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Abstract
Purpose of Review Following a life-threatening traumatic exposure, about 10% of those exposed are at considerable risk for
developing posttraumatic stress disorder (PTSD), a severe and disabling syndrome characterized by uncontrollable intrusive
memories, nightmares, avoidance behaviors, and hyperarousal in addition to impaired cognition and negative emotion symp-
toms. This review will explore recent genetic and epigenetic approaches to PTSD that explain some of the differential risk
following trauma exposure.
Recent Findings A substantial portion of the variance explaining differential risk responses to trauma exposure may be
explained by differential inherited and acquired genetic and epigenetic risk. This biological risk is complemented by
alterations in the functional regulation of genes via environmentally induced epigenetic changes, including prior child-
hood and adult trauma exposure.
Summary This review will cover recent findings from large-scale genome-wide association studies as well as newer epigenome-
wide studies. We will also discuss future “phenome-wide” studies utilizing electronic medical records as well as targeted genetic
studies focusing on mechanistic ways in which specific genetic or epigenetic alterations regulate the biological risk for PTSD.

Keywords PTSD . Genetics . Epigenetics . GWAS . DNAmethylation

Introduction

Exposure to traumatic experience is common for most
humans [1, 2•, 3]. A portion (5–15%) of the population is
vulnerable to traumatic stress, does not recover, and shows
persistent behavioral abnormalities like posttraumatic
stress disorder (PTSD) [1, 2•, 3]. In contrast, another larger
portion (> 75%) of the population remains resilient after
multiple or severe exposures [1, 2•, 3]. Understanding the
genetic and epigenetic underpinnings of behavioral vulner-
ability and resilience to traumatic stress is an active area of

investigation as it would facilitate the development of pre-
ventive strategies and therapeutic interventions for PTSD
[4]. In this review, we summarize research in this area, and
discuss future opportunities for new discoveries.

Heredity is the transfer of certain characteristics from the
parents to the offspring. At the molecular level, it primarily
concerns the transmission of DNA-encoded genetic informa-
tion to the next generation after sexual reproduction in humans
and other mammals [5]. Apart from the inherited genetic code,
there is another aspect to the genome, the epigenome, which
can accommodate environmental influences in the form of
chemical and protein modifications of chromatin (consisting
of DNA, protein, and RNA) [6]. Epigenetic modifications can
be long-lasting and alter gene regulation and expression. Such
modifications include DNA methylation (mDNA) at cytosine
sites, which can alter DNA binding to regulatory proteins, and
histone acetylation and methylation at specific amino acids
that alter chromatin availability for transcriptional activity
[6]. These alterations originate from exposures during the sen-
sitive periods of development, but have been described as a
result of adult exposures too. Epigenetic inheritance is a recent
exciting area of research, which investigates whether environ-
mentally induced epigenetic alterations can pass in the next
generations through the germline [7].
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Heritability

Twin Studies Twin study methodology allows researchers to
identify and quantify the presence of genetic and environmental
contributions to an observed trait by comparing samples of
monozygotic and dizygotic twins. In the context of PTSD re-
search, twin studies have identified a sizable genetic contribution
to PTSD vulnerability, providing the impetus to use other genetic
approaches in the study of PTSD. Twin studies have generally
estimated the heritability for PTSD symptoms to be around 30%
[8•, 9]. However, a general population study of both sexes has
estimated the heritability of PTSD at 46% and an all-female
study has estimated the heritability of PTSD at 71% [10, 11].
Note that these estimates of heritability are markedly higher than
from large-scale genome-wide association studies (GWAS, esti-
mating heritability of 10–20% in females and lower in males)
[12••]. These lower estimates are likely due in part to the limita-
tions of current GWAS, in that heritability estimates are limited to
common single nucleotide polymorphisms (SNPs), and do not
include other aspects of heritability captured by twin studies
including rare variants, insertion/deletion events, potential effects
of epigenetics, and gene × environment effects on heritability.

Because trauma exposure is a prerequisite for acquiring
PTSD, some twin studies have also examined the herita-
bility of likelihood of trauma exposure itself, hypothesiz-
ing that heritable personality traits put individuals at in-
creased risk for experiencing traumatic events and conse-
quently developing PTSD. Notably, one study has esti-
mated a modest heritability of 20% for exposure to as-
saultive traumatic events [9]. Another study estimated a
heritability of 60% for exposure to high-risk traumatic
events [10]. Taken as a whole, these twin studies indicate
the possible existence of both genotypes that predispose
an individual to experience trauma and to develop PTSD.

Twin studies in PTSD were followed by candidate studies
investigating limited panels of genetic variants or epigenetic
marks based on a priori hypotheses for the involvement of
particular genes with PTSD-risk. While most previous candi-
date gene studies are now questioned due to their apparent
observations of high effect sizes and relatively low sample
sizes relative to the large-scale GWAS effects outlined below,
we will first describe a few examples that have been well-
validated, either functionally or mechanistically.

Mechanistic Genetic and Epigenetic Studies

FK506 Binding Protein 51 A variety of glucocorticoid alter-
ations associate with PTSD and predict or correlate with the
treatment response [13]. These alterations have been demon-
strated using brain measures and peripheral tissue, demon-
strating a systemic glucocorticoid dysregualation [14, 15].
Among many genes related to HPA-axis functioning, the

FK506 Binding Protein 51 (FKBP5) gene encoding FKBP5
protein, a co-chaperone of the glucocorticoid receptor (GR),
has shown the strongest association with PTSD, albeit in in-
teraction with presence of history of childhood traumatization
[16•], and not as a main effect in predicting PTSD outcome.
These variants are functional, affecting FKBP5 expression
and HPA-axis activity, as determined by a variety of in vivo
and in vitro studies [17, 18].

Studies of mDNA have provided a more mechanistic un-
derstanding of how FKBP5 variants and childhood maltreat-
ment interact. In particular, in the presence of the minor allele
of a SNP, rs1360780, childhood abuse survivors displayed
increased PTSD risk. Additionally, it was found that they
had decreased mDNA within a GR binding enhancer region
(intron 7) of FKBP5, leading to increased gene expression
[19••]. It was proposed that the affected mDNA sites may
have been de-methylated during child development after ex-
posure to excessive stress-induced glucocorticoids (one of the
proposed culprits of childhood maltreatment). Interestingly,
intron 7 de-methylation was also detected in Holocaust survi-
vor offspring, a population at-risk for PTSD based on parental
stress exposures [20]. Finally, mDNA in the promoter region
was found to be correlating with reduced treatment response
to psychotherapy [21]. Beyond the HPA-axis, translational
studies have validated the functional role of FKBP5 in other
neurocircuits relevant in PTSD pathophysiology, e.g., the
amygdala-dependent fear extinction circuit [22].

Pituitary Adenylate Cyclase-Activating Polypeptide Type 1
Receptor A variant of ADCYAP1R1, encoding PACAP type 1
receptor (PAC1R), the receptor of pituitary adenylate cyclase-
activating polypeptide (PACAP), and residing in a putative es-
trogen response element, has been associated with PTSD only in
women [23•]. Further studies demonstrated that polymorphisms
within ADCYAP1R1 that reduce estrogen receptor (ER) binding
altered ADCYAP1R1 expression in an estrogen- and sex-
dependent manner [24]. These were interesting findings in light
of the higher prevalence of PTSD in women compared to men
[25]. Additionally, mDNAwithin ADCYAP1R1was significant-
ly associatedwith PTSDdiagnosis and symptoms [23•], suggest-
ing that, like FKBP5, it is regulated in both a genetic- and epi-
genetic way in regulating the trauma response. Furthermore, a
series of interesting translational research studies suggest a cru-
cial role of the PACAPergic system in the neural circuits that
regulate stress and fear responses to trauma [26].

C-Reactive Protein There is accumulating evidence for im-
mune dysregulation in PTSD, but it is unclear if it is related
to a biological predisposition for PTSD or an outcome of the
disorder or its comorbidities [27]. Some of the immune bio-
markers of PTSD are robust and survive meta-analyses [28],
in contrast to HPA-axis biomarkers [29], for example, which
may be more sensitive to gene × environment interactions.
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Analyses of peripheral blood biological markers in cohorts
with pre- and post-deployment sampling design identified im-
mune molecular alterations already in the pre-deployment
samples of individuals that develop post-deployment PTSD
[30–34]. Interestingly, a genetic variant of C-reactive protein
(CRP) was significantly associated with increased PTSD
symptom severity, including that of hyperarousal symptoms
[35]. Using the top CRP-associated mDNA locus (transcrip-
tion start site of the “Absent in melanoma 2” (AIM2)) gene
[36], Miller et al. [37] found that the relationship between
current PTSD severity and serum CRP was statistically medi-
ated by mDNA at this locus. Multiple other studies have sug-
gested that CRP may be a critical sensitive indicator of the
inflammatory response, and may mark an “inflammatory sub-
type” of PTSD, depression, and other inflammatory and
stress-related disorders [38]. However, whether CRP plays a
causal role or is primarily providing a correlational readout of
inflammation remains unclear.

Large-Scale Genetic and Epigenetic Discovery
Studies

Genome-WideAssociation Studies (GWAS) offer an unbiased
approach to test the associations of common genetic variants
across the whole genome with a trait of interest. Most GWAS
test hundreds of thousands to several million SNP variants, with
the requirement that this large number of genetic features would
need a large number of samples. Some of the current and most
successful human GWAS in PTSD are summarized in Table 1,
in which 11 genome-wide studies are reported in chronological
order [12••, 39, 40, 41•, 42, 43•, 44•, 45•, 46•, 47, 48]. SNP
identification numbers and nearest genes are also recorded to-
gether with the sample sizes and the ancestry breakdown. In
standard GWAS, the level of probability needed to reach “ge-
nome-wide significance” is simply the standard alpha = 0.05
divided by the approximate number of tests (~ 1,000,000
SNPs), for a derived multiple testing value of significance at
p < 5 × 10−8. The majority of studies in Table 1 met genome-
wide significance, except Wolf et al. 2014, which was a GWAS
focused on dissociation [42]; Kilaru et al. [47], which used a
different type of gene-based analysis, and thus arguablymay not
be required to meet the same GWAS level of statistical correc-
tion (since they were testing approximately 40,000 genes in-
stead of 1 million SNPs); as well as Ashley-Koch et al. [45]
and Melroy-Greif et al. [48].

Although it is still relatively early in the GWAS of PTSD
field, many genes of interest have already been identified
through these studies. The discoveries of LINC01090 [41•],
BC036345 [44], and ZNRD1-AS1 [47] underscore the poten-
tial significance of the non-coding genome in the development
of PTSD (see [49] for a comprehensive review). RORA [39]
encodes for the transcription factor RORα that regulates

circadian genes [50], and NLGN1 encodes Neuroligin 1 that
is involved in synaptic processes and sleep/wake physiology
[51]. Thus, discovering these gene as PTSD susceptibility
genes highlight the potential importance of chronobiology in
many mood and anxiety disorders, which all share sleeping-
disturbance [52]. Similarly, TLL1 encodes Tolloid-like protein
1, a metalloprotease with pleiotropic effects that has been
implicated in processes that affect neurogenesis and
neuroplasticity, and is regulated by glucocorticoids [40].
However, none of these GWAS signals have been formally
replicated in an independent cohort, although many of the
studies showed partial replication.

The Psychiatric Genomics Consortium (PGC) for PTSD
(PGC-PTSD) Workgroup has been formed to conduct well-
powered GWASmeta-analyses using the PGC analysis pipeline
supplemented by secondary analyses tailored to PTSD research
[53]. The first meta-analysis [12••] conducted by PGC-PTSD
did not identify a loci passing 10−8 cut-off in the overall meta-
analysis, but identified a significant SNP (rs139558732—close
to Kelch-like protein 1 (KLHL1) gene) in the AA ancestry
(Table 1). More interestingly, this study provided a SNP-
based heritability estimate comparable to that of other major
psychiatric disorders, and confirming the notion of higher her-
itability in women. Additionally, this study demonstrated a ge-
netic correlation between schizophrenia and PTSD. The PGC-
PTSD has currently over 72,000 samples consisting of nearly
20,000 cases and 52,000 controls. The PGC-PTSD samples
have more ancestral diversity than the other PGC disorders,
bringing benefit and additional samples to the overall PGC
and cross-disorders analyses. Ongoing large studies from the
PGC-PTSD, Million Veterans Program, and likely others offer
great promise for the pending rapid elucidation of a large-scale,
GWAS-based, “genetic architecture” of PTSD.

Epigenome-Wide Association Studies (EWAS) offer a distinct
approach to examining epigenetic influences for potentially
identifying novel candidate gene pathways implicated in var-
ious diseases. The sample size examined so far in EWAS
studies to date is noticeably smaller than in GWAS. Most
commonly, EWAS analyze mDNA sites since it is the most
cost-effective epigenetic mark to measure in large-scale stud-
ies using commercial microarrays or sequencing-based
methods. Some of the current human EWAS that have exam-
ined mDNA alterations in PTSD are summarized in Table 2.
EWAS are listed in chronological order (2010–2017) [54•, 55,
56, 57•, 58, 59•, 60, 61]. The sites with differential mDNA
together with the nearest gene are reported.

The findings generally comport with our current under-
standing of the etiology of PTSD, implicating many known
pathways of the disorder. For example, the EWAS with
the largest sample size to date identified epigenetic changes
related to synapic plasticity, cholinergic signaling, oxytocin
signaling, and inflammatory responses [61]. Smaller studies
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have implicated immune and inflammatory responses [54•,
55, 59•, 60], endocrine [60] and nervous system [56, 59, 60]
pathways. One study has observed differential mDNA profiles
in PTSD subjects with and without childhood abuse history
[57•].

Unfortunately, most of these studies were underpowered to
detect a signal that survives multiple-test correction.
Additionally, all studies used DNA derived from blood which
represents a bias toward detecting the involvement of certain
pathways that are more active in blood cells, and epigenetic
signals unique to the brain may be missed with these ap-
proaches. Within the PGC-PTSD, a special EWAS working
group has been formed with the goal to create a large PTSD-
focused mDNA data set meta-analyzed under a consensus
pipeline with a current total n = 1147 of samples [62].

As the sample sizes increase and new consortia are built with
combined datasets, the field is hopeful that the GWAS and
EWAS combined data will be particularly powerful for elucidat-
ing genomic markers of risk and resilience in PTSD using inte-
grated genetic-epigenetic analyses, as applied successfully in
other environmentally induced diseases like type 2 diabetes [63].

Alternative Approaches

Alternative Phenotypes An alternative approach to traditional
diagnosis-based GWAS is to consider psychiatric traits in
terms of constellations of symptoms or endophenotypes, and
to analyze these individuals jointly, rather than according to
strict diagnostic boundaries [64, 65]. For example, one might
consider grouping individuals on the basis of the presence of
manic or psychotic episodes, rather than schizophrenia and
bipolar disorder diagnoses [66]. These types of analyses have
already been successful in studying shared genetic risk of
bipolar disorder and schizophrenia [67, 68]. This approach
can also be applied to PTSD that is comorbid with depression,
traumatic brain injury, and a variety of psychiatric conditions
[2•, 69] and physical health conditions [70].

Intermediate phenotypes (or endophenotypes) of disease are
considered to be more proximal to genetic risk and have been
recently applied to psychiatric genetic rirsk [71, 72], with limited
success so far due to small sample size [73]. This is an approach
that will be applied to PTSD by the PGC-PTSD psychophysiol-
ogy working group that is aggregating data across ~ 2000 indi-
viduals, including cardiovascular measures, acoustic startle re-
flex, affective modulation of startle, conditioned fear and extinc-
tion, as well as skin conductance response.

eQTLs and Transcriptomic Imputation Large-scale GWAS
have had substantial success in elucidating the genetic archi-
tecture of psychiatric disorders, but they rely on very large
sample sizes. Additionally, even when successful, these types
of results may be difficult to interpret biologically; in

particular, it is difficult to translate large lists of associated loci
into meaningful mechanisms for follow-up study. Finally, an-
other complication is the effect of “winner’s curse” in GWAS;
that is, findings close to the genome-wide significance thresh-
old are likely to be inflated, and consequently do not often
replicate [74]. Successful, well-powered GWAS therefore
may produce large lists of loci, but these have the risk of being
uninformative and overly optimistic.

Expression quantitative trait loci (eQTLs) are SNPs
that are directly associated with gene expression changes.
Considering GWAS loci in the context of eQTLs might
allow us to identify and prioritize interesting disease-
associated variants. eQTLs provide a plausible link be-
tween genetic variants and disease through genetically
regulated gene expression [75, 76•, 77, 78•], are enriched
among GWAS loci [79], and explain a substantial propor-
tion of the variance in gene expression [75, 76•, 77, 78•].

Methylation quantitative trait loci (mQTLs), a similar con-
cept of genetic variants associated with specific differential
mDNA, may be used to further contextualize GWAS loci
[80•]. For instance, the PTSD-associated SNP, rs717947, is
a mQTL of cg09242288 [44]. The data from this study iden-
tified a genome-wide significant polymorphism conferring
risk for PTSD, which was associated with differential epige-
netic regulation and with differential cortical responses to fear
(via fMRI) in a replication sample. Identifying differential
epigenetic regulation of gene pathways is another way of
providing added support for understanding the possible func-
tion of genetic variants at the single nucleotide polymorphism
level.

Multiple methods exist to assess, for example, the extent of
co-localization between GWAS loci and eQTLS [81–83], or
mQTLs [84], and have been successfully applied to elucidate
genetic architecture of schizophrenia [78, 80•, 83, 85].
However, these methods make a number of necessary simpli-
fying assumptions regarding allelic heterogeneity and linkage
disequilibrium (LD) structure, as well as assuming only a
single causal variant or eQTL. Addressing these assumptions
can produce additional useful information about disease risk;
for example, investigating multiple eQTLs rather than a single
“maximum” eQTL improves fine-mapping of schizophrenia
GWAS loci [78]. For example, eQTL associations for the
“candidate” PTSD risk SNP rs363276 (affecting expression
of solute carrier family 18 member 2 (SLC18A2) and PDZ
domain containing 8 (PDZD8)) have been recently reported,
using amygdala and dorsolateral prefrontal cortex postmortem
gene expression data [86].

A natural extension to these eQTL-based approaches is to
consider simultaneously the effect of all local variants on gene
expression. Transcriptomic imputation (TI) approaches [87,
88] use large, well-curated eQTL reference panels [85, 89••,
90] to codify relationships between all variants within the cis-
region and expression of a given gene; these relationships may
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then be used to predict genetically regulated gene expression
from genotypes, and test for association with case-control sta-
tus [87, 88, 91]. As well as the obvious benefit of biologically
interpretable results, this approach allows researchers to study
for the first time genes with only modest effect sizes, which
likely constitute a large proportion of the risk for psychiatric
disorders [85, 92]. Further, gene expression levels may be
probed in traditionally inaccessible tissues, circumventing
many of the confounders present in RNA-seq or other
transcriptomic analyses. Finally, the use of genetically regu-
lated gene expression means that directions of effect are easy
to interpret.

Unlike traditional transcriptome studies, in which gene
expression may be affected by disease-related behaviors
and environmental factors, and at specific developmental
times when tissue is collected, TI-determined genetically
regulated gene expression changes is less influenced by
these factors [87]. For instance, many of the genes iden-
tified with this method for schizophrenia are expressed
specifically pre-natally or post-natally, well before disease
onset [93]. Such findings suggest that genetic regulation
of differential gene expression during brain development
may set up neural circuits that have differential risk for
disease development later in life. Such approaches to TI
have been successfully applied to identify associated
genes in a number of psychiatric disorders including
schizophrenia, bipolar disorder, anorexia nervosa [91,
94–96], and studies of the imputed transcriptome in
PTSD are underway [97].

Electronic Health Records for Phenome-Wide Association
Studies Electronic health records (EHRs) present an exciting
opportunity for researchers to study psychiatric disease risk.
These records are often linked to genotypes through
population- or hospital-based biobanks, and, importantly, tend
to be demographically representative of the general popula-
tion [98, 99]. The deep phenotyping available through EHRs
enable researchers to consider the impact of a gene or variant
on all recorded traits, phenotypes, endophenotypes, and be-
haviors, rather than on a specific disease or trait, using a
phenome-wide association study (PheWAS) [100–103,
104•]. A number of elegant algorithms and software packages
exist to run these analyses [105, 106], and PheWAS catalogs
are openly available [107]. Testing PTSD-associated variants
and genes using this approach may substantiate epidemiolog-
ical observations about comorbid phenotypes (for example, an
increased risk of cardiovascular disease [70, 108, 109]), and
clarify whether these comorbidities are due to shared genetic
etiology, some shared effect of exposure to trauma, PTSD
treatment, or some other factor. The longitudinal aspect of
EHRs will also allow researchers to track whether comorbid
conditions precede PTSD onset or trauma exposure, as well as
whether symptoms persist after treatment for PTSD. Such a

longitudinal assessment recently showed that there was no
relationship with sleep-disordered breathing on cognition in
a sample of Vietnam veterans with PTSD [110].

Conclusions

In this brief review, we have examined the current evidence
for heritability of PTSD, as well as large-scale, unbiased
genome-wide association studies searching for new genomic
variants associated with the syndrome. We also examined
more modest epigenome-wide studies that have been per-
formed to-date, in an effort to identify differential mDNA
patterns associated with PTSD risk. Most psychiatric disor-
ders, and certainly PTSD, are a result of both environmental
risk (e.g., trauma exposure) and biological risk. Increasing
evidence suggests that one mechanism for gene × environ-
ment interactions that differentiate risk vs. resilience is via
epigenetic processes. Future work in this area provides prom-
ising opportunities for a more detailed mechanistic under-
standing of how environmental exposure interacts with the
genome in neural systems. Finally, we discussed new ap-
proaches that may lead to identifying intermediate phenotypes
more closely aligned with the biology of disease. The inter-
section of current large-scale studies with improving causal
approaches provide a hopeful future for understanding the
biology, which provide promise for future novel interventional
approaches routed in mechanism.
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