative techniques will be more appli-
cable and standardized for clinical applications in the
future. Recently, we developed a new pressure algometry
technique based on stimulus-response recording of the
pain response to increasing pressure in a cuff placed
around a limb [9]. This technique is fully automated,
which increases the reliability. The sensitivity seems to be
less influenced by minor site variations.

Intraneural stimulation of muscle afferents is a labora-
tory model that selectively elicits muscle pain accompa-
nied by referred pain, which increases for increasing pain
intensity. Intramuscular (IM) electrical stimulation can
evoke deep pain, but the sensation is confounded by con-
current activated muscle twitches. This method is adequate
for studies in which muscle pain and referred pain should
be induced in a phasic manner, because the pain is present
only during the stimulation (eg, in contrast with referred
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pain after saline-induced pain, which will last several min-
utes). This provides the possibility to observe a given inter-
vention over time (ie, what happens before and after a
referred area is anesthetized). However, electrical stimula-
tion is not nociceptive specific.

Chemical stimulation (ie, by IM infusion of hypertonic
saline) causes local and referred pain. Recent animal studies
have shown that the method does not cause any muscle tox-
icity; therefore, the method is adequate for human experi-
mentation. A major advantage of the hypertonic saline
model is that a detailed description of sensory and motor
effects can be obtained because the pain lasts for minutes.
Furthermore, the model is reliable for studying referred pain
from musculoskeletal structures as a result of the longer-
lasting pain. In most of the earlier studies, manual bolus
infusions of hypertonic saline were used. However,
standardization of the infusion of small volumes is easier to
accomplish by computer-controlled infusion pumps.

Intramuscular injections of algesic substances (such as
capsaicin, bradykinin [BK], serotonin [5-HT], potassium
chloride, glutamate, levo-ascorbic acid, and acid phosphate
buffer) have been used experimentally to induce muscle
pain in humans. These methods elicit mild to moderately
intense levels of pain.

Deep Tissue Hyperalgesia
Many clinical studies report increased sensitivity to painful
stimuli of deep tissues within and outside muscle pain
areas in patients compared with controls. Peripheral mech-
anisms (sensitization of receptors) may explain deep tissue
hyperalgesia, whereas modulation of somatosensory sensi-
tivity at referred sites without obvious tissue pathologies is
mediated by central mechanisms.

Experimental findings
Sensitization of muscle nociceptors may explain deep tis-
sue hyperalgesia because this phenomenon decreases the
mechanical excitation threshold and increases responses to
noxious stimuli [10]. Experimentally, this has been seen as
decreased pressure pain thresholds after IM injections of
capsaicin [11]. Intra-arterial injections of serotonin, BK,
and postaglandin E2 have been effective in sensitizing
nociceptors in animals [3]. In humans, deep tissue hyper-
algesia is reflected in an increase in sensitivity to pressure
after combined IM injections of 5-HT and BK [12•] (Fig.
1). Hyperalgesia to pressure from the combined injection
of 5-HT and BK is detected at the injection site and 10 cm
away from the injection site [13]. Recently, Ernberg et al.
[14] found that co-injection of 5-HT and the 5-HT3 recep-
tor antagonist granisetron into the masseter muscle
reduced the spontaneous pain evoked by injection of 5-HT
and prevented allodynia/hyperalgesia to mechanical pres-
sure stimuli. Therefore, peripheral serotonergic receptors
could be involved in the regulation of musculoskeletal
pain disorders.

The ionotropic and metabotropic glutamate receptors
are other receptor types, which are found on peripheral
unmyelinated sensory afferents in the skin [15] and pre-
sumably on sensory muscle afferents. Intramuscular injec-
tions of glutamate produce hyperalgesia to pressure stimuli
in humans [16••] and sensitize rat muscle afferents [17].
Therefore, it is likely that the glutamate receptors can con-
tribute to deep tissue hyperalgesia through peripheral sen-
sitization. The glutamate-evoked muscle pain in humans
and afferent responses in rats were higher in females com-
pared with males [16••]. Considering the high prevalence
rate of chronic musculoskeletal pain conditions in women,
such sex-related differences are important as possible
peripheral neurobiologic mechanisms involved in chronic
musculoskeletal pain.

Based on the results of many clinical studies, one
would expect to observe muscle hyperalgesia in the pres-
ence of experimental muscle pain. Svensson et al. [18]
performed an experimental study in which increased ten-
derness assessed by pressure algometry was observed
after the jaw muscle had been exposed to experimental
muscle pain (hypertonic saline). Moreover, pain thresh-
olds to IM electrical stimulation are significantly lower in
muscles 24 hours after they have been exposed to hyper-
tonic saline [19]. Such findings on pressure and IM elec-
trical pain thresholds are also seen after infusion of
isotonic saline in the leg muscles [20]. Therefore, the
findings on muscle sensitivity in saline-induced muscle
pain areas are unclear. Muscular hyperalgesia has been
detected mainly on the masticatory muscles or brachio-
radialis muscle, whereas hypoalgesia or unchanged sen-
sitivity is found in studies on the larger tibialis anterior
muscle. This could suggest that the development of mus-
cular hyperalgesia depends on the size of the muscle and
possibly the level of afferent barrage. This is supported
by the pressure pain thresholds being higher for a large
muscle such as the tibialis anterior compared with a
smaller muscle such as the brachioradialis.

For the superficial tissue overlying the saline-induced
muscle pain area, increased sensitivity to electrical [19]
and pinprick stimulation [21] is found. In contrast,
decreased responses to pinprick stimuli [22] and
unchanged pain thresholds to pinch stimulation [20]
have been reported. These findings may be related to
central mechanisms discussed in a later section on
referred hyperalgesia.

Another model on deep tissue hyperalgesia is the sore-
ness developed after eccentric muscle work (delayed onset
muscle soreness), with peak soreness after 24 to 48 hours.
A feature of delayed onset muscle soreness is that there is
no pain at rest, but pain is evoked by muscle function and
during palpation (ie, allodynia/hyperalgesia). An example
of delayed onset muscle soreness from a model of deep tis-
sue pain in wrist extensors with characteristics similar to
lateral epicondylalgia [23] is shown in Figure 2. Peripheral
sensitization is probably the main mechanism responsible
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for hyperalgesia to pressure. The allodynic component in
delayed onset muscle soreness is suggested to be mediated
by the thick myelinated afferents and not exclusively by the
thin unmyelinated nociceptive afferents [24]. Nonetheless,
the central mechanism responsible for temporal summa-
tion of nociceptive input (ie, progressive increase in pain
perception during repetitive stimuli) is also facilitated in
the course of muscle soreness after exercise [25].

The phenomenon of neurogenic inflammation (axon
reflex) caused by a noxious stimulus is well-known and
studied as the flare reaction in human skin but is also
important for muscles. Neurogenic inflammation in a
muscle may cause the release of peptides that can increase
the blood flow locally. Edema and plasma extravasation
may follow. This phenomenon plays a role in the develop-
ment of localized muscle hyperalgesia.

Clinical findings
Pressure pain sensitivity is the most common technique to
assess painful musculoskeletal conditions (such as tender
points, fibromyalgia, work-related myalgia, myofacial pain,
strain injuries, myositis, chronic fatigue syndrome, arthritis/
arthroses, and other muscle/tendon/joint inflammatory
conditions) [8]. The technique is adequate to quantify and
follow the development of certain diseases. It is also
adequate for documenting treatment outcome, such as
local/systemic administration of NSAIDs. An example is the
recording of the joint pain threshold before and weeks after
topical application of an NSAID to patients suffering from
unilateral finger joint inflammation and pain. Stimulus
response functions can provide more information than a
threshold because sensitization to low and high intensities

can be assessed. A shift in parallel toward the left, together
with an increased slope, has been found in patients with
myofacial pain [18]. After anesthetizing the muscle, the
curve was shifted toward the right with a reduced slope [18].

Referred Pain
Referred pain has been known and described for more
than a century and has been used extensively as a diagnos-
tic tool in the clinic. Originally, the term “referred tender-
ness and pain” was used. It has since been used to describe
pain perceived at a site adjacent to or at a distance from the
site of origin. Referred pain and referred hyperalgesia to
somatic structures from viscera are important in diagnosis
and treatment but is not the scope of this paper. For a
review, see the paper by Vecchiet et al. [26].

Several neuroanatomic and neurophysiologic theories
regarding the appearance of referred pain have been sug-
gested. They state that nociceptive dorsal horn or brain
stem neurons receive convergent inputs from various tis-
sues, thus higher centers cannot identify correctly the input
source [27,28]. Most recently, the models have included
newer theories that state that sensitization of dorsal horn
and brain stem neurons plays a central role.

Experimental findings
Referred pain is probably a combination of central process-
ing and peripheral input because it is possible to induce
referred pain to limbs with complete sensory loss as a
result of an anesthetic block [29•]. However, the involve-
ment of peripheral input from the referred pain area is
unclear because anesthetizing this area shows inhibitory or

Figure 1. A, Peripheral sensitization in humans leads to an increase in maximal pain intensity (Visual Analogue Scale [VAS] peak) when intra-
muscular injections of serotonin (5-HT) combined with bradykinin (BK) are administered, compared with isotonic saline (NaCl) combined with 
BK (mean ± standard error; n = 10; *P < 0.05 compared with BK plus isotonic saline). B, The area infiltrated with 5-HT and BK shows increased 
muscle sensitivity to pressure (ie, decreased pressure pain thresholds). The muscle sensitivity is normalized to the muscle sensitivity before injec-
tion (mean ± standard error; n = 10; *P < 0.05 compared with pre-injection). (Adapted from Babenko et al. [12•].)
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no effect on the referred pain intensity. Central sensitiza-
tion may be involved in the generation of referred pain.
Animal studies show a development of new and expanded
receptive fields by a noxious muscle stimulus [3,30].
Recordings from a dorsal horn neuron with a receptive
field located in the biceps femoris muscle show new recep-
tive fields in the tibialis anterior muscle and in the foot
after IM injection of BK into the tibialis anterior muscle
[30]. In the context of referred pain, the unmasking of new
receptive fields as a result of central sensitization could
mediate referred pain [3]. This has been suggested to be the
phenomenon of secondary hyperalgesia in deep tissue.
Several studies have found that the area of the referred pain
correlated with the intensity of the muscle pain, which par-
allels the observations for cutaneous secondary hyperalge-
sia in which the hyperalgesic area is related to the
capsaicin-induced pain intensity. This type of plasticity of
the central nervous system may also alter somatosensory
sensitivity and account for deep tissue hyperalgesia.

Clinical findings
Substantial clinical knowledge exists concerning the pat-
terns of referred muscle pain from various skeletal muscles
and after activation of trigger/tender points [31]. However,
few clinical studies have aimed to study central sensitiza-
tion in combination with chronic musculoskeletal pain.

Recent studies have provided the first evidence of
central sensitization in chronic musculoskeletal pain. In the
first study [32], it was found that patients with fibromyalgia
experienced stronger pain and larger referred areas after IM
injection of hypertonic saline. The most interesting aspect

was that these manifestations were present in lower limb
muscles where the patients normally do not experience
ongoing pain. The subjective pain ratings may be a result of
hypervigilance, but the patients had no clue of the normal
referred pain area to injection of hypertonic saline in the
tibialis anterior muscle. Normally, pain from the tibialis
anterior is projected distally to the ankle, rarely proximally.
In these patients, there was substantial proximal spread of
the referred areas. This corresponds to basic neurophysio-
logic experiments in rats, in which dorsal horn neuron
recordings from various spinal segments were investigated
before and after muscle nociception [30]. In these experi-
ments, the muscle nociception caused a proximal spread of
sensitization, which explains the clinical findings. More-
over, in patients with fibromyalgia, IM electrical stimula-
tion was used to assess the efficacy of temporal summation
of painful muscle stimuli; temporal summation was found
more potent in the patients compared with control subjects
[32]. Recently, the increased efficacy of temporal sum-
mation in patients with fibromyalgia has been reproduced
with cutaneous heat stimulation [33]. Facilitated temporal
summation is most likely a reflection of central sensitiza-
tion and an important parameter to assess in chronic
musculoskeletal pain conditions. Temporal summation of
pain stimuli applied to skin, joint, and muscle was most
pronounced for muscle tissue [34], illustrating the impor-
tance of testing the temporal summation from deep tissue
because this may be affected by central sensitization in
musculoskeletal pain conditions. Increased referred pain
areas and facilitated temporal summation in patients with
pain suggest that the efficacy of central processing is
increased (central sensitization) in these patients. More-
over, in patients with fibromyalgia, the expanded referred
pain areas and exaggerated temporal summation were
partly inhibited by ketamine (an N-methyl-D-aspartate
antagonist) targeting central sensitization [35••].

Similar findings on extended referred pain areas from
the tibialis anterior muscle have been shown in patients
suffering from chronic whiplash pain [36•]. The extended
areas of referred pain were found in the neck and shoulder
region and in distant areas where the patient does not
normally experience pain (ie, lower leg). This finding
could be a manifestation of central sensitization and may
support the hypothesis that central pathogenic mecha-
nisms are involved in the whiplash syndrome. Central
sensitization in patients with whiplash is suggested based
on increased sensitivity to IM electrical stimulation of the
tibialis anterior muscle compared with healthy patients
[37]. In patients suffering from knee osteoarthritis [38•],
extended areas of saline-induced referred pain have been
found. This shows that noxious joint input to the central
nervous system may facilitate the referred pain mecha-
nisms, possibly as a result of central sensitization.
Similarly, in patients with temporomandibular pain dis-
orders, enlarged pain areas were found when injecting the
masseter muscle [39•].

Figure 2. An example of muscle soreness after exercise as a model 
of deep tissue hyperalgesia. Muscle sensitivity to pressure of the 
extensor carpi radialis brevis muscle before and after eccentric 
work with the wrist (mean ± standard error; n = 12). The muscle 
sensitivity rates are normalized to day 0 (baseline); increased 
muscle sensitivity rates equal decreased pressure pain thresholds. 
Significantly decreased thresholds compared with the unexercised 
arm (*P < 0.05). (Based on data from Slater et al. [23].)
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Referred and Widespread Hyperalgesia
Central sensitization may facilitate the mechanism for
referred pain. Likewise, central sensitization may be
involved in hyperalgesia at sites distant from the pain locus
as referred or widespread hyperalgesia. Moreover, referred
hyperalgesia can be present in areas with or without
referred pain.

Experimental findings
In referred areas of experimental induced muscle pain,
Kellgren [2] found tenderness to pressure, but not all the
later studies have been able to reproduce this finding.
Similarly, skin sensitivity in the referred pain area has
been reported to depend on the stimulus modality
tested [22,40,41]. Increased pain response to electrical
cutaneous stimulation and decreased sensitivity to radi-
ant heat or pinprick stimulation have been reported in
referred pain areas [22,40]. This modality-specific soma-
tosensory change found in the referred pain area is simi-
lar to findings in secondary hyperalgesic areas of the
skin after injury.

Infiltration of the muscle tissue with anesthetics 30
minutes after injection of hypertonic saline (ie, no ongoing
pain) completely reverses cutaneous and muscular hyper-
algesia [19]. This effect of a peripheral block on the muscle
hyperalgesia may suggest peripheral sensitization. Alterna-
tively, the mechanisms responsible for deep and cutaneous
hyperalgesia after muscle pain may be caused by a central
mechanism in which peripheral input is needed, which is
also a necessary condition for referred pain [40]. Recently,
we found hyperalgesia to pressure distal to the referred
pain area produced by experimental pain induced in the
tibialis anterior muscle [42] (Fig. 3). The referred hyperal-
gesic area was innervated by the deep peroneous nerve,
which also innervates the tibialis anterior muscle. This sug-
gests involvement of summation between muscle afferents

and the somatosensory afferents from the hyperalgesic area
eventually facilitated by central sensitization.

Central sensitization of dorsal horn or brain stem neu-
rons initiated by nociceptive activity from muscles may
explain the expansion of pain with referral to other areas
and probably hyperalgesia in these areas. However, facili-
tated neurons cannot account for the decreased sensation
to certain sensory stimuli in the referred area. Descending
inhibitory control of the dorsal horn neurons may explain
the decreased response to additional noxious stimuli in the
referred pain area and at the contralateral limb (Fig. 3).
Recently, it was found that saline-induced muscle pain
resulted in deep tissue hypoalgesia in extrasegmental areas
distant from the pain focus [21,43,44]. Similar findings
have been reported for the cutaneous touch perception
[45]. In addition, segmental inhibition at the spinal cord
or brain stem level may contribute to the decreased sensi-
tivity. In animals, IM capsaicin injections have been shown
to produce inhibition of C-fiber activity from the contralat-
eral leg. This inhibition was blocked by cooling of the spi-
nal cord [46] and by the application of naloxone and
phentolamine to the spinal cord [47]. Descending inhibi-
tory mechanisms may mask any eventual increase in soma-
tosensory sensitivity caused by experimental pain.

Clinical findings
There are only a few studies on referred hyperalgesia.
Recently, Leffler [48] assessed the somatosensory function
in the referred pain area in patients with long-term trape-
zius myalgia. Hyperalgesia to pressure and hypoalgesia to
light mechanical stimulation were found in the referred
pain area, suggesting a modality or tissue-specific change
of the somatosensory function similar to previous experi-
mental findings [40]. However, in patients with lateral epi-
condylalgia, only hypoalgesia to light mechanical
stimulation was found in the referred pain area produced

Figure 3. An illustration of deep tissue 
sensitivity to pressure segmentally and 
extrasegmentally after induction of muscle 
pain in a lower limb muscle. Hypoalgesia 
is found in most areas, most likely caused 
by muscle pain-induced pain inhibitory 
mechanisms. In areas with a common nerve 
supply, referred hyperalgesia are seen as a 
result of central summation. (Based on data 
from Graven-Nielsen et al. [42].)
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by muscle contractions [49]. A factor that may influence
the somatosensory changes is the duration of habitual
pain. The patients in whom referred hyperalgesia was
found on average had experienced pain for 6 years [48],
whereas in the study in which hyperalgesia was not
detected, the patients on average had pain for 6 months
[49]. Similarly, increased sensitivity to pressure in a non-
painful area was found in patients with rheumatoid arthri-
tis suffering for more than 5 years in contrast to patients
with pain for less than 1 year [50•]. This fits well with the
concept of central sensitization because a certain period of
nociceptive input is needed to induce central sensitization.
Widespread pain in musculoskeletal pain disorders is fre-
quently initiated by localized deep pain, indicating the
development of central sensitization over time.

Another manifestation of central sensitization may be
the number of palpable trigger points. Recently, we found a
significantly higher number of these points in the lower
limb muscles in patients suffering from knee osteoarthritis
compared with controls [51]. The presence of central sensi-
tization may facilitate low intensity input (possibly muscle
allodynia) and may result in pain when a possible latent
trigger point is activated. This may also be one of the rea-
sons why a localized painful condition can spread and
become generalized.

A dysfunction of the descending inhibitory control sys-
tems may have similar effects as central sensitization. In
healthy subjects, generalized hypoalgesia to pressure is
found during strong experimentally induced pain (Fig. 3).
In contrast, patients with fibromyalgia do not show such
modulation, indicating a dysfunction of the descending
inhibitory control [52]. The efficacy of descending inhibi-
tion is similar in patients with short- and long-term rheu-
matoid arthritis compared with controls [50•]. Before
surgery (ie, hip replacement), patients with osteoarthritis
lacked the generalized hypoalgesic effect to pressure during
a strong experimental pain in contrast with the normalized
descending inhibition after hip surgery [53•]. This may
indicate that the descending system is maximally involved
in the condition with continuous pain before surgery and
that, after surgery, the dynamics of the system is reestab-
lished and effectively modulate the sensitivity to pressure.
Therefore, a dysfunction of the descending inhibitory con-
trol system may be involved in chronic musculoskeletal
pain conditions, although it has not been a systematic
finding in different groups of patients.

Conclusions
An important part of the pain manifestations related to
chronic musculoskeletal disorders may be caused by periph-
eral and central sensitization. Better knowledge and evalua-
tion possibilities of the mechanisms involved in chronic
musculoskeletal pain may provide better clues to revise and
optimize diagnosis and treatment. Some manifestations of

central sensitization, such as expanded referred pain areas
and referred hyperalgesia in patients with chronic muscu-
loskeletal pain, have been explained with animal experi-
ments by extrasegmental spread of sensitization.
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