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Introduction
Osteoarthritis (OA) is the most common degenerative
joint disease. In stark contrast to rheumatoid arthritis (RA),
in which the inflamed synovium drives the degradation of
the articular cartilage, in OA cartilage degradation is driven
by chondrocytes. This does not imply that the surrounding
synovium, perichondrium, or bone does not contribute to
the OA pathology, but we will assume the process centers
in the cartilage. In a recent review of the cell biology of
osteoarthritis, we presented the basic cell biology of OA
and described the phenotypic response of the cells in OA,
varying from recapitulation of development to dedifferen-
tiation, hypertrophy, and even regeneration [1••]. In this
review, we propose a new paradigm for understanding OA
in the context of cell biology. We have divided the process
into three steps (Fig. 1). Step 1 is the assault to the cartilage
by direct impact damage (injury), faulty matrix molecules
(genetics), or an unknown stimulus. Step 2 is the response
of chondrocytes to try to repair the extracellular matrix.

This attempt to repair sets up a cycle of anabolism and
catabolism that eventually results in cartilage erosion. Step
3 is the final descent into cartilage degradation from which
there is no recovery. This review examines the recent evi-
dence that provides a mechanism for this interpretation
and possible intervention strategies based on early detec-
tion of chondrocyte metabolic activity.

Normal cartilage exists in a relatively steady state; that is,
the anabolic processes (those that result in the synthesis of
cartilage matrix components) are in equilibrium with the
catabolic processes (those that result in the normal turnover
of matrix molecules). Chondrocytes express anabolic
effectors such as insulin-like growth factors (IGFs), trans-
forming growth factors (TGF), and catabolic effectors such
as matrix metalloproteinases (MMPs) that function as auto-
crine/paracrine effectors of metabolism. The loss of the
steady state results in the net loss of articular cartilage the
hallmark of OA. Because OA is a chronic condition and
most cases are not identified until the later stages of the dis-
ease, the specific signals that initiate the changes in the
chondrocytes that result in clinical OA remain uncertain.
Nonetheless, significant progress has been made in piecing
together a picture of some of the changes that occur in the
progression of OA. Progression of the disease is a complex
process that includes initial up-regulation of matrix synthe-
sis, increased expression of proteolytic enzymes with
concomitant suppression of their physiologic inhibitors,
increased expression of pro-inflammatory cytokines such as
interleukin-1 and -6 (IL-1 and IL-6) and tissue necrosis
factor alpha (TNFα), increased cell death through apoptosis,
and increased levels of nitric oxide (NO). In addition, in
OA cartilage, chondrocytes show an altered phenotype.
Re-expression of type IIA procollagen—a chondroprogeni-
tor splice variant of type II procollagen—is observed [2]
indicative of a recapitulation of development. The transcrip-
tion factor Sox9 is a critical enhancer of transcription of type
II collagen and other chondrocyte-characteristic genes and is
increased in a transgenic mouse model of OA [3•]. Type III
collagen is also expressed. A report showed expression of
type X collagen in OA cartilage [4], indicating a hyper-
trophic cell phenotype. These changes in phenotype could
indicate the re-initiation of a specific biosynthetic pathway,
as discussed by Sandell and Aigner [1••].

In the last 2 years, an important advance in cartilage
catabolism was the identification of aggrecanases. Aggrecan
is a major component of cartilage that gives elasticity and

Cartilage is comprised of a large amount of functional 
extracellular matrix that is made and maintained by a 
small number of chondrocytes, the sole resident cell type. 
Normal cartilage exists in a relatively steady state: that is, 
the anabolic processes (those that result in the synthesis 
of cartilage matrix components) are in equilibrium with the 
catabolic processes (those that result in the normal turn-
over of matrix molecules). If the functional extracellular 
matrix is disturbed by physical or molecular means, the 
cells respond in an attempt to repair the matrix. This 
stimulated activity does not result in repair due to the 
extent and complexity of the extracellular matrix. Eventu-
ally, the newly synthesized and activated catabolic enzymes 
degrade the matrix components. This review presents the 
cellular and molecular mechanisms that account for this 
activity and provides some possible solutions.
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compressibility to the matrix and thus contributes to the
mechanical properties of the articular cartilage. Therefore,
loss of aggrecan causes significant impairment of the weight-
bearing function of cartilage; this is considered to be one of
the central events in OA pathophysiology. In synovial fluid of
patients with OA, two major forms of degraded aggrecan
were detected, representing two preferential cleavage sites in
the aggrecan core protein. In work done nearly a decade ear-
lier, these cleavage sites were pinpointed by amino acid
sequencing. Both are located between the two globular
domains in N-terminus of the molecule (Table 1). The
amino acid sequence at these sites are well conserved among
species, suggesting that they could play certain roles in physi-
ologic metabolism of aggrecan. After this, efforts were made
to determine the enzymes responsible for this cleavage. Soon
after, MMPs were found responsible for the cleavage at one
site. All the MMPs examined so far are capable of cleaving the
core protein at that site [5]. In 1999, two forms of aggreca-
nases, aggrecanase-1 and -2 were identified [6•,7]. Both
enzymes are members of a disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTS) family, and were
designated as ADAMTS-4 and -5/11, respectively. The expres-
sion of aggrecanases was confirmed in cartilage and
synovium of patients with OA. Pro-inflammatory cytokines
up-regulate their activity [8]. Because accumulating evidence
suggests aggrecanases are dominant enzymes in aggrecan
catabolism [9], inhibition of their activity could be a new,
potent method for OA treatment. This area is controversial,
thus future studies will be necessary to determine the order
and relative importance of the MMPs and ADAMTSs.

Cartilage Repair Response and Anabolic 
Cytokines and Growth Factors
What is the first step in the initiation of cellular activity in
OA? Scientists and clinicians have pondered this question
for decades. Our understanding of cytokines and growth
factors cannot define a single factor that could be responsi-
ble for all the responses of chondrocytes. It is helpful to
view the initial event as a program of response to injury by
the chondrocyte—in this response, the chondrocyte tries to
repair the damaged matrix. Because synthetic activity of
chondrocytes is regulated by anabolic growth factors, such
anabolic action in OA cartilage could be related to the
expression of growth factors. The enhanced expression or
activation of several kinds of growth factors is observed in
OA cartilage [10,11]. In contrast to catabolism of OA carti-
lage, the synthetic side of OA has not received as much
attention. By knowing the linkage between the expression
of growth factors and unsuccessful repair, we could acquire
new insights into the treatment of the disease. This is
important because the repair potential of cartilage is
gaining more attention as a target for OA treatment.

TGF-beta (TGF-β) is one of the most potent mediators
of cartilage matrix synthesis. It up-regulates the expression
of several types collagens and proteoglycans (PG) [12].
However, when administered into the joint by direct appli-
cation or by gene therapy, the cytokine induces osteophyte
formation and hyperplasia of the synovium similar to OA
[13,14]. TGF-β expression was observed in osteophytes
obtained from patients with OA [15]; this cytokine could
play a significant role in their formation.

Figure 1. Cellular events in osteoarthritis 
(OA). In Step 1, the tissue is weakened by 
injury, genetically altered extracellular matrix 
molecules, imbalance in biomechanics, or 
some unknown stimulus. In Step 2, the cell 
responds to the insult and is stimulated to 
repair the matrix. Cells may respond slightly 
differently depending on their place and role 
in the articular cartilage, but the potential 
responses are shown. Not all cells need to 
undergo the same response, but all cells 
will be affected in some way. Step 2 is 
self-perpetuating and can last for many years. 
Step 3 occurs when the cartilage is lost.  In the 
right column potential places for treatment of 
cellular events of OA are shown.



498 Osteoarthritis
Other members of the TGF-β superfamily, the bone
morphogenetic proteins (BMPs), are also known to stimu-
late cartilage matrix synthesis [16]. A recent study has
shown that BMP-7 (also called osteogenic protein-1)
increases synthesis of hyaluronan and its cell surface recep-
tor CD44. In situ expression of BMP-7 in OA cartilage has
also been observed [11].

IGF-I is another growth factor with potent anabolic
effects on chondrocytes. Chondrocytes express IGF-I and
the concentration of IGF-I increases in OA synovial fluid
and in OA cartilage [10]. Induction of IGF-I synthesis in the
joint by means of gene transfer resulted in increased PG
synthesis [17]. In cartilage obtained from older donors,
insulin-like growth factor binding protein-3 (IGFBP-3) was
abundant in the territorial matrix [18]. Because IGF-I can
prolong chondrocyte survival (possibly through inhibition
of apoptosis [19]) increased IGFBP-3 potentially inhibits
anabolic activities of chondrocytes, which could be part of
the etiology of OA in the elderly population. There is
another possible result of increased IGFBP-3 in the territo-
rial matrix. That is, the increased IGFBP-3 may trap and
concentrate IGF-I in the cartilage. Then the enzyme MMP-3,
up-regulated in OA, degrades IGFBP-3 to non–IGF-binding
fragments [20], releasing the IGF-I near the chondrocytes,
thereby facilitating the hypersynthetic metabolism seen in
OA. Although decreased proteolysis of IGFBP-3 in the
synovial fluid of patients with OA has been demonstrated,
it is likely a result of the formation of the protease-resistant
ternary complex of IGFPB-3 (the acid labile subunit) and
IGF-I [21]. The distribution of IGFBPs and IGF-I within the
cartilage tissue, the center of the OA disease process,
remains unaddressed. Particularly interesting with response

to IGF function in cartilage is the observation of Spagnoli
et al. [22] that IGFPB-3 may have an IGF-independent anti-
proliferative effect on chondrocytes.

Pro-inflammatory Cytokines in Osteoarthritis
Opposing the anabolic effects of growth factors are pro-
inflammatory cytokines. Their role in the progression of
OA has attracted considerable attention. The role of cyto-
kines in OA was recently reviewed in depth by Goldring
(Table 2) [23••]. Although several pro-inflammatory
cytokines are expressed [10], IL-1β and TNFα appear to be
principal mediators in OA pathogenesis. These cytokines
are synthesized as a cellular response; however, they often
stimulate the production of degradative enzymes and
suppress protein synthesis. With these cytokines, the ana-
bolic cellular response stimulates a catabolic process.

IL-1β is synthesized as a precursor that requires
enzymic processing by IL-1β-converting enzyme (ICE),

Table 1. Enzymic degradation of structural components in cartilage

Type II collagen MMPs-1, 8, 13 Fibrillar domain at 3/4 from N terminus 
MMP-3a N-telopeptide region
Cathepsins B, Lb Telopeptide region

Type IX collagen MMPs-2c, 3a, 13d Telopeptide region
Cathepsins B, Lb

Type XI collagen MMP-3a Gly339–Val340

MMP-9 Telopeptide region
Cathepsins B, Lb

Aggrecan MMPsf Interglobular domain, Asn341–Phe342

ADAMTS-4, 5/11 (aggrecanase-1, 2)g Interglobular domain, Glu373–Ala374

Glu1545–Gly1546, Glu1714–Gly1715, 
Glu1819–Ala1820, Glu1919–Leu1920

Link protein MMPs-1, 2, 3, 9, 10h His16–Ile17

MMPs-2, 7, 9h Leu25–Leu26

Cathepsins B, D, G, Li

Cartilage oligomeric matrix 
protein (COMP)

MMPs-19, 20j

The enzymes in charge of initial cleavage are shown.
*No MMP is known not to cleave at this site.
a Wu JJ, et al.: J Biol Chem 1991, 266:5625–5628. b Maciewicz RA: FEBS Letters 1990, 269:189. c Brown DJ, et al.: Curr Eye Res 1996, 15:439–445. 
d Knäuper V, et al.: J Biol Chem 1997, 272:7608–7616. e Niyibizi C: Biochem Biophys Res Commun 1994, 202:328–333. 
f No MMP is known that do not cleave at this site. g Caterson B, et al.: Matrix Biol 2000, 19:333–344. h Nguyen Q, et al.: Biochem J 1991, 278:143–147. 
i Nguyen Q, et al.: Biochem J 1993, 295:595–598. j Stracke JO, et al.: FEBS Letters 2000, 478:52–56.

Table 2. Cytokines involved in cartilage 
metabolism in OA

Proinflammatory Regulatory Inhibitory

IL-1β IL-6 IL-4
TNFα IL-8 IL-10
IL-17 LIF IL-13
IL-18 IL-1ra

sTNF-R

IL—interleukin; IL-1ra—interleukin-1 receptor antagonist;
LIF—leukemia inhibitory factor; sTNF-R—soluble TNF receptor; 
TNF—tumor necrosis factor.
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also called caspase 1, to become active. ICE expression is
enhanced in OA cartilage and synovium, showing distribu-
tion similar to IL-1β [24]. Not only is IL-1β codistributed
with 6 MMPs in OA cartilage, but it induces the expression
of MMPs by articular chondrocytes in vitro [25]. In addi-
tion, IL-1β also suppresses the expression of extracellular
matrix (ECM) constituents. A recent study has shown IL-1β
is responsible for PG depletion through suppression of PG
biosynthesis [26] and induction of degradative enzymes.

Recently, it was suggested that a member of ligand-
activated transcriptional factors—peroxisome proliferator-
activated receptor-γ (PPARγ)—plays an essential role when
IL-1β exerts its various inflammatory actions [27]. Thus
several ligands for PPARγ are expected to prevent cartilage
degradation in OA, suppressing the activity of IL-1β [28].

Another potent cytokine, TNFα is also produced as a pre-
cursor, and acquires bioactivity after proteolytic processing
by a TNFα-converting enzyme (TACE) at the cellular surface.
Two specific cell surface receptors—TNFR55 and TNFR75—
have been identified, the former considered to have more
biologic significance in OA pathology. Chondrocytes in OA
cartilage contain more TNFR55 than TNFR75, especially
around the damaged cartilage area. Cartilage containing such
chondrocytes were more responsive to TNFα as assessed by
PG release [29]. Another study showed that the expression of
these receptors is up-regulated by several cytokines including
TNFα, suggesting presence of positive feedback mechanism
[30]. TNFα is a known inducer of prostaglandin E2 in syn-
ovial cells. A recent study showed that this activity is modu-
lated by other cytokines such as IL-8 and IL-11 [31].

IL-17 and IL-18 are newer members of proinflammatory
cytokines. In OA joints, IL-17 is expressed by synoviocytes
and is involved in NO production by chondrocytes [32•]. IL-
18 expression is observed in OA chondrocytes [24], and has
been shown to stimulate chondrocytes to express several
other genes involved in cartilage catabolism [33].

Chemokines
Chemokines are emerging as an intriguing topic in OA.
Chemokines are a family of cytokines that modulate
leukocyte functions at the site of inflammation. Human
chondrocytes constitutively express chemokines. In OA, the
up-regulation has been observed of their genes and their
receptors [34]. The chemokines may be an important link
between the various mediators of OA: the chemokine
RANTES is stimulated by IL-1 and IL-18. RANTES, in turn,
can stimulate inducible nitric oxide synthase (iNOS) and
increase PG release from the tissue [35]. Although their exact
significance in the pathology is unclear, chemokines could
be of potential importance in disease progression in OA.

Nitric oxide
Nitric oxide (NO) is a free radical that is highly reactive and
is involved in a variety of diseases. NO is considered to play a
significant role in the progression of OA [36]. Patients with
OA had an increase of NO concentration in serum and

synovial fluid. Chondrocytes are likely a major source of NO
in the joint [37]. They produce a large amount of NO when
stimulated by IL-1β and TNFα. Recent studies have shown
that IL-17 and IL-18 also stimulate NO production in articu-
lar chondrocytes [32,33]. NO is synthesized by nitric oxide
synthase (NOS). Two classes of enzymes, constitutive NOS
(cNOS) and inducible NOS (iNOS, also called NOS2), are
known; the latter is considered to be more important in
pathologic conditions because it can produce much more
NO than can cNOS. Studies on iNOS null mice and using
iNOS inhibitors corroborated the significance of NO in
progression of OA [38,39,40].

NO inhibits synthesis of ECM components such as type
II collagen and PG and increases activity of MMPs. Several
different mechanisms seem to be involved in these actions.
NO decreases sensitivity of chondrocytes to IGF-I in OA,
and reduces endogenous TGF-β production by chondro-
cytes [41,42]; both of these could down-regulate matrix
synthesis. NO is known to suppress expression of the IL-1
receptor antagonist, which enhances catabolic actions of
IL-1. Decreased PG synthesis could result from a distur-
bance in integrin signaling [43]. Inhibition of mitochon-
drial respiration by NO is another possible mechanism
suggested in a recent study [44].

Anti-inflammatory cytokines
In the pathology of OA, anti-inflammatory cytokines such
as IL-4, IL-10, and IL-13 are expressed together with pro-
inflammatory cytokines. Anti-inflammatory cytokines can
counteract the actions of pro-inflammatory cytokines [45].
Taking advantage of the suppressive effects, challenges
have been made with anti-inflammatory cytokines to
suppress progression of OA, either by direct application or
by gene transfer [46–49]. The results seem promising.

Cartilage Repair Response: 
Proliferation and Apoptosis
The issue of cell death in OA has received a great deal of
attention in the last 2 years. An increasing number of
papers report apoptosis in OA cartilage [49–52], but the
descriptions vary and the importance of cell death in OA is
controversial. Because cartilage does not contain mononu-
clear phagocytes, once a chondrocyte dies, space for the
dead cell remains as lacuna in cartilage, which possibly
causes structural deterioration of the matrix [53,54•]. After
cell death, apoptotic bodies stay within and around the
lacuna for extended periods due to lack of clearance, and
then produce pyrophosphate. Thus chondrocyte apoptosis
is considered responsible for cartilage calcification
observed with OA and aging [52,53,54•].

Several mechanisms are involved in apoptosis of
chondrocytes. Signaling by CD95/Fas is considered an
important mechanism for apoptosis [53,54•]. The activity of
caspase-8 is necessary in this pathway and is counteracted by
transcription factor NF-κB [55]. The mechanism for NO-
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induced apoptosis is independent of CD95/Fas signaling
[56], but possibly involves c-Jun NH2-terminal kinase (JNK)
[57]. A recent study shows that the mitogen-activated protein
kinase/extracellular signal-regulated kinase (MEK/Erk) signal
transduction pathway inhibits chondrocyte apoptosis, which
is induced by loss of cell-matrix interaction [58]. Because NO
is a potent inducer of apoptosis, inhibition of iNOS activity
may prevent cell death in chondrocytes. An animal study has
demonstrated that an iNOS inhibitor prevents cell death,
possibly through suppressed expression caspase-3 [39].
Hyaluronan may prevent chondrocyte apoptosis, but the
mechanism is unclear [59].

With all these studies, the true significance of apoptosis
in OA is still controversial. A recent well-controlled study
showed that apoptosis is not a widespread phenomenon in
OA, providing a caveat against overestimation of apoptosis
in the disease [60•]. The common method for apoptosis
detection, the TUNEL reaction, contains several critical
steps that significantly affect its specificity [60•]. This
potential lack of specificity could explain why recent
studies have shown considerable discrepancy in determin-
ing the number of apoptotic cells. We may need to be
more careful in understanding the roles of apoptosis in
OA pathophysiology.

A novel insight into the phenomenon of cell prolifera-
tion and clustering is provided by Le Graverand et al. [61•] in
an interesting study of the formation and phenotype of cell
clusters in OA meniscus. Using a model of OA in which the
anterior cruciate ligament is cut, they propose that apoptosis
and cell proliferation play a role in establishing isolated cell
groups. Some cells respond by apoptosis and some by prolif-
eration, each of which can disrupt the cellular network. Then
the cell groups undergo a phenotypic and morphologic
change that causes them to become more rounded and
isolated from the cell matrix. The phenotypic change
observed in these cells was to a more hypertrophic pheno-
type including increased type X collagen, MMP-13, and
increased mineralization. It is unknown whether these
changes can occur in cartilage chondrocytes.

Biomechanical Stimuli
When a person walks, the knee is exposed to a range of
forces, from unweighted to three times body weight. It is
unsurprising that such dynamic forces exert a strong
influence on the metabolism of chondrocytes. Biomechan-
ical forces can alter the level and activity of a number of
anabolic and catabolic regulatory molecules expressed by
chondrocytes. This suggests that a lifetime of such forces
could play a role in the etiology of OA.

Chondrocytes respond to high magnitude cyclic tensile
load with increased mRNA levels of MMP-1,-3,-9, IL-1β,
TNFα, and TIMP-1 [62]. In addition, cyclic tensile strain
increases the conversion of proMMP-9 to the active form [63].

Biomechanical forces can have anabolic effects on
chondrocytes. Xu et al. [64] showed that in cultured

chondrocytes, low frequency cyclic tensile strain had an
antagonistic effect on IL-1β-dependent induction of NOS,
cyclo-oxygenase 2 (COX-2), and MMP1. It also abrogated
IL-1β-induced suppression of TIMP-2 and type II procol-
lagen, and induced hypersynthesis of aggrecan mRNA [64].
It is likely that compression has a direct effect on chondro-
cytes through the cytoskeleton; however, fluid flow in carti-
lage has a significant effect on metabolism.

Dynamic compression increases fluid flow through the
porous cartilage matrix. Such fluid flow is necessary for
normal cartilage homeostasis. Because cartilage is avascular,
flow generated by daily activity serves to promote the influx
of small molecules from the synovial fluid and efflux of ECM
fragments and factors synthesized by the chondrocytes. The
role of fluid flow on the anabolic effects of dynamic
compression was demonstrated by Bonassar et al. [65•]
through experiments that assayed the effects of exogenous
IGF-I on protein and PG synthesis by cartilage explants
subjected to dynamic compression. Separately, exogenous
IGF-I and dynamic compression increased protein and PG
synthesis. In combination, IGF-I and dynamic compression
synergistically increased protein and PG synthesis. This
suggests that increased fluid flow within the cartilage matrix
facilitated transport of the IGF-I into the cartilage and
enhanced its anabolic effect on the chondrocytes [65•].

Such cellular level responses to mechanical stimulation
that negate or diminish catabolic effects and enhance
anabolic processes could serve to protect the cartilage from
degradation in response to insult, thereby delaying the
descent into OA. It is possible that with age, the protective
effects of moderate forces become less effective, allowing
catabolic forces to overcome anabolism.

OA As an Age-related Disease
Although there are several exceptions such as posttrau-
matic OA or OA with genetic problems, many patients
with OA do not have specific recognizable causes for the
disease. Epidemiologic studies show a strong association
between older age and OA. These facts suggest that age-
related changes in the cartilage matrix and aging of chon-
drocytes could be responsible for the development of OA.
Several age-related biomechanical and biochemical
changes are known. Histologic studies show an age-related
decrease in the number of chondrocytes in cartilage.

Several new findings have been reported on the age-
related changes in chondrocytes. Chondrocytes show many
of the same aging and senescence properties of other cells.
Martin and Buckwalter [66] recently published evidence that
indicates that chondrocytes in human articular cartilage
undergo replicative senescence. Using cartilage from donors
between 1 and 87 years of age, they found increased activity
of senescence-associated β-galactosidase activity and a
decrease in mitotic activity and telomere length [66]. Other
studies show chondrocytes from elderly donors respond
poorly to IGF-I. Increased synthesis of IGFBP-3 could be its
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cause. However, another explanation for the decreased
response of aged chondrocytes to IGF [67] may be altered
signal transduction pathways. When cultured, survival of
chondrocyte is influenced by the activity of IGF-I and -II
produced by chondrocyte. In addition, the cells from elderly
donors depend more strongly on IGF for survival [19]. While
age-related reduction in sensitivity to IGF-I may be responsi-
ble for decreased chondrocyte density in elderly patients, the
direct relationship of the reduced chondrocyte density to OA
remains unclear.

Early Detection of OA: Imbalance in 
Metabolism As a Marker for Disease
The field of markers for OA is becoming increasingly sophisti-
cated. Rather than trying to measure breakdown in serum or
urine that may reflect the activity of a synovial joint,
techniques and reagents are being developed to monitor the
metabolic activity of many tissues of the joint with particular
reference to the balance of catabolic and anabolic activities.
Therefore, the analysis of response of the chondrocyte to
damage in the matrix can be fine-tuned to monitor specific
stages and rates in cartilage degeneration. For example,
Garnero et al. [68•] analyzed disease activity in patients with
knee OA by a cross-sectional evaluation of biochemical mark-
ers of bone, cartilage, and synovial tissue metabolism. They
concluded that knee OA is characterized by a systemic decrease
of bone turnover and increased cartilage and synovial tissue
turnover. They further used a combination of markers, one for
chondrocyte anabolism (type IIA collagen N-propeptide) and
one for catabolism (type II collagen C-telopeptide), to success-
fully predict the progression of OA over 1 year (P. Garnero,
personal communication). The tissue inhibitor of metallopro-
teinase-1 (TIMP-1) was used to successfully predict progres-
sion of hip OA [69], indicating that a decrease in this
inhibitory protein may indicate that the cells can no longer

resist the degradation process. Otterness et al. [70•] did not
find a correlation to any clinical end-points with 14 molecular
markers, with the exception of TGF-β1, which was positively
correlated with disease progression and the chitenase YKL-40
[71]. Recently, an increase in TGF-β1 in humans has been
correlated with OA in a rabbit model. Both are thought to be
related to the formation of osteophytes.

Chondrocytes Cannot Repair Cartilage
Evidence points to the conclusion that chondrocytes
cannot repair their extracellular matrix, although they are
stimulated to try. Currently, there is an accepted, but
unproven, hypothesis (or hope) that chondrocytes repair
their matrix for a fairly long period of time. Then an event
occurs that tips the balance to degradation of the matrix.
There is no evidence in favor of this hypothesis. The over-
whelming evidence favors an inability to repair. Hembry
et al. [72] recently addressed this question in a study inves-
tigating the chondrocyte response to a partial thickness
tear in the superficial cartilage. They concluded that the
cartilage was unable to repair its matrix because of a block-
age of the lacunar space with accumulated products of
metabolism, such as newly synthesized molecules and
degradation products (Fig. 2). These studies support other
studies that found increased biosynthesis of collagen but
no increased collagen content in the extracellular matrix.

Where Does that Leave Us?
Skin and cartilage share many of the same molecules. In
addition, the mature cell (fibroblast or chondrocyte) behaves
similarly. However, there are several reasons that skin
wounds heal while cartilage wounds do not. Essentially, skin
heals because it can remove the damaged tissue and can
recruit new cells to synthesize new tissue—chondrocytes do

Figure 2. Deposition of newly synthesized 
products around the chondrocyte, which 
occurs in type VI collagen, type II collagen, 
and COMP. A, Middle and deep zone of 
osteoarthritic cartilage (bar = 60 microns. 
B, Cell clusters in deep zone of osteoarthritic 
cartilage (bar = 30 microns). (Figure provided 
by Dr. Yong Zhu, Washington University 
School of Medicine.)
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not have this option. In skin, there is an inflammatory
response that brings in cells secreting cytokines and growth
factors that stimulate the recruitment and proliferation of
additional cells (Fig. 3). In addition, there is a population of
precursor cells in the surrounding tissue that migrate to the
wound. The future of cartilage repair would seem to lie in
creating techniques to provide components of the wound
healing system unavailable in cartilage.

Because cartilage does not heal is any real sense, alterna-
tive remedies must be undertaken. The most popular and
effective treatment is total joint replacement; however,
biologic solutions will soon augment the possible choices
for treatment. Realistically, unless the OA is detected very
early, it will be impossible to intercede at the level of initial
cellular response. A viable possibility is to expand on the use
of unaffected chondrocytes or stem cells to make new carti-

lage in a clean environment in which the degraded cartilage
is debrided to remove cytokines and material that is physi-
cally in the way. In this manner, “new” cartilage will be
formed unimpeded by the need to “repair” degraded tissue.
A second realistic treatment will be involve replacing the
damaged cartilage with cartilage that can be made in vitro
and used to replace the entire tissue. Novel therapies are
being developed in all these areas to take advantage of the
new information provided by cell and molecular studies.

Conclusions
The chondrocyte is the central player in the damage that
occurs to cartilage in patients with OA. The cartilage matrix
is damaged by injury, genetic abnormalities in the matrix
molecules, or potentially by wear and tear over the years.

Figure 3. Responses of cartilage and skin to 
insult. There are similarities and differences in 
the responses of these tissues to wounding. 
The differences may be responsible for the 
inability of cartilage wounds to heal.
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The cells are activated to respond to the changes in their
extracellular matrix. Upon activation, many events take
place to create a “vicious cycle” of degradation and stimu-
lation of synthesis. These events result in very little repair
but much damage to the cartilage. We propose that because
the chondrocytes cannot draw on other cells to remove the
damaged cartilage and replace it with new cells and
healthy cartilage, degradation will continue. The treatment
strategies rely on total joint replacement and direct inhibi-
tion of degradative enzymes. However, progress is being
made in the research of early detection of OA, detection of
rate of progression of the disease, removal and renewal of
the chondrocytes, and biologic replacements through stem
cells or “neo” cartilage.
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