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Abstract
Purpose of Review This review aims to evaluate the most
recent literature examining the oxytocin (OXT) system’s role
in human anxiety by surveying various fields of preclinical
and clinical research supporting this role, and queries whether
the OXT system might be a target for novel anxiolytics.
Recent Findings Evidence from the diverse body of literature
presented here, from translational research, genetic and neu-
roimaging studies, to clinical trials of intranasal (IN) OXT
reveals a positive association. In addition, some moderators
(e.g., sex, specificities to cues) of OXT’s anxiolytic effects can
have an important influence on its outcomes, awaiting further
research.
Summary Evidence for the role of OXT in regulating anxiety
is undeniable. We expect that the diverse particularities of the
OXT system will help broaden our understanding of anxiety
and stress-related disorders. We conclude that OXT promises
an enticing treatment option for human anxiety disorders es-
pecially those associated with socio-emotional dysfunctions.

Keywords Oxytocin . Anxiety . Social anxiety . PTSD .
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Introduction

Anxiety disorders are the most prevalent of all psychiatric
conditions, with a combined lifetime prevalence of general-
ized anxiety disorder (GAD), posttraumatic stress disorder
(PTSD), and social anxiety disorder (SAD) estimated around
30% [1]. Alas, conventional anti-anxiety treatments fail to
help patients reach full remission and do not properly prevent
relapses hence asserting the need to broaden the therapeutic
arsenal of such ailments [2].

There is a growing interest in the neuropeptide OXT for its
role in social cognition and behavior. OXT is now considered
a social hormone owing to the voluminous literature alluding
to its capacity to moderate many social behaviors in various
mammalian, primate species, and humans. It has been found
to increase trust, pro-social behavior, and sensitivity to reward
which can ultimately increase motivation to treatment and
improve therapeutic alliance [3, 4••, 5]. In addition, OXT is
involved in the regulation of stress and anxiety, a property that
has been validated by numerous pharmacological and genetic
studies. For instance, endogenous OXT has been shown to
amply rise in response to psychological and psychosocial
distressing situations counteracting anxiety [4••]. The litera-
ture on OXT in anxiety disorders indicates that it might be an
alluring treatment option for human afflictions bearing a
socio-emotional dimension like PTSD and SAD [4••, 6].
This growing evidence that OXT might have a potential ther-
apeutic benefit in this unmet need is comforting.

The present review article examines the most recent litera-
ture addressing this line of research focusing on both preclin-
ical and clinical studies highlighting the role of the OXT sys-
tem in human anxiety. The body of literature herein encom-
passes translational research on OXT’s relationship to animal
fear and anxiety, studies of genetic variation in the OXT sys-
tem, neuroimaging research, and clinical trials of IN OXT
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including investigations of moderators of OXT’s anxiolytic
effects (e.g., gender, genetic factors, type and timing of stress-
or). Due to the space constraint, and rather than discussing
specific methodological limitations of individual studies, we
offer a synthesis of the more general and frequently encoun-
tered limitations on this subject in the “misconceptions and
controversies” and conclusion sections.

Neurophysiology and Neurobiology of the OXT
System

The major OXT neurosecretory system consists mainly of the
paraventricular (PVN) and supraoptic (SON) nuclei in the
hypothalamic-neurohypophysial system, along with the ac-
cessory magnocellular nucleus of the hypothalamus. This neu-
rosecretory system projects centrally to the neurohypophysis
in order tomodulate the activity of several brain regions where
OXT can bind to the extensively distributed OXT receptors
(OXTR) [7].

Although OXTR have not been conclusively mapped in
humans, there is considerable progress in the representation
of circuits moderating its role in rodents: whether by facilitat-
ing social approach in the medial Prefrontal Cortex (mPFC)
[8] or by its synergistic action with serotonin to modulate
social reward in the nucleus accumbens [9]. In rats, OXTR
were found in the spinal cord, brainstem, hypothalamus,
amygdala, and nucleus accumbens [10]. In primates, the hip-
pocampus, and the anterior cingulate cortex hold OXT bind-
ing sites as well [11].

In humans, a recent systematic review and meta-analysis
by Wigton et al. strengthened the evidence that the amygdala
is highly involved by reporting that the majority of studies
reported a reduction in the amygdala activation following IN
administration of OXT. Nevertheless, the latter does not pre-
clude that other brain structures would turn out to be important
sites of OXT action [12•].

Oxytocin, Anxiety
and the Hypopituitary-Hypophysis-Adrenal Axis

Translational animal studies on the effects of OXT repeatedly
demonstrated evidence of its regulatory function on the
hypopituitary-hypophysis-adrenal (HPA) axis to the extent
of being considered today an irrefutable sign of its anxiolytic
activity [13]. In human models, however, data on the IN OXT
effects on cortisol levels is not unanimous, generating mixed
results [14–16]. A more recent study by Jurek et al. was more
conclusive regarding the anti-stress effect of OXT by
inhibiting the expression of the main activator of the HPA,
the corticotrophin releasing factor within the PVN [17].

In healthy male and female individuals, it was demonstrat-
ed that the protective stress-reducing effects of OXT unravels
only after an initial, early stage, co-activation of both the HPA
axis and the OXT systems, and this in terms of accelerated
recovery rather than an attenuated reactivity [18].

Genetic and Epigenetic Variation in the OXTR Gene

The OXTR gene is located on chromosome 20 in humans and
contains three exons, each encoding for a specific portion of
the neuropeptide [19].

For the last two decades, several studies have taken interest
in the relationship between allelic variations in the OXT sys-
tem and many parameters related to anxiety disorders,
anxiety-related personality traits, structural and dynamic brain
variants, and responses to stress. The unveiling of potential
associations between the behavioral phenotypes and a genetic
predisposition further bolsters the implication of OXT in the
etiology of socio-emotional dysfunctions.

An association with empathic, optimistic, and trustful so-
cial traits and the G allele of the 6930G>A (rs53576) variant in
intron 3 of the OXTR gene contrary to the A allele carriers is
an illustration [20•]. One year later, Chang et al. found that
A/A carriers of this same gene had an interactive effect of
dopamine and OXT levels with high scores of negative affec-
tivity and neuroticism [21]. Concomitantly, Myers et al. iden-
tified a single nucleotide polymorphism (SNP) (rs139832701)
to be correlated with early life stressors and higher anxiety,
depression, and stress scores [22].

Epigenetic regulation of the OXTR receptor gene through
methylation of cytosine-phosphate-guanine appears to be
linked to the SAD categorical phenotype, with increasing so-
cial anxiety, increased cortisol response to stress, and in-
creased amygdala activation [23•]. Other variations in the
OXTsystem genes are being linked to higher social sensitivity
and increase risk of full-blown SAD [24], (for review, [25]).

Balance of the Brain OXT System in Anxiety
Regulation

The balance of the brain OXTsystem and its consequences on
emotional and social behaviors illustrated by Neumann et al.
were found to span along the continuum from normal mental
health to psychopathology [4••, 7].

A low brain OXT activity reflecting high anxiety levels
may be due to one or more of the following: (1) low OXT
gene expression, (2) low levels of central OXT release and
availability in the extracellular fluid at rest and/or when stim-
ulated, and/or (3) low OXTR expression and binding capacity.
Several factors may be involved in regulating this balance by
improving these parameters (e.g., physiological and
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environmental stimuli, genetic and epigenetic factors, phar-
macotherapy). An adaptive shift to the opposite side of the
balance can sometimes be the case (e.g., in the case of chronic
adverse life events when maintaining a low level of anxiety
can be beneficial) [4••, 7].

Interactions of the OXT System With Other
Neurotransmitters

It is presumed that OXT interacts with other neurotransmitters
in different brain regions.

In the amygdala, OXT interacts with serotonin to produce
part of its anxiolytic effect, allowing for new prospects to
therapeutic strategies [26]. Moreover, an interaction with the
dopaminergic system, mostly within the nucleus accumbens
[27], and the amygdala [28], boosting the rewarding effects of
social encounters is robustly substantiated. The anxiolytic ef-
fects of OXT is also thought to be mediated via the potentia-
tion of γ aminobutyric acid (GABA) inhibitory properties on
cortico-releasing hormone neuronal activity [29, 30•]. Lately,
an evidence of the interaction with the glutamatergic system in
the septum was outlined [31].

Translational Animal Research on OXTand Anxiety

We provide a non-exhaustive review of a large body of trans-
lational and preclinical work highlighting the role of the OXT
system in anxiety.

Albeit the mixed results of acute and chronic anxiolytic
effects of OXT reported in the review by Rotzinger et al.
[32], a series of important animal research highlighting the
role of OXT as an anxiolytic were conducted [7, 33, 34]. In
fact, OXT was found to reverse the social fear in social fear-
conditioned mice [4••]. Moreover, in a rodent model of PTSD,
OXTadministration was observed to increase recall of extinc-
tion learning [35•]. In contrast, IN OXT increased anxiety to
unpredictable shocks [36].

Translational research pertinent to human anxiety disorders
featured three key points. First, animal research on OXT al-
lows a better understanding of the dynamics potentially
confirming the effects on distinct neuropeptide receptors and
the possibility for their manipulation [37, 38], for example, the
use of specific knockout strains of animals [37, 39, 40] and the
implementation of other novel techniques unavailable in
humans (e.g., optogenetics [34], or gene deletion [9]). A sec-
ond feature worth discussing is the access to a wider inter-
species variations in OXT-related parameters like aspects of
sociality [41] and OXTR density [42, 43]. The third point is
the information that translational research can amass when
assessing the difference between short-term and long-term
OXT treatment.

The acute anxiolytic effects of OXT in preclinical studies
have been consistently demonstrated in male and female ro-
dents when using intracerebroventricular (ICV) or local
(PVN, central amygdala, PFC) administration of an OXTR
agonist or antagonist [37, 44, 45]. On the other hand, the
chronic effects of synthetic OXT in rodents strongly depend
on the dose and duration of application, as well as on the
baseline level of anxiety, with a significant difference in effect
between gender [13, 46, 47•, 48•]. Actually, a chronic 2-week
ICV infusion of OXT in male mice proved to be highly
anxiogenic at a regular 10 ng/h dose whereas a tenfold lower
dose prevented the hyper-anxiety and decreased in vitro adre-
nal sensitivity [48•].

Moreover, the differential effects between single, repeated
(e.g., four administrations over 7 days) and chronic subcuta-
neous OXT administrations on memory consolidation and
fear-related behavior were recently studied in a rat model of
PTSD.

The reduction in generalized fear behavior was only ob-
tained with the repeated and chronic subcutaneous OXT ad-
ministration, 7 and 14 days after shock exposure, respectively.
The single administration of OXT immediately after shock
exposure, on the other hand, enhanced contextual fear behav-
ior at day 2, inducing an increase in fear memory consolida-
tion [49••]. The authors speculated that the long-term anxio-
lytic effect of repeated and chronic OXT administration could
be the product of an OXT-mediated increase in extinction
memory consolidation during re-exposure to the trauma con-
text in safer conditions [49••].

Another advantage of the translational OXT research is the
use of conditioned association experiments to examine the
acquisition, learning, and extinction of anxiety [50, 51], ascer-
taining that OXT is highly implicated in the moderation of
conditioned association and fear learning [52].

Table 1 summarizes the most recent rodent studies investi-
gating the anxiolytic properties of OXT.

Misconceptions in OXT Research

A controversial issue in the OXT-anxiety literature is the oc-
currence of acute anxiogenic effects following OXT adminis-
tration. To settle this misconception, Macdonald et al. referred
to the similarities seen with the serotonin reuptake inhibitors
[53]. Furthermore, Tol et al. warned against the risk of
impairing fear learning with the use of strong short-term an-
xiolytics (as with benzodiazepines) [54]. Hence, the potential
long-term benefits of chronic OXT use should be assessed
carefully before dismissing it because of its anxiogenic acute
effects.

Another challenging aspect is whether OXT crosses the
blood brain barrier (BBB) or could it be that its effects follow
a downstream mechanism triggered by peripheral signaling,
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since only low levels of OXT are measured inside the brain
after relatively large peripheral administration. In this review,
it is clear that both cerebrospinal fluid (CSF) and plasma OXT
levels can be correlated with behavioral changes; however,
what remains unanswered is whether the peripheral OXT
levels are indicative of central OXT. An even more enigmatic
hurdle is the analogy between OXT and vasopressin (VP),
differing by only two amino acids, where this latter also me-
diates either potential peripheral or central effects of OXT at
the fear circuit. This matter can eventually be figured out once
a positron emission tomography ligand for the OXTR is
tested.

Inconsistent Gender Effects

Albeit the abundancy of recent research in rodents [55] and
humans [8, 12•, 56, 57] strongly supporting the earlier obser-
vations that dissimilarities in hormonal balance and brain cir-
cuitry between males and females can contribute to complex
behaviors, the exact mechanisms underlying the gender biases
in the manifestations and response to treatment in social and
emotional disorders are still poorly understood. The disparate
gender effect of OXT on higher-order circuits regulating anx-
iety is still far from being elucidated and appears to be highly
brain region- and species-specific [58••]. Since most anxiety
disorders are twice as prevalent in females [59], this sex dif-
ference in OXTeffects once explored and resolved might shed
some light on the gender-specific brain circuitry disparity.

An illustration of this differential anxiolytic effect specific
to the male gender was illustrated by Weisman et al. who
examined plasma OXT levels in 473 healthy adults (41.5%
males) and found a link between those levels and low trait
anxiety only in men [60]. Another example is the findings
by Bredewold et al. that only female rats’ social play was
affected by OXT injection into the lateral septum [61].
Conflicting data with opposite effects between sexes on brain
activation during human social interaction have also been re-
ported [62], whereas other authors found similar effects in
both sexes [63]. Moreover, compared to gender differences
in the OXT peptide synthesis, the differences in its receptor
system are even more cryptic, generally displaying higher
OXT expression in females, whereas in males its receptor
expression is higher. [58••]. Further examples of these gender
discrepancies are discussed in the specific sections of this
review.

Specificity of OXT Effects

Pertaining to the specificity of the OXT action, Evans et al.
suggested that the anxiolytic effects arising in a social setting
might be specific to this cue. In other terms, the enhanced

sense of social approval resulting from the administration of
OXTcould be the product of a positive processing bias emerg-
ing from the complex interaction of OXT on higher-order
social function in the instance of social stimuli [64].
Additional investigations over this nuance are warranted to
better understand the situations under which IN OXT is pro-
social. The use of non-social control conditions would also be
helpful in confirming the specificity of its effects.

Furthermore, social stimuli can sometimes be misleading,
signaling both safety and danger in certain ambiguous situa-
tions. An active area of research is addressing this issue of a
possible nonspecific effect (increasing social salience in gen-
eral) versus a more specific effect on the processing of stimuli
with a certain valence (e.g., happy vs. fearful faces) [65]. An
additional example of this specificity is the differential mod-
erating effects of OXT influenced by the perception whether a
social partner is thought to be a member of the in-group or out-
group [66]. In fine, since it appears that selective OXTR acti-
vation in the PFC versus the amygdala could generate con-
trary effects on fear extinction, the OXT treatment mecha-
nisms could become better apprehended by understanding
how OXT dosing can differentially affect regional OXTR
[67].

Intranasal Application of OXT in Humans

The question whether OXT given intranasally could be con-
sidered a reliable measure for the assessment of its functions
(with the absence of alternatives in human research) has been
a matter of debate. Born et al. asserted that neuropeptides
when given intranasally crossed the BBB [68]. Moreover, a
critical review of the impact of OXT IN on social and behav-
ioral process reported considerable positive results [69]. More
recent studies further supported the adequacy of the IN deliv-
ery system suggesting a direct nose-to-brain route for OXT [5,
70]. However, Walum et al., in their analysis of IN-OXT stud-
ies, warned that such studies are frequently underpowered and
hence a high probability that the reported effects are an over-
estimation [71]. In order to minimize the effects of anatomical
variations in IN OXT uptake, Guestella et al. proposed a pro-
tocol standardizing OXT administration [72].

Human Imaging Studies

For the past few years, functional magnetic resonance imaging
(fMRI) has been extensively used to investigate the behavioral
and cognitive effects of OXT, and the neural correlates of its
effects [73]. It has been shown that OXT induces activity in
cortical and subcortical regions in both sexes, although
gender-specific differences in these responses have also been
reported [12•, 74, 75]. The seminal meta-analysis by Wigton
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et al. is a perfect example of the explicit emotional processing
tasks in women, after OXT administration, resulting in an
increased activity in the temporal lobes and the amygdala,
while implicit emotional processing in men had the opposite
effect [12•]. Sripada et al. have demonstrated an increase in
the functional coupling of the ventromedial PFC and the
amygdala stimulated by IN OXT administration in healthy
men [76]. Dodhia et al. replicated this effect in patients suf-
fering from SAD [77]. Another MRI study using IN OXT
suggested that OXT might act by limiting the control of the
amygdala while concomitantly increasing the medial PFC
function to facilitate the extinction of conditioned fear, thus
reproducing a top–down control over the fear response [78].

OXTand General Anxiety: Human Research

In the sections herein, it is crucial to keep in mind additional
technical limitations in particular the lack of a radioligand for
the OXTR, the lack of a centrally active OXT antagonist in
human research, the limited understanding of the functional
role of OXT genetic variants, and the limited understanding of
the relationship between central OXT system activity and pe-
ripheral OXT levels. Indeed, the pharmacodynamics, pharma-
cokinetics, and mechanism of action of IN OXT are still not
fully understood. Although the treatment of anxiety disorders
should optimally consist of chronic, multiple doses over
weeks, few clinical trials of chronic OXT in humans were
conducted.

The scant studies that are in line with this pharmacological
standard of care have produced initial positive results in GAD
[79] and a negative outcome in obsessive compulsive disorder
(OCD) [80, 81]. Most reports, however, have assessed the
effect of single-dose OXT in various models of anxiety, in
both healthy and mentally ill individuals, and have shown
positive, neutral, and negative effects on different parameters
of anxiety. Feifel et al. supported a beneficial effect of daily
OXT administration in GAD patients over 3 weeks, particu-
larly in males [79]. It is clear that additional studies assessing
the effect of chronic or repeated OXT administration in GAD
are warranted.

Social Stress and Social Anxiety

A recent meta-analysis demonstrated a significant impact of
IN OXT in reducing cortisol levels during stressful laboratory
tasks that had a social-evaluative component [82]. Wirth et al.
went further by stating that no effect of OXTwas seen on basal
cortisol in the absence of an acute stressor [83]. The stress
dampening effect of OXT administration seems to be ampli-
fied by a social cue. In line with those results, Neumann et al.
reported that under nonreproductive and stress-free conditions

where basal OXT activity is low, there is no anxiolytic effect
of endogenous OXT using an OXTR antagonist. They con-
cluded that endogenous OXT might be responsible of regulat-
ing anxiety in the setting of psychosocial or physiological
stressors rather than a baseline maintenance of a basal level
of anxiety [4••]. An elevated OXTR binding in regions asso-
ciated with the fear circuitry, notably the dorsolateral septum,
central amygdala, hippocampus, and the median raphe nucle-
us in social fear suggests a significant association with chang-
es in the brain OXT system. The modifications in OXTR
binding have been found to be reversed following social fear
extinction [35•].

OXT in PTSD and Social Anxiety Disorder: Human
Research

Several human studies examined the OXT system in relation
to both PTSD and SAD. IN OXT versus placebo demonstrat-
ed an enhanced social fear extinction [78, 84] and enhanced
extinction recall [85]. Male PTSD patients were found to have
lower salivary OXT levels compared with male trauma-
exposed controls [86].

As is the case in translational research on rodents, single
versus repeated administration of OXT have demonstrated
opposite results in humans. In a recent multicenter random-
ized double-blind placebo-controlled clinical trial (RCT)
assessing the efficacy of IN OXT in recently trauma-
exposed emergency department (ED) patients (N = 107), the
repeated administration proved to be a promising early pre-
ventive intervention for PTSD for individuals at increased risk
of its development whereas a single OXT administration
acutely increased amygdala reactivity to fearful faces and at-
tenuates amygdala-PFC functional connectivity [87••].
Similarly, a single systemic injection of OXT was enough to
impair reconsolidation of social fear memories after reactiva-
tion of learned fear [88]. A study by van Zuiden reported
beneficial effects of OXT only in trauma-exposed subjects
with high acute PTSD symptoms [89••]. Apparently, the na-
ture of the threat (social vs non-social, predictable vs
unpredictable) is also an important moderator of the effective-
ness of exogenous OXT in humans. Furthermore, the timing
of the OXT exposure relative to cue presentation is another
determinant of the response to OXTadministration [85]. All in
all, those studies demonstrate that OXT can be a potentially
effective treatment of PTSD owing to its reconsolidation
blocking effects.

Several studies assessing plasma OXT levels, OXTR gene
methylation and SNPs, and the effect of IN OXT on SAD
symptoms have been undertaken. For example, a decreased
baseline OXT plasma level has been reported in patients with
SAD [90]. Ziegler et al. found that a decreased OXTR meth-
ylation (likely to result in increased expression and less
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binding potential) in 110 unmedicated patients with SAD was
associated with symptom severity, elevated stress-induced
cortisol responses, and increased amygdala activity [23•].
Promising results on improvement in self-evaluation of public
performance was seen in patients with SAD who received IN
OXT either alone or in combination with exposure therapy
[91]. Additional reports assessing regional neuronal activity
patterns and amygdala-prefrontal connectivity in response to
emotional faces after administration of IN OXT conferred
similar positive results [77, 92]. In fragile X patients, who
demonstrate high levels of social anxiety, IN OXT improved
eye gazing and reduced cortisol in response to a social chal-
lenge [93]. A selection of the most recent studies investigating
the anxiolytic properties of OXT in human anxiety disorders is
listed in Table 2.

Conclusion

There is a substantial body of evidence supporting the signif-
icant, complex and nuanced, modulatory role of the OXT
system in different heterogeneous aspects of anxiety and anx-
iety disorders that stretches out to expand our understanding
beyond the description of OXTas simply anxiolytic. In light of
this review, our hopes for the development of new therapeutic
options for some specific anxiety disorders using OXT stand
high, especially if its effects turn out to be of long-lasting
action and to have an adequate side-effect profile. It might
also be that OXT treatment could prove more beneficial if it
is conceived to target traits and dimensional anxiety like social
cognition and interpersonal deficits rather than sticking to
diagnosis-related approaches. It is also fitting to expect its
initial use as an add-on to other treatments rather than being
devised as monotherapy. Furthermore, its ability to increase
feelings of trust could prove useful in facilitating therapeutic
alliance, enhancing response to treatment and improving
compliance.

However, many considerations should be thought-out be-
fore reaching firm conclusions on the clinical utility and effi-
cacy of OXT. Despite the wealth of the aforementioned data,
many questions regarding the pharmacokinetics and pharma-
codynamics of IN OXT remain unanswered. Larger, more
adequately powered RCT are crucial to identify appropriate
dosing strategies for the various indications of use. Other
highly relevant questions for future investigations are the ex-
act mechanisms of action of OXT, its interaction with other
pharmacological interventions, the correlation between pe-
ripheral and central OXT, and the increased concentration in
the CSF when administered intranasally, and whether the ef-
fects are maintained at long-term follow-up.

Of particular focus in recent research has been the oppos-
ing, anxiolytic or anxiogenic, effects of OXT in fear and ex-
tinction memory consolidation depending on administration

frequency and timing relative to fear conditioning [49••], and
whether the conditioned stimuli are social or not [35•]. Further
investigations of those observations are of critical importance
to improve understanding and handling of OXT in its thera-
peutic aspects. Moreover, the dose-response effects of OXT
administration on anxiety, alluded to by Peters. et al., are to be
thoroughly examined as well [48•]. In regard to the sex differ-
ences in the OXTsystem, we believe that this is far from being
well understood and no firm conclusions can be drawn.

The many studies available to date, implying a possible
association between polymorphisms of the OXT peptide and
receptor system and anxiety disorders, advocate a role of the
former in the pathophysiology of the latter. However, it is clear
that each finding constitutes no more than a tiny additive role
in the complex genetics and gene–environment interactions
underlying the different anxiety phenotypes. In addition, alike
the HPA and serotonin systems, we can expect that the diverse
aspects and particularities of the OXT system will help im-
prove our understanding of the genetics, epigenetics, and na-
ture of human anxiety and stress-related disorders.

In summary, the evidence for the role of OXT in general
anxiety, stress-related disorders, and social fear, in addition to
its many pro-social effects, is compiling. In fine, we found no
conclusive evidence for the effectiveness of OXT in the treat-
ment of OCD, rather a potential involvement of the OXT
system in the etiology of OCD repetitive behaviors has been
raised [94, 95]. Future rigorous research is needed in order to
better ascertain the specificities and nature of the OXT role,
allowing more accurate translation of findings into a compre-
hensive understanding of the underlying pathophysiology of
anxiety disorders, leading the way to the development of ef-
fective treatment strategies.
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