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Abstract
Purpose of Review Studies of the neurobiology and treatment
of PTSD have highlighted many aspects of the pathophysiol-
ogy of this disorder that might be relevant to treatment. The
purpose of this review is to highlight the potential clinical
importance of an often-neglected consequence of stress
models in animals that may be relevant to PTSD: the stress-
related loss of synaptic connectivity.
Recent Findings Here, we will briefly review evidence that
PTSD might be a “synaptic disconnection syndrome” and
highlight the importance of this perspective for the emerging
therapeutic application of ketamine as a potential rapid-acting
treatment for this disorder that may work, in part, by restoring
synaptic connectivity.
Summary Synaptic disconnection may contribute to the pro-
file of PTSD symptoms that may be targeted by novel
pharmacotherapeutics.
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Introduction

The field of post-traumatic stress disorder (PTSD) research has
advanced significantly since the earliest attempts to embed our
understandingof this disorderwithin amodern translational neu-
roscience context [1, 2]. So far, the greatest progress has been
made in studies related to the regulation of fear. PTSD is associ-
ated with a bias toward viewing neutral stimuli as threat-related,
increased generalization of fear, deficits in fear extinction, and
altered processing of threatening contexts that are presumed to
contribute to fear-related PTSD symptoms including anxious
arousal (startle,hypervigilance), intrusive trauma-likesymptoms
(intrusive thoughts, nightmares, flashbacks, emotional/
physiologic reactivity), andavoidanceof thoughtsandreminders
of the traumas [3–10, 11•]. These advances have informed the
evolution of cognitive and behavioral treatments for PTSD [12,
13], andhave led to the testing of pharmacologic approaches that
might enhance these processes [14, 15•, 16, 17]. However, even
within this area of research, it is not entirely clear why trauma-
related fear memories are often so highly resistant to extinction.
For example, it is not known whether the persistence of fear-
related symptoms in PTSD reflects a deficit in neuroplasticity
andwhether theseneuroplasticitydeficits, in turn,haveanunder-
lying structural component.

Toward a Synaptic Deficit Hypothesis

A model of PTSD based entirely on fear conditioning may be
too narrow to explain the breadth of associated symptoms.
Other PTSD symptoms listed in DSM-5 [18] may not be
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consequences of dysregulated fear, such as dysphoric arousal
(difficulty concentrating, difficulty sleeping), anhedonia (loss
of interest, detachment), and externalizing symptoms (irrita-
bility/anger, self-destructive, or reckless behavior) [3], as well
as symptoms including guilt, shame, and cognitive impair-
ments [19•]. Some of these symptoms, such as emotional/
behavior disinhibition [20], apathy [21], and impaired atten-
tion [22] are also associated with neural lesions that impair the
functional connectivity of the brain, as might occur in the
context of traumatic brain injury or cerebrovascular disease.

The resemblance of some PTSD symptoms to symptoms
associated with impaired synaptic connectivity may be more
than coincidence. It is well established that chronic stress
causes neural atrophy and decreases the number of synapses
within cortical and limbic circuits implicated in the regulation
of mood, cognition, and behavior [23•]. Glutamate synapses
are the dominant form of synaptic connectivity in these cir-
cuits. As reviewed in Fig. 1, stress compromises the integrity
of signaling via glutamate synapses in several ways including
by reducing signaling via brain-derived neurotrophic factor
(BDNF) and impairing its downstream intracellular signaling.
As a consequence, there are reductions in the number of α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) glutamate receptors in the synapse, reductions in
the size of dendritic spines, loss of dendritic spines supporting
synaptic connectivity, and even loss of larger dendritic ele-
ments resulting in decreased dendritic complexity.

Factors contributing to synaptic loss in chronic stress and
PTSD may include disturbances in glucocorticoid receptor
(GR) signaling, neuroinflammation, and deficits in neurotrophin
signaling [24, 25, 26•, 27, 28]. Hypothalamo-pituitary adrenal
axis function in PTSD ismanifest atmany levels including alter-
ations in diurnal cortisol levels [29–31], increased GR numbers
[32] orGR function [33], and alterations inGR signaling-related
proteins such as the GR chaperone protein, FK506 binding pro-
tein 5 (FKBP5) [34•], and serum and glucocorticoid-regulated
kinase 1 (SGK1) [35•]. With so many alterations, the impact of
hypothalamo-pituitary-adrenalaxis (HPA)changesmaybecom-
plex, contributing to both resilience and vulnerability. This con-
fusion has led to the testing of both GR agonists [36, 37] and
antagonists [38] as treatments for PTSD. Elevations in pro-
inflammatory cytokines including interleukin 1β, interleukin 6,
tumor necrosis factor α, and interferon γ are associated with
PTSD [39]. One consequence of the combined hypothalamo-
pituitary-adrenal axis dysregulation and pro-inflammatory state
may be to compromise the function of glia responsible formain-
taining synaptic glutamate homeostasis, resulting in neurotoxic
elevations of extrasynaptic glutamate levels [40].

Todate, there are limitedclinical data that directly support this
hypothesis [34•].Onepublishedpilot studyofpostmortem tissue
evaluated 500 dendritic spines from the ventral medial frontal
cortex tissue from eight PTSD cases and eight comparison sub-
jects. They reported that the remaining dendritic spines in PTSD

tended to be immature (stubby spines as opposed to mature
mushroom spines). They also reported that elevated messenger
RNA (mRNA) levels for FKBP5, which codes for a chaperone
protein for the glucocorticoid receptor, were associated with re-
ducedmushroom spine density.

There are neuroimaging data that indirectly support the hy-
pothesis of deficits in synaptic connectivity in PTSD. These
findings include reductions incortical thickness [41],decreased
subcortical volumes on MRI [42–45], reduced integrity of
white matter pathways on diffusion-weighted imaging (DTI)
[46, 47], and reductions in cortical functional connectivity in
some studies [48], but more complex patterns of functional
connectivity changes in other studies [49–51]. In these studies,
regional reductions in cortical volumes, deficits in structural
connectivity, and reduced functional connectivity were associ-
atedwith PTSDsymptoms, cognitive impairments, and overall
functional impairment, suggesting their clinical relevance.

Synaptic loss associated with PTSD may aggravate the
impact of other pathophysiologic processes. PTSD is often
comorbid with conditions that independently may contribute
to synaptic pruning including aging [52], traumatic brain in-
jury [53], major depression [23•], high levels of alcohol con-
sumption [54–56], and other medical conditions. The connec-
tivity deficits of PTSD may exacerbate the impact of brain
injury contributing to synergy in cortical network dysregula-
tion, cognitive dysfunction, symptoms, and functional impair-
ment as well as increased PTSD rates the TBI population
[57–59, 60•, 61, 62]. Similar concerns apply to comorbid al-
cohol use disorders [63].

In summary, there are compelling preclinical data and early
clinical correlates suggesting that synaptic loss may be an
important feature of the neuropathology of PTSD. The MRI
findings reviewed above suggest that the structural changes
occur in brain regions involved in the executive control of
emotion, such as the medial prefrontal cortex; the emotional
appraisal of potentially threatening contexts, such as the ante-
rior hippocampus; the generation of emotional states, such as
the amygdala and insula; and in the white matter pathways
connecting these regions. In computational models of circuit
function, adequate integrity of synaptic connectivity is needed
to generate and maintain appropriate representations of infor-
mation [64], to support adaptive neuroplasticity [23•], and to
adaptively regulate circuits generating emotional states [65].
These functional roles for normally dense synaptic connectiv-
ity support the hypothesis that impairments in these functional
domains might emerge from synaptic loss, contributing to
PTSD symptoms.

Synaptic Deficits and Circuit Function

How might synaptic loss impair the regulation of cortical cir-
cuits? The nature of synaptic loss described in the preclinical
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studies is rather subtle. Generally speaking, stress reduces the
richness of synaptic connections rather than obliterating the
integrity of a brain region or the connections between regions
of the brain, as might occur in the context of traumatic brain
injury.

Computational neuroscience studies suggest that synaptic
loss may impair cortical network function in subtle and, per-
haps, paradoxical ways. Stress-related synaptic loss has been
best studied in the hippocampus. Clinical studies suggest that
anterior hippocampal structural deficits in PTSD are associat-
ed to a moderate degree with reduced functional connectivity,
profiles of PTSD symptoms [44], and impaired memory [66,
67]. In animals, both chronic stress and chronic glucocorticoid

administration produce apical dendrite retraction first in the
CA3 region and then in other hippocampal regions [68]. Loss
of dendritic connectivity in both conditions is associated with
reduced neuroplasticity, as reflected by the capacity to induce
long-term potentiation, and impaired memory [69–71]. The
learning impairments associated with chronic stress are also
associated with altered properties of the place cells within the
hippocampus that represent spatial information. These cells
become less stable and more cue-dependent in representing
spatial information [71]. This reduction in the stability and
integrity of the neural representation of information by the
hippocampus is consistent with earlier computational models
of synaptic loss [72]. Together, these studies suggest that

a

b

Fig. 1 Stress causes neural atrophy and synapse loss. a The influence of
repeated-restraint stress (7 d) on pyramidal neurons (layer V) in the
medial prefrontal cortex (mPFC) of rat. The left-hand set of images
shows that stress reduces the number and length of apical dendrites.
The right-hand set of images shows a magnified segment of dendrite,
with its spines at the point of synaptic contacts with neuronal inputs to
the mPFC; repeated stress significantly decreases the number of spine
synapses. b Under normal conditions, stimulation of the presynaptic
neuron releases glutamate, resulting in the activation of postsynaptic
glutamate AMPA receptors and depolarization; this causes activation of
multiple intracellular pathways, including the BDNF-TrkB signaling
pathway (and the downstream kinases Akt and ERK) and the mTORC1

pathway. These pathways are essential for regulation of synaptic
plasticity, a fundamental adaptive learning mechanism that includes
maturation (increased spine-head diameter) and an increase in the
number of synapses. This process requires mTORC1-mediated de novo
protein synthesis of synaptic proteins, including glutamate GluA1 AMPA
receptors and PSD95. Repeated stress decreases BDNF and mTORC1
signaling in part via upregulation of the negative regulator REDD1
(regulated in DNA damage and repair), which decreases the synthesis
of synaptic proteins and thereby contributes to a decreased number of
spine synapses. Other proteins that are involved in the regulation of
synaptic plasticity include GSK3 and protein phosphatase 1 (PP1)
(from [23•])
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stress-dependent synaptic loss in the hippocampus, and per-
haps other regions, may compromise cortical network func-
tions by affecting the integrity of network functions and by
undermining neuroplasticity.

However, there are conflicting data about the precise nature
of stress-related disturbances in hippocampal network func-
tion. While some studies do not report altered neural excitabil-
ity in association hippocampal dendritic atrophy produced by
chronic stress [69, 73], other studies report increases in neural
excitability [74]. The latter have informed a computational
hippocampal network model in which dendritic atrophy pro-
duces increased excitability that impairs neuroplasticity by
saturating long-term potentiation [75]. Another study suggests
that chronic stress produces a dysfunctional dyscoordination
of heightened excitability and neuroplasticity in some neural
compartments, and reduced neuroplasticity in others [76].
This work is at an early stage, and it is hoped that continued
progress in computational approaches to network alterations
in PTSD will yield deeper insights into brain-behavior
relationships.

Ketamine and Synaptic Therapeutics for PTSD

One of the most important questions raised by a focus on
synaptic loss in PTSD is whether the resulting perspective
informs the identification of novel therapeutics for this disor-
der. One might first explore how environmental factors might
influence synaptic connectivity. Animals raised in environ-
ments without much social, sensory, or activity-related stimu-
lation developed reduced levels of cortical synaptic connec-
tivity, while environmental enrichment has the opposite effect
[77–80]. For example, environmental enrichment in animals
protects animals against hippocampal dendritic atrophy and
the associated memory impairment produced by chronic stress
[81]. One form of environmental enrichment that has received
particular attention is exercise. In animals, exercise has many
effects that enhance neuroplasticity, including promoting
neurogenesis, increasing dendritic complexity, and increasing
synaptic connectivity ([82–84]; see Fig. 2). These effects ap-
pear to be dependent on the level of BDNF [84]. The effects of
exercise are sufficient to protect against the detrimental stress-
like effects of chronic corticosterone on neurogenesis and syn-
aptic connectivity [85]. Exercise appears to have beneficial
effects on symptoms severity in people with PTSD [86].
However, it is not yet clear whether these benefits are medi-
ated by enhancements in synaptic connectivity.

What about exercising the brain? Cognitive remediation
therapies might be beneficial for PTSD. This is a relatively
new area of research. Some studies suggest that psychothera-
py may increase regional cortical volumes or white matter
integrity (increased fractional anisotropy in diffusion weight-
ed imaging) in PTSD, but these increases are not universally

associated with clinical improvement [87•, 88, 89]. As op-
posed to cognitive therapies, which aim to address aberrant
thought patterns, cognitive remediation therapies are a form of
“brain exercise” that aims to engage experience-dependent
neuroplasticity in order to restore or enhance functional con-
nectivity [90, 91]. This approach has been studied extensively
in the field of schizophrenia research [92], but it has received
relatively little attention as a treatment for PTSD symptoms.

The capacity of the brain to protect and restore synaptic
connectivity in the context of typical daily activity raises ques-
tions as to why synaptic deficits associated with stress persist
within the context of PTSD. In fact, most people do recover, at
least partly, from severe and repeated traumas. For example,
the lifetime prevalence of PTSD among Vietnam veterans was
approximately 30% [93]. However, the cross-sectional rate of
PTSD declined over time to approximately 15% 10 years after
the Vietnam War [93] and approximately 4.5% 40 years after
the war [94•]. One possibility is that synaptic deficits persist in
PTSD because the symptoms constitute a state of chronic
stress. In other words, the persisting symptoms associated
with PTSD such as fear, depression, insomnia, guilt, demor-
alization, shame, and numbing may evoke complex neurobi-
ological responses that undermine synaptic integrity such as
dysregulation of the hypothalamo-pituitary-adrenal (HPA) ax-
is [95], induction of a chronic pro-inflammatory state [96],
and reductions in neurotrophin signaling [23•]. Supporting
this view, as noted earlier, HPA dysregulation [25], elevations
of pro-inflammatory cytokines [27], and reductions in plasma
BDNF levels [97, 98] have been reported in people diagnosed
with PTSD. Further, volume loss on MRI appears to be a
predictor of the persistence of PTSD symptomswith treatment
[99, 100]. Thus, it is possible that persisting neuroendocrine
dysregulation and neuroinflammation may contribute to the
chronicity of PTSD via enhancing synaptic connectivity def-
icits and compromising neuroplasticity (see Fig. 3).

Current pharmacotherapies for PTSDmay work, in part, by
restoring synaptic connectivity. The most commonly pre-
scribed agents, antidepressant medications, appear to promote
synaptic connectivity via raising BDNF levels, enhancing sig-
naling via CREB, and promoting synaptic growth and
neurogenesis [102, 103]. Long-term treatment with antide-
pressant medications appears to increase hippocampal volume
and improves memory in individuals with PTSD [104], po-
tentially reversing the deficits described in patients [43, 105,
106]. Interpreting the effects of long-term treatments are com-
plex. Long-term therapeutic effects of antidepressant medica-
tions might be mediated by direct neural or anti-inflammatory
effects [107, 108] of these drugs. However, they also might
reflect the long-term effects of changes in mood or activity, as
suggested by the studies of psychotherapy effects on brain
function, reviewed earlier.

The emergence of the rapid-acting antidepressants has cre-
ated the opportunity to study a treatment that might work to
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reduce PTSD symptoms, in part, by directly restoring synaptic
connectivity [109, 110]. The possibility of rapid antidepres-
sant effects produced by N-methyl-D-aspartate (NMDA) glu-
tamate receptor antagonists was suggested by animal models
[111]. This area of research was spurred by the observation
that a single dose of the NMDA receptor antagonist, ketamine,
produced pronounced antidepressant effects in the majority of
patients with treatment-resistant symptoms of depression [40,
112]. More recently, there is preliminary evidence that keta-
mine produces rapid benefits in patients diagnosed with PTSD
[113]. In this study, ketamine produced improvement in PTSD
symptoms even when controlling for its antidepressant effects
and in patients without comorbid symptoms of depression.

As presented in Fig. 4, ketamine may work by rapidly
enhancing synaptic connectivity and by rapidly increasing
dendritic spines in the apical dendrites of pyramidal neurons
in superficial cortical layers, reversing the effects of stress

[109, 114]. The clinical evidence supporting this hypothesis
is limited currently, but it is being actively studied. In depres-
sion, reductions in cortical functional connectivity as mea-
sured by functional MRI appear to be ameliorated within
24 h by a single dose of ketamine, in conjunction with clinical
improvement [115•, 116]. Similar studies are underway in
PTSD patients. In animals, a single dose of ketamine causes
a proliferation of functional dendritic spines. There are at least
three primary hypotheses as to how ketamine might produce
these effects [23•, 40]. One hypothesis suggests that exerts its
effects by stimulating glutamate release. This glutamate re-
lease may trigger a chain of neural effects that begins with
the stimulation of synaptic AMPA glutamate receptors and
involves increased levels and release of BDNF, stimulation
of tropomyosin receptor kinase B (TrkB) receptors (the recep-
tor for BDNF), enhanced signaling via the Akt/molecular tar-
get of rapamycin (mTORC) signaling pathway, increases in

Fig. 3 This figure illustrates a
“vicious cycle” through which
neuroinflammation, HPA
activation, and stress-related
alterations in circuit function
interact to contribute to synaptic
loss and how synaptic loss then
contributes to the chronicity of
PTSD by compromising the
regulation and neuroplasticity of
emotion-related neural networks
(modified from [101])

a bFig. 2 Evidence that voluntary
exercise increases dendritic spine
density in the dentate gyrus of the
hippocampus in rats. The left
figure presents the number of
dendritic spines per 10 μm for
dentate granule cells. The asterisk
symbol indicates p < .05. The
right figure presents results from
Golgi-impregnated dentate
granule cells at ×100
magnification from control (A)
and exercised (B) animals. Scale
bar = 10 μM [82]
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the synthesis of proteins associated with dendritic spines, and
the rapid emergence of new spines (see Fig. 5). Another im-
portant hypothesis is that ketamine exerts its clinical effects by
blocking extrasynaptic NMDA glutamate receptors, reducing

the phosphorylation of eukaryotic elongation factor-2
(eELF2), reducing the phosphorylation of the associated ki-
nase, enhancing AMPA signaling, and increasing BDNF
levels [117]. A third hypothesis, which might be viewed as a
variant of the prior hypothesis, suggests that a ketamine me-
tabolite, 2R,6R–hydroxynorketamine, enhances AMPA sig-
naling through a mechanism that remains to be determined
[118•]. Other hypotheses include the possibility that antide-
pressant effects of ketamine are mediated by its anti-
inflammatory effects [119, 120], its effects on nitric oxide
signaling [121, 122], its modulation of GABA-B receptor sig-
naling [123], and other effects.

If ketamine proves to produce lasting improvement in
PTSD, it may serve as a prototype for other putative rapid-
acting antidepressants. For example, preclinical studies sug-
gest that muscarinic cholinergic receptor antagonists [124],
metabotropic glutamate receptor-2 antagonists [125], and
AMPAkines [126] might produce rapid antidepressant effects
by directly or indirectly enhancing AMPA receptor signaling.
Only the first of these mechanisms has been tested as an anti-
depressant in humans, with promising early results [127].

However, the persisting potentiation of neuroplasticity by
ketamine suggests a novel role in the treatment of PTSD: the
enhancement of fear extinction among patients who have
failed to respond to exposure-based treatments. Deficits in fear
extinction in PTSD are a central challenge in treatment and
modifications to traditional cognitive and behavioral therapies

CUS (21 d) 
CUS(21 d)
+Ket (1d)

5 µm  

Fig. 4 Confocal photomicrographs of labeled layer V pyramidal neurons
in the medial prefrontal cortex. The left figure shows the low numbers of
dendritic spines present in the dendrites of layer V pyramidal neurons
after 21 days of chronic uncontrollable stress (CUS). The right figure
illustrates the reversal by a single dose of ketamine 1 day later. Red
arrows highlight dendritic spines present after ketamine

Fig. 5 Ketamine causes a burst of glutamate that is thought to occur via
disinhibition of GABA interneurons; the tonic firing of these GABA
interneurons is driven by NMDA receptors, and the active, open-
channel state allows ketamine to enter and block channel activity. The
resulting glutamate burst stimulates AMPA receptors, which causes
depolarization and activation of voltage-dependent Ca2+ channels
(VDCC), leading to release of BDNF and stimulation of TrkB receptors
and activation of Akt, which then increases mTORC1 signaling, leading
to the increased synthesis of proteins that are required for synapse
maturation and formation (i.e., GluA1 and PSD95). Under conditions in

which BDNF release is blocked or neutralized, or in which mTORC1
signaling is blocked by rapamycin, the synaptic and behavioral actions
of ketamine are blocked. Scopolamine also causes a glutamate burst via
blockade of acetylcholine muscarinic M1 (ACh-M1) receptors on GABA
interneurons. Antagonists of mGluR2/3 also produce rapid antidepressant
actions via blockade of presynaptic autoreceptors that inhibit the release
of glutamate. Relapse to a depressive state is associated with a decrease of
synapses on mPFC neurons, which could occur via stress and imbalance
of endocrine hormones (cortisol), estrogen, inflammatory cytokines, and
metabolic and cardiovascular illnesses (from [23•])

74 Page 6 of 11 Curr Psychiatry Rep (2017) 19: 74



are a major focus of treatment development [128, 129]. There
has long been an interest in developingmedications that might
enhance this process [130]. One strategy that of enhancing
NMDA receptor signaling using D-cycloserine has not proven
effective in PTSD [131]. Ketamine, perhaps by increasing
synaptic connectivity, appears to increase neuroplasticity and
to enhance fear extinction in animals [132•]. This raises the
possibility that the therapeutic effects of ketamine in PTSD
might be potentiated by using it to enhance the efficacy of
progressive exposure, cognitive processing therapy, eye
movement desensitization and reprocessing (EMDR), or other
exposure-based therapies.

Summary and Implications

Synaptic deficits associated with PTSD may contribute to the
complex profile of symptoms and functional impairments as-
sociated with this disorder. These deficits may arise in part
from the neurobiology of chronic stress associated with
persisting symptoms of PTSD. In turn, synaptic deficits may
compromise neuroplasticity and impair resilience among in-
dividuals with PTSD, contributing to symptom chronicity and
compromising clinical responses to current treatments. Awide
range of interventions could be viewed as targeting impaired
synaptic connectivity, such as stimulating life activities, in-
cluding exercise. However, the ability to respond to these
forms of self-healing may be compromised by PTSD-related
neuroplasticity deficits. Long-term antidepressant treatment
may contribute to clinical recovery by promoting synaptic
plasticity. However, recent rapid-acting antidepressants may
more directly target synaptic deficits associated with PTSD
and there is now preliminary evidence of the rapid efficacy
of ketamine. Further, ketamine may open a window of in-
creased neuroplasticity where cognitive and behavioral thera-
pies might be more effective in treating PTSD symptoms.

This review relies heavily on many sources of data that are
quite preliminary, and so some of its key assertions may be
vulnerable to being disproved by future research. For exam-
ple, postmortem studies of brain tissue from individuals with
PTSD are in their infancy. Results from studies employing
PET radiotracers that might serve to quantify cortical synaptic
density in vivo in PTSD before and after treatment have yet to
be reported. Inferences about synaptic connectivity based on
MRI-based imaging methods are likely to be risky. Further,
our limited knowledge of the neurobiology of PTSD limits our
ability to rigorously evaluate the applicability of findings from
animal models of stress to the pathophysiology and treatment
of this disorder. Thus, the purpose of this review is to draw
attention to the importance of synaptic loss for PTSD,
balancing the focus on fear acquisition in considerations of
the pathophysiology, and treatment of PTSD, with the aim
of stimulating more research in this area.
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