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Abstract
Purpose of Review We reviewed and evaluated recently pub-
lished scientific studies that explored the role of the intestinal
microbiota in eating disorders.
Recent Findings Studies have demonstrated that the intestinal
microbiota is a contributing factor to both host energy homeo-
stasis and behavior—two traits commonly disrupted in pa-
tients with eating disorders. To date, intestinal microbiota re-
search in eating disorders has focused solely on anorexia
nervosa (AN). Initial studies have reported an atypical intes-
tinal microbial composition in patients with AN compared to
healthy controls. However, the impact of these AN-associated
microbial communities on host metabolism and behavior re-
mains unknown.
Summary The intriguing pattern of findings in patients with
AN encourages further investigation of the intestinal microbi-
ota in eating disorders. Elucidating the specific role(s) of these
microbial communities may yield novel ideas for augmenting
current clinical therapies to promote weight gain, decrease

gastrointestinal distress, and even reduce psychological
symptomatology.
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Introduction

Eating Disorders

Eating disorders encompass a range of debilitating psychiatric
illnesses broadly characterized by extremeweight and appetite
dysregulation [1]. Of the three major eating disorders—an-
orexia nervosa (AN), bulimia nervosa (BN), and binge-
eating disorder (BED)—AN is the only eating disorder to date
that has been investigated in relation to the intestinal microbi-
ota [2–4•, 5, 6]. AN is specifically characterized by extreme
weight loss or failure to gain expected weight accompanied by
fear of weight gain. The disorder typically—but not exclusive-
ly—presents during adolescence and affects 0.9% of females
and 0.3% of males in the United States [7, 8]. AN has the
highest mortality rate of any psychiatric illness with a stan-
dardized mortality ratio of 5.86, and only half of patients ex-
perience long-term recovery [9, 10]. Moreover, patients with
AN often present with other psychiatric and physiological
disturbances including anxiety, depression, and gastrointesti-
nal (GI) distress, further complicating the treatment of this
disorder [8, 11].

Treatments for acute AN generally involve a combination
of clinical renourishment to promote weight gain and psycho-
therapy to address disordered eating cognitions and behaviors
[12, 13]. The evidence base for psychotherapeutic interven-
tions is weak, especially in adults, and clinical protocols for
refeeding vary considerably. Refeeding is often associated
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with GI distress including pain, bloating, and constipation as
well as abnormal body fat deposition [14, 15]. Weight relapse
(the re-loss of weight after refeeding) is common and contrib-
utes to recurrent presentations [16].

Like all eating disorders, the etiology of AN remains incom-
pletely understood, but as with other complex traits, AN is
influenced by an array of genetic and environmental factors
[17–19]. The poor understanding of the underlying biology of
eating disorders has hampered the development of optimal
evidence-based practices to guide clinicians in their approach.
Deeper insight into the biological underpinnings of AN has the
potential to significantly improve the standard of care and ad-
vance the development of effective pharmaceuticals or other
treatments for AN. Although many biological factors merit in-
vestigation, the intestinal microbiota has recently emerged as a
potential target for treatment during clinical renourishment to
ameliorate GI distress and improve treatment outcomes.

This review provides an overview of the roles that the
intestinal microbiota plays in eating disorders (Fig. 1). The
review first focuses on characterizing the intestinal microbiota
and then explores the avenues through which these enteric
(i.e., intestinal) communities may contribute to the persis-
tence, recovery, or relapse from eating disorders.

The Intestinal Microbiota

The intestinal microbiota is defined as the community of
microorganisms, including bacteria, archaea, fungi,

parasites, and viruses, that reside within the human GI tract
[20]. It has been estimated that this complex community
comprises trillions of microbes, equating to a 1:1 ratio of
human-to-bacterial cells, with the greatest density and di-
versity found in the lower GI tract [21]. The specific col-
lection of microorganisms is unique to each individual and
the composition of the intestinal microbiota is influenced
by myriad host factors including genetics, diet, health sta-
tus, age, sex, geographical location, and drug exposure
[22–30]. Microbial dysbiosis—an imbalance in the expect-
ed prevalence of microbial species in the intestinal niche—
is often associated with various diseases [27]. The vast
majority and most well researched of these microbes are
bacteria, which are the focus of this review. However, the
role of fungi and viruses should not be overlooked, as these
kingdoms are emerging as relevant to other GI diseases,
such as inflammatory bowel diseases (IBD) [31, 32].

Perhaps more impressive than the sheer number of micro-
organisms are the robust and significant relationships this
community has with human health and disease. The intestinal
microbiota is pivotal for detoxifying ingested drugs, training
the human immune system to distinguish between pathogens
and commensal organisms, and synthesizing vitamins includ-
ing B vitamins and vitamin K [30, 33, 34]. Recently, the gut
microbiota has been implicated in substantially influencing
host weight regulation and energy harvest from the diet (i.e.,
extracting calories from food ingested) as well as modulating
host behavior via direct and indirect pathways [35, 36]. As a

Fig. 1 Microbial influences in anorexia nervosa (AN). Brain and intestine models adapted from originals courtesy of Digimation, Inc.
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result of these findings, attention to the intestinal microbiota
has increased over the past two decades in metabolic and GI
disorders including obesity, malnutrition, IBD, and colorectal
cancer [37–40]. There is also nascent interest in the intestinal
microbiota’s role in Parkinson’s disease and neurodevelopmental
disorders such as autism [41, 42]. Given that gut microbiotas
influence both weight regulation and behavior, two hallmarks
of AN, initial investigations into the intestinal microbiotas of
patients with AN have yielded intriguing preliminary results.

Energy Homeostasis and the Intestinal Microbiota

Accumulating evidence from both animal studies and,
more recently, human clinical trials, supports the notion
that the intestinal microbiota plays a substantial role in
nutrient extraction and host metabolism. The majority of
intestinal microbiota research has focused on mechanisms
by which gut microbiotas either directly produce metabo-
lites or indirectly regulate host metabolic pathways to in-
fluence host energy homeostasis. It is highly plausible that
the metabolic functions of these microbial communities
are affected by the dysregulated influx of nutrients and
calories to the GI tract in patients with eating disorders.

Evidence for a Role of the Intestinal Microbiota in Energy
Homeostasis

Germ-free (GF) rodents—mice and rats born and living with-
out any microorganisms—are a powerful animal model to
investigate both the causal role of the intestinal microbiota in
human diseases and its direct effect on host physiology and
metabolism. Compared with conventionally raised rodents
(i.e., rodents living with microorganisms), GF rodents display
slower GI transit time and an enlarged cecum (a pouch located
between the small and large intestines) caused by accumula-
tion of mucous glycoproteins [43, 44]. GF rodents also have
less body fat and consume approximately 30% more daily
calories of chow to maintain normal growth compared with
conventionally raised rodents [45]. These unique phenotypic
characteristics suggest that the intestinal microbiota substan-
tially interacts with its host to promote intestinal transit, digest
nutrients, and assimilate energy to influence host metabolism.

Transplantation studies, in which GF mice are colo-
nized with human fecal microbiotas (as a proxy for intes-
tinal microbiotas), permit investigators to observe meta-
bolic, physiological, and behavioral outcomes resulting
from the introduced microorganisms. In a seminal study
by Ridaura et al., investigators colonized GF mice with
fecal microbiotas from either obese or normal-weight hu-
man twins [46•]. Over a 2-week colonization period, the
GF mice colonized with microbiotas from obese humans
developed more adiposity despite no significant difference

in food intake, suggesting a greater capacity for the obese-
associated intestinal microbiotas to extract calories from
the standard chow diet. This basic study design has since
been replicated to probe into functions of other microbial
communities implicated in a variety of metabolic diseases.
In one such recent study, GF mice were colonized with
stool provided by women who had undergone either
Roux-en-Y gastric bypass or vertical banded gastroplasty
10 years prior or who were obese controls matched to the
pre-surgery BMI of the women in the surgical groups
[47]. Notably, formerly GF mice colonized with fecal
microbiotas from both bariatric surgery patient groups
(i.e., Roux-en-Y gastric bypass and vertical banded
gastroplasty) displayed less fat mass compared to mice
colonized with the obese participants’ stool, indicating
that the decreased fat deposition was driven by these sur-
gically altered microbial communities. These findings also
demonstrate that clinical interventions can indeed effect
lasting compositional and functional changes to intestinal
microbial communities. Although compelling and highly
supportive of the gut microbiota as a major contributor to
host metabolism, these human transplantation studies
must be interpreted cautiously within the context of a
small number of donor samples (i.e., 2–5 human donors
per group) and/or the almost exclusive use of male GF
mice [38, 46–48]. Replications and extensions using both
male and female GF mice and more donor samples will
contribute valuable data to this field.

Initial attempts to translate these animal studies into clinical
investigations are underway. Fecal microbiota transplanta-
tions, by which a liquid preparation of stool from a healthy
human donor is introduced following a bowel lavage to the GI
tract of a recipient, have been shown to improve insulin
sentivity in a group of obese males (n = 9) 6 weeks after
treatment [49]. In contrast, a randomized double-blind place-
bo-controlled trial (RCT) evaluated changes to metabolic pa-
rameters in prediabetic obese men (n = 57) after a 7-day
course of antibiotics in order to investigate the effects of de-
pletion, rather than augmentation, of the intestinal microbiota.
The investigators reported decreased microbial diversity and
secondary bile acid concentrations in the vancomycin antibi-
otic group at 7 days, but saw no changes in insulin sensitivity
at either the 7-day or 8-week follow-up compared to the pla-
cebo group [50•]. Although no study of antibiotics in AN has
been conducted that analyzed the intestinal microbiota, anti-
biotics such as erythromycin and other prokinetic agents have
been used clinically to accelerate gastric transit time and
weight gain and reduce GI distress [51, 52]. Repeating such
clinical trials and including pre- and post-measures of the
intestinal microbiota and other metabolic indices could be a
valuable addition to the AN treatment literature and a first step
in understanding whether alterations to the intestinal microbi-
ota play a role in recovery and relapse.
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Mechanisms

Crosstalk between microbes and host intestinal epithelial cells
has emerged as an exciting area of research to explore mech-
anisms by which specific microbes, and/or the production of
specific microbial metabolites, may influence host physiology
and metabolism. A currently popular hypothesis proposes that
certain microbial communities driven by environmental
stressors alter GI physiology to increase host energy assimila-
tion [53]. To investigate this hypothesis, Chevalier et al. col-
onized GFmice with fecal microbiotas frommice subjected to
either room temperature or cold (6 °C) housing conditions
[54]. The authors reported that the cold microbiota-
colonized mice displayed an increased capacity to absorb cal-
ories via greater small intestinal and microvilli length resulting
from reduced intestinal epithelial cell apoptosis (programmed
cell death). This intestinal epithelial adaptation to increase the
total GI absorptive surface is a potential mechanism orches-
trated by the intestinal microbiota to improve caloric harvest
for fat deposition and mitigation of the cold stressor.

Another area of research investigating the crosstalk be-
tween enteric microbes and host intestinal epithelial cells per-
tains to the metabolites those microbes produce. Enteric
microbial-derived metabolites, namely short-chain fatty acids
(SCFAs) and secondary bile acids, have also been shown to be
significant contributors to host energy homeostasis. SCFAs,
specifically acetate, propionate, and butyrate, are derived from
bacterial fermentation of complex polysaccharides and supply
up to 10% of the host’s daily caloric intake [55]. Indeed, bu-
tyrate is the primary energy source for colonocytes while ac-
etate and propionate are substrates for hepatic lipogenesis and
gluconeogenesis, respectively, to produce lipids and glucose
for host utilization [56, 57]. In addition to providing energy,
SCFAs can bind to specific distal ileum and colonic G-protein
coupled receptors (GPCRs: GPR41 and GPR43) to induce the
secretion of gut hormones from intestinal enteroendocrine
cells. These hormones, such as glucagon-like peptide-1
(GLP-1) and peptide YY (PYY), stimulate insulin secretion
and inhibit gastric motility, respectively [58, 59]. Secondary
bile acids are produced in a two-step process by which bacte-
ria in the distal ileum and colon first deconjugate and then
dehydroxylate unabsorbed primary bile acids to create sec-
ondary bile acids. Both primary and secondary bile acids aid
in lipid digestion and cholesterol metabolism and can also
function as signaling molecules to alter glucose homeostasis
and brown adipose tissue metabolism [60].

Behavior Modulation and the Intestinal Microbiota

In addition to their role in energy homeostasis, enteric mi-
crobes and their metabolites canmodulate mood and behavior.
The knowledge that the central nervous system (CNS)

interacts with our digestive tract (the “brain-gut axis”) has
existed since the discovery of the enteric nervous system, a
collection of 200–600 million neurons that line the GI tract,
over a century ago [36]. However, the discovery that intestinal
microbes can influence neurological function is much more
recent and has come to be known as the “brain-gut-microbiota
axis” [36, 61•]. Elucidating the mechanism behind this phe-
nomenon is an active area of research and one that is of par-
ticular relevance to eating disorders given their clear relation-
ship with psychological function, eating, and behavior.

Evidence for a Brain-Gut-Microbiota Axis

As with research into the intestinal microbiota’s role in energy
homeostasis, the use of GF rodents has greatly benefited pre-
clinical studies investigating the brain-gut-microbiota axis. A
pioneering study by Sudo et al. demonstrated that there are
basal differences in various biomarkers of the hypothalamic-
pituitary-adrenal (HPA) axis stress response between GF and
microbe-colonized mice, with GF mice experiencing more
aggressive stress responses [62]. This exaggerated response
in GFmice was reversible when the mice were colonized with
microbes at an adolescent age (4 weeks old), but not when
they were first colonized with microbes as adults (greater than
6 weeks old). Subsequent studies have demonstrated that
compared to mice with “normal” intestinal microbiotas, GF
mice exhibit a number of differences in brain and neuron
morphology, anxiety-like behavior, and levels of serotonin
and brain-derived neurotrophic factor [63–68].

One powerful approach to observe the effect that enteric
microbial presence has on disease symptoms is the manipula-
tion of the intestinal microbiotas of mouse models for partic-
ular neurological diseases. For example, Sampson et al. re-
cently demonstrated that GF conditions ameliorate the motor
deficits displayed by a murine model for Parkinson’s disease
[41]. Additionally, when those GF mice were colonized with
microbiotas from individuals with Parkinson’s disease, their
motor deficiencies worsened compared with genetically iden-
tical GF mice colonized with microbiotas from healthy
humans. Similarly, Hsiao et al. reported that targeted treatment
of a mouse model for autism spectrum disorder (ASD) with
Bacteroides fragilis improved both behavioral and gut perme-
ability symptoms [69•]. They also observed that when wild-
type mice were given a particular metabolite (4-
ethylphenylsulfate) that is typically elevated in the ASD
mouse model and modulated by B. fragilis, they developed
some of the anxiety-like behavioral symptoms characteristic
of the ASD mouse.

Another intriguing line of evidence to support the exis-
tence of a brain-gut-microbiota axis pertains to prebiotics,
which are compounds that support the growth of particular
microbes. Recent evidence in mice demonstrates that serial
administration of fructooligosaccharides (an artificial
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sweetener) and galactooligosaccharides significantly alters
bacterial abundances in the intestinal microbiota and de-
creases both anxiety-like and depressive-like behavior [61•].

These converging lines of preclinical evidence, com-
bined with studies that establish dysbioses in the intestinal
microbiotas of patients with certain disorders, have en-
couraged a number of human clinical trials investigating
the therapeutic application of microbes for psychiatric dis-
orders. Many such trials—using so-called “psychobiotics,” or
living organisms that offer mental health benefits upon inges-
tion—are currently underway [70]. While the popular media
tend to focus on psychobiotic clinical trials that achieve pos-
itive results, negative results are also quite common. For ex-
ample, a recent double-blind, placebo-controlled RCT inves-
tigating the efficacy of probiotics in the treatment of depres-
sion found no marked difference in outcomes between the
placebo and probiotic groups [71]. A meta-analysis of RCTs
investigating the efficacy of psychobiotics in treating anxiety
and depression revealed that many RCTs report different re-
sults, with overall preliminary evidence existing to tentatively
support the use of psychobiotics in treating these disorders
[72]. Importantly, many of the RCTs employed different
strains of bacteria, complicating efforts to pool and summarize
the results.

Mechanisms

Hypotheses explaining the mechanisms by which enteric mi-
crobes influence mood and behavior abound, and at present,
propose many distinct pathways for this complex, multiface-
ted process. Generally, the hypothesizedmechanisms focus on
two aspects of the brain-gut-microbiota axis: (1) which com-
pounds (either produced directly by bacteria or whose produc-
tion bacteria promote) have the ability to influence mood and
behavior and (2) how those compounds might interface with
other elements of the nervous system.

Enteric bacteria either directly produce or stimulate the pro-
duction of an expansive list of neuroactive compounds, to such
an extent that the intestinal microbiota has been referred to as a
“neglected endocrine organ” [73]. The most notable com-
pounds produced or promoted by enteric microbes in both hu-
man and murine hosts that may influence mood are neurotrans-
mitters (including dopamine, serotonin, acetylcholine, and γ-
aminobutyric acid) and some of their precursors (e.g., trypto-
phan, kynurenine) [74–78]. Certain bacteria also exhibit in-
creased growth in the presence of catecholamines, suggesting
a potential for enteric bacteria to modulate behavior by remov-
ing neuroactive compounds [79].

Where these molecules travel after their production in the
gut and how they induce a behavioral effect remain active
areas of inquiry. One proposed mechanism involves the vagus
nerve. Bravo et al. demonstrated that the positive emotional
effects of colonization with Lactobacillus rhamnosus (JB-1)

were negated after vagotomy in mice, suggesting that the
vagus nerve (the tenth pair of cranial nerves, involved in
controlling the upper digestive tract and other organs of
the chest and abdomen) may serve as a conduit in the
brain-gut-microbiota axis [80]. It is also uncertain wheth-
er any of the metabolites or neuroactive compounds pro-
duced by bacteria can cross the blood-brain barrier
(BBB) to influence neurological functioning. This re-
mains to be established, though it is possible that they
may be able to reach circumventricular organs lacking a
BBB. Complicating this hypothesis, it has been shown in
mice that the presence of enteric microbes results in a
less permeable BBB, compared to the BBB of GF mice
[64].

Intestinal Microbial Communities in Eating
Disorders

Animal studies have demonstrated that the intestinal mi-
crobiota is intimately linked to traits exhibited by individ-
uals with eating disorders, such as dysregulated energy
homeostasis and behavior. However, characterization of
enteric microbial communities from individuals with eat-
ing disorders is a necessary step toward establishing a
clinical link between those communities and these ill-
nesses. To date, the literature characterizing the intestinal
microbiota in patients with eating disorders has focused
on AN.

Evidence for a Role of the IntestinalMicrobiota in Patients
with Eating Disorders

Initially, the microbial profiles of a small number of patients with
AN (n = 9) were compared to obese (n = 20) and control (n = 20)
groups [2]. Using polymerase chain reaction (PCR), this study
found significantly higher levels of Methanobrevibacter smithii
(a commensal enteric microbe belonging to the Archaea domain)
in patients with AN compared to controls. As M. smithii can
reduce CO2 in the presence of H2 to produce methane, a gas that
is associated with delayed intestinal motility, the authors specu-
lated that this microbe may promote constipation, a symptom
frequently observed in patients with AN [81]. Given that the
intestinal microbiota harbors up to 1150 different bacterial spe-
cies, and this study only investigated four microbial groups using
a relatively narrow approach, a broader characterizationwaswar-
ranted [82]. Using a culturomics approach (large-scale culturing
of microorganisms combined with molecular identification of
cultured microbial colonies), investigators identified 11 new bac-
terial species in a stool sample from one individual with AN [3].
However, because themain objective of the studywas to develop
a novel technology, the researchers only used one stool sample as
a template and therefore could not draw any direct association
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between the 11 novel bacterial strains and the clinical status of the
donor.

Although these studies collectively suggest an altered in-
testinal microbiota in patients with eating disorders, broad
molecular methods provide a more comprehensive and unbi-
ased characterization of these complex communities. Kleiman
et al. was the first group to characterize the intestinal micro-
biota of patients with AN using high-throughput sequencing
of the 16S rRNA gene, comparing female patients with AN
before (n = 16) and after (n = 10) clinical refeeding at an
inpatient specialist unit to healthy controls (n = 12) [4•]. The
authors reported lower microbial diversity in patients with AN
at both time points compared with controls. Interestingly,
higher levels of self-reported depression in patients with AN
at hospital admission were significantly associated with lower
microbial diversity, suggesting a brain-gut-microbiota interac-
tion in this population.

Another PCR-based investigation (employing reverse tran-
scription quantitative PCR) collected stool samples from pa-
tients with restricting type AN (n = 14), binge-eating type AN
(n = 11), and controls (n = 21) [5]. Compared with controls,
patients with AN had lower abundances of specific taxa be-
longing to Streptococcus, Clostridium, and Bacteroides gen-
era and lower concentrations of the fecal SCFAs acetate and
propionate. Most recently, results from the largest recruited
cohort of patients with AN to date replicated the previously
reported dysbiotic enteric microbial communitiy in patients
with AN (n = 55) which also changed following clinical
refeeding (n = 44). The authors also measured specific
microbial-derived metabolites and found elevated concentra-
tions of fecal branched-chain fatty acids (BCFAs, products of
protein fermentation) in patients with ANwhich did not return
to levels measured in the controls (n = 55) following clinical
refeeding [6]. Collectively, these results indicate that the in-
testinal microbiota of clinically refed patients with AN re-
mains metabolically abnormal.

Mechanisms

Although these studies establish the presence of a dysbiotic
intestinal microbiota in patients with AN, the mechanism by
which an abnormal enteric microbial community influences
either the persistence or the treatment of eating disorders has
not yet been fully elucidated. One possible mechanism is via
the host immune system within the context of “molecular
mimicry,” wherein bacteria produce compounds that mimic
those native to the host. Auto-antibodies that recognize
alpha-melanocyte-stimulating hormone (α-MSH) and con-
tribute to regulation of food intake and behavior have become
an intriguing avenue of research into the molecular mecha-
nisms behind disordered eating [83]. Proteomics has revealed
that the caseinolytic protease B (ClpB) protein produced by
commensal Escherichia coli is an antigenic mimic of α-MSH

[84]. Mice immunized with bacterial ClpB have lower
bodyweights, food consumption, and anxiety than controls,
and patients with AN, BN, and BED have elevated levels of
plasma ClpB protein [85]. Together, these studies suggest a
role for the intestinal microbiota in the initiation or persistence
of eating disorders. However, the influence of an eating
disorder-associated gut microbiota on its host both prior to
and during clinical refeeding is yet to be determined.

Clinical Relevance and Conclusions

Will research on the intestinal microbiota truly yield rev-
olutionary perspectives on illnesses including eating dis-
orders, or will we look back on it as a blind alley in
science? Chances are good that the reality will be some-
where in between. Flexible skepticism is a safe stance,
but should not impede attempts to detail and clarify the
role of the intestinal microbiota in AN and other eating
disorders. It is logical to assume that severe alterations in
energy consumption and availability (as in AN, BN, and
BED) would have effects on the intestinal ecosystem.
Living in a competitive environment, intestinal bacteria
(and presumably other microorganisms) that are well
suited to either a low-energy environment (such as in
AN) or a variable-energy environment (such as BN and
BED) may be more likely to survive and dominate.
Whether dysbioses exist that predispose to extreme ap-
petite imbalance is unknown and is a difficult scientific
puzzle whose solution will require prospective studies.
More tractable are studies in which we determine wheth-
er intestinal dysbioses contribute to persistence, recovery,
or relapse from eating disorders. Though it is unlikely
that the intestinal microbiota will be the sole therapeutic
target in treating AN, it is possible that augmenting treat-
ment with agents that target the intestinal microbiota may
facilitate weight gain, decrease GI distress associated
with renourishment, and perhaps even reduce anxiety
and depression via the brain-gut-microbiota axis. Future
work branching beyond AN to the other eating disor-
ders—not only BN and BED, but also perplexing child-
hood illnesses such as avoidant/restrictive food intake
disorder (ARFID) and pica—may expand the clinician’s
toolbox for treating these debilitating illnesses.
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