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Introduction
Alzheimer’s disease (AD), originally described by Alois
Alzheimer in 1907 [1], is the most common cause of cogni-
tive impairment in the elderly. Clinically, the disease starts
with progressive memory impairment and later spreads to
other cognitive domains including language, orientation,
and behavior. Given the existence of other clinically similar
dementias, a definite diagnosis of AD can be made only
postmortem, with the observation of numerous amyloid
plaques and neurofibrillary tangles (NFTs) in the hippoc-
ampus and neocortex.

Epidemiology and Clinical Considerations on 
Alzheimer’s Disease
Epidemiologic studies in developed countries have esti-
mated dementia prevalence to be 1.5% at age 65 years.
Prevalence doubles every 4 years until it reaches approxi-
mately 30% in 80-year-old individuals [2–4]. The inci-
dence of AD is lower in men, and in people of African and
Asian origin. In the Western world, AD is estimated to be
more common than vascular dementia [5–7]. Patients with
dementia have a substantially shortened life expectancy,
with an average survival of 8 years from diagnosis. A longer
survival time is reported for AD patients than for those
with vascular dementia [8–10].

Pathophysiology
Alzheimer’s disease involves progressive degeneration and
neuronal death in brain regions, such as the hippocampus
and basal forebrain, which are involved in learning, mem-
ory, and emotional behavior. Besides neuronal loss, the
presence of neuritic plaques and NFTs are required for a
definite diagnosis of the disease [11].

Neuritic plaques
Plaques are insoluble extracellular deposits composed
mainly of Aβ peptides. Aβ peptides are derived from a
type I transmembrane protein, B-amyloid precursor pro-
tein (APP), via proteolytic processing [12]. APP is cleaved
by β-secretase or α-secretase followed by γ -secretase. Aβ
peptides are generated when APP is cleaved by β-secretase
and γ -secretase. This is the major metabolic pathway of
APP in brain tissue, although the non-amyloidogenic α-
secretase pathway is the major pathway in other tissues
(Fig. 1). Aβ peptides are heterogeneous in length, but the
major peptides are 40 (Aβ40) and 42 (Aβ42) amino acids
in length. Studies of Down syndrome brains have demon-
strated that Aβ deposition is an early and invariant step in
AD neuropathology. It is thought that plaques result from
elevated Aβ42 levels because soluble Aβ42 spontaneously
aggregates into fibrils that are indistinguishable from
those found in vivo [12]. Transgenic mice overexpressing
familial AD (FAD) mutant APP exhibit extensive plaque
deposition in the same brain regions that are affected in
AD, and they also exhibit elevated soluble Aβ levels [13].
However, given that Aβ levels also are elevated in brain
regions that do not show plaques, other factors must
influence Aβ deposition [13].

Neurofibrillary tangles
The other pathologic hallmark of AD is the NFT, an intra-
neuronal deposit of microtubule-associated protein tau.
NFTs are believed to be formed when tau becomes hyper-
phosphorylated, causing it to dissociate from tubulin,
leading to the production of insoluble tau-aggregates
called paired-helical filaments [14]. Tau hyperphosphory-
lation seems to be regulated by the activity of several
kinases including α-kinase, glycogen synthase kinase–3,
and creatine kinase–1 [15]. Characteristically, in AD, tau
deposition is limited to neurons, and the main component
of the pathologic tau deposits is the shortest isoform of
tau, which lacks exon 10 (3R). Neuronal loss in AD seems
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to correlate with the formation of NFTs at least in some
cortical and subcortical regions [16]. To date, no transgenic
animal has been reported that convincingly reproduces the
Aβ plaques and the NFTs found in AD.

Biologic Markers
The sensitivity of a clinical diagnosis of AD for neuropatho-
logic AD (with or without other pathologies different from
AD) can be as high as 90% in specialist dementia clinics, but
may be much lower in the primary care situation [17,18].
However, at the present time, there is no single biologic
marker that can be used to diagnose AD with high specificity
and sensitivity. In the past decade, cerebrospinal fluid Aβ and
tau levels have been proposed as tools to improve the clinical
diagnosis of AD and to predict those at risk for developing
dementia [19,20]. However, with the specificity of the com-
bined tests at 80% to 90% and the sensitivity of the biomark-
ers for the clinical diagnosis of AD as high as 90%, there still is
not enough precision to improve substantially on clinical
diagnosis [20]. A recent study found a strong link between a
clinical diagnosis of AD and a distinctive profile of cerebrospi-
nal fluid Ab and tau protein [21]. Several studies have
reported elevations in plasma and cerebrospinal fluid levels
of Aβ40 and Aβ42 peptides in typical late-onset AD in com-
parison with control subjects [22,23]. The levels of brain sul-
fatides recently have been proposed as a promising marker for
early clinical stages of AD. Han et al. [24] reported a signifi-
cant decrease in cerebrospinal fluid brain sulfatides and in the
ratio of brain sulfatides to phosphatidylinositol in subjects
with mild cognitive impairment. This ratio accurately differ-
entiated very mildly impaired subjects (clinical dementia rat-
ing 0.5) from control subjects on an individual basis [24].
Further study is needed to determine how useful this measure
will be as a biomarker of disease.

Genetics of Alzheimer’s Disease
Alzheimer’s disease can be divided into two genetically dis-
tinct subtypes: 1) FAD, in which the disease is transmitted
as an autosomal dominant trait, and 2) sporadic AD,
which shows lower familial clustering. These subtypes are
clinically indistinguishable, except that FAD has an earlier
age of onset and sometimes shows additional neurologic
features not generally present in sporadic AD [25–27]. AD
also is also often divided into two groups based on age of
onset—early onset (onset before 65 years of age) and late-
onset (onset after 65 years of age) AD [28].

Causative Genes for Familial 
Alzheimer’s Disease
Genetic linkage studies in large multigenerational FAD kin-
dreds over the past two decades have established that early
onset FAD is a genetically heterogeneous disorder that can
be caused by mutations in the following three genes: β-
amyloid protein precursor gene (APP) on chromosome 21,
presenilin 1 (PS1) gene on chromosome 14, and preseni-
lin 2 (PS2) gene on chromosome 1 [29–31].

Amyloid protein precursor gene mutations
The first mutation reported in the APP gene was observed
in a very rare neurologic disorder—the Hereditary Cere-
bral Hemorrhage with Amyloidosis Dutch type (HCHWA-
D). Cerebral hemorrhages in HCHWA are caused by β-
amyloid deposition in cerebral blood vessels [32]. Link-
age studies in this disease showed that the APP gene was
the site of the pathogenic mutation [33] and a segregating
mutation, E693Q [34], was discovered; this work showed
unequivocally that mutations in APP could lead to β-
amyloid deposition in brain vessels. Subsequently, muta-
tions have been reported in APP that cause FAD [29], with

Figure 1. Amyloid precursor protein (APP) 
cleavage and α- and β-secretase pathways and 
production of Aβ-amyloid peptide. AICD—APP 
intracellular domain. CTF—C-terminal fragment; 
sAPP—soluble APP; TM—transmembrane.



Molecular Genetics of Alzheimer’s Disease  •  Pastor and Goate 127
18 pathogenic mutations described so far, accounting for
10% of FAD cases (http://www.alzforum.org/res/com/
mut/app/table1.asp). Typically, families segregating APP
mutations have an age of onset of disease before 65 years
of age. Beta-secretase cleaves between residues 671 and
672 of APP yielding the N-terminus of the Aβ peptide.
Gamma-secretase cleavage of the membrane-associated
C-terminal stub of APP generates the C-terminus of the
Aβ peptide. Gamma-secretase cleaves APP at multiple
sites within the transmembrane domain generating Aβ
peptides that vary in length from 37 to 43 amino acids.
The major peptide is Aβ40; however, the longer peptides
are more amyloidogenic [35]. Gamma-secretase cleavage
of APP also produces C-terminal fragment–γ /APP intrac-
ellular domain, a soluble C-terminal fragment that trans-
locates to the nucleus and modifies transcription [36].
FAD mutations within the APP gene occur predominantly
at the N-terminus and C-terminus of the Aβ region, sug-
gesting that those mutations affect Aβ production. The
Swedish mutation at the β-secretase cleavage site
increases Aβ40 and Aβ42 levels, while the FAD mutations
close to the γ -secretase site increase Aβ42 levels without
increasing Aβ40 levels; some FAD mutations lead to a
decrease in Aβ40 levels (eg, T714I) [37,38]. Recent studies
using mass spectrometry show that other Aβ species alos
may be increased by FAD mutations including Aβ38 and
Aβ39, although these are not consistently observed with
all FAD mutations.

Presenilin mutations
With the realization that the APP gene accounts for only a
minority of cases of autosomal dominant AD, linkage
studies in large kindreds led to the identification of a
major locus on chromosome 14q [39,40]. Sherrington et
al. [30] identified mutations in the presenilin 1 (PSEN1)
gene. Database searches quickly demonstrated that a
homologous gene (PSEN2) was located on chromosome 1,
and mapped within a region showing linkage to AD in
Volga German kindreds. Sequencing of PSEN2 in these
families led to the identification of a missense mutation
that segregated with disease [31]. The two presenilin genes
are highly homologous at the DNA sequence, protein
sequence, and gene structure levels [41]. Mutations in these
two genes are thought to cause up to 80% of FAD cases. To
date, there are more than 130 PS1 mutations, but less than
10 missense mutations in PS2. Most of the PS1 mutations
are missense mutations predominantly located in the
highly conserved transmembrane domains. Most of these
mutations are characterized by an age at onset younger
than 60 years of age and complete penetrance [42]. How-
ever, PSEN2 mutations tend to be associated with a later
age of onset and may exhibit incomplete penetrance and
variable clinical expression, overlapping with late-onset
AD [43,44].

The PS genes code for highly homologous polytopic
transmembrane proteins, with a high degree of conserva-

tion across species. Presenilins are located in intracellular
membranes [45] and are predicted to have eight transmem-
brane domains and a hydrophilic intracellular loop region.
PSEN undergo a physiologic endoproteolytic cleavage to gen-
erate stable N- and C-fragments [46]. There is growing evi-
dence that PSEN form the catalytic center of γ -secretase, a
multiprotein aspartyl protease. In vivo and in vitro experi-
ments have demonstrated that mutant PS increase Aβ42 lev-
els [47,48]. PS mutations are gain of function with respect to
Aβ generation, which is consistent with the inheritance pat-
tern of early onset FAD cases. The reason for the disparity in
the number of FAD mutations in PS1 compared with PS2 is
thought to be because PS1 is the major γ-secretase, and thus
mutations in PS1 have a bigger impact on Ab production.
Knockout of PS2 in mice has an effect on Aβ levels and no
observable phenotype, while PS1 knockout causes embry-
onic lethality and a decrease of Ab levels.

A splice-site mutation in intron 8 of PS1 [27], which is
associated with an unusual FAD phenotype with parapare-
sia, produces “cotton-wool” amyloid plaques, that are
morphologically different from those observed in most AD
cases. These “cotton-wool” plaques do not contain amy-
loid fibrils in the core and are not surrounded by dystro-
phic neurites, suggesting that Aβ42 has a neurotoxic effect
before neuritic plaques are formed [27].

Alzheimer’s Disease Susceptibility Genes
Although researchers have a much greater understanding of
AD pathogenesis as a result of the genetic and cell biology
studies of FAD, 99% of AD cases do not carry mutations in
these genes. Genetic linkage and association studies are being
used to identify genetic risk factors for late-onset AD. Associa-
tion studies test whether alleles of a given polymorphism are
similarly distributed in AD cases compared with age- and eth-
nically matched control subjects. If the frequency of one of the
alleles or genotypes is significantly over- or under-represented
in the cases compared with the control samples, this suggests
association with disease. This association may occur because
the alleles of the polymorphism result in differences in risk for
AD, because the marker is in disequilibrium with another vari-
ant that influences the risk of developing disease or because of
type 1 error (a false-positive). Polymorphisms in more than
100 candidate genes have been assessed using association
methods. However, none of these polymorphisms have shown
consistent evidence of association from study to study except
apolipoprotein E (APOE; reviewed in [49]). Possible reasons
for the lack of replication in these studies are small sample
size, population stratification between the case and control
groups and genetic heterogeneity. Genetic linkage studies in
late-onset AD families and sibling pairs have been used to
identify AD susceptibility genes [50•,51•]. APOE4 was identi-
fied as a risk factor for late-onset AD through a combination of
linkage and association studies. Although linkage has been
reported to several other chromosomal regions, the specific
genes have not yet been identified.
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Apolipoprotein E polymorphisms
Apolipoprotein E exists as three isoforms in all popula-
tions, although the relative frequency of the isoforms can
vary [52]. APOE3 is the major isoform in all populations.
APOE2 and APOE4 vary from APOE3 at residues 112 and
158. Approximately 50% of AD cases carry one or more
APOE4 alleles [53–55]. The APOE4 allele shows a dose-
dependent increase in risk for AD; heterozygotes have a
threefold increased risk for disease, and homozygotes have
an eightfold risk for disease in Caucasians [53–56]. Most
individuals who are homozygous for the APOE4 allele
develop AD by age 80 years of age [28]. APOE4 alleles are
associated with an earlier age of onset, with each allele
causing a decrease in onset of approximately 5 years. In
contrast, the APOE2 allele decreases risk for AD and
increases age of onset of disease [56]. Although the associa-
tion between AD and APOE4 has been confirmed world-
wide, it had been found to be weak or nonexistent among
Hispanic and African-American patients [57]. However, a
recent study [58] has found that the age-related risk for cog-
nitive decline is associated with the APOE4 allele and the
apparent protective effect of the APOE2 allele in African-
American subjects was similar to patterns observed in Cau-
casian subjects. APOE is a 34-kd plasma glycoprotein
encoded by a gene on chromosome 19. In the central ner-
vous system, APOE plays a role in cholesterol delivery dur-
ing membrane remodeling that is associated with synaptic
turnover and dendritic reorganization. The accumulation in
astrocytes of high concentrations of cholesterol induces the
synthesis of APOE, which binds to phospholipids and cho-
lesterol derived from degenerating terminals to produce a
high-density lipoprotein–like (HDL) complex. The APOE-
HDL–like complex is secreted into the extracellular space to
be recognized by APOE receptors located on specific neu-
ronal targets. In the hippocampus granular neurons show
an increased number of low-density lipoprotein (LDL)
receptors in the initial phases of the re-innervation process
[59]. In vitro, the APOE-LDL receptor–related protein
(LRP) expressed by embryonic neurons modulates the
internalization of APOE-cholesterol-LDL complexes, releas-
ing cholesterol into the neuron [60]. In the brain, APOE is
expressed in astrocytes [61]. APOE modulates the transport
and distribution of cholesterol, especially under stress con-
ditions such as neuronal growth and brain injury [62]. In
vitro, APOE binds to synthetic Aβ peptide (the primary con-
stituent of the senile plaque) with high avidity [63]. Trans-
genic experiments have demonstrated that APOE4 increases
risk for disease by promoting Aβ deposition [62]. APOE4
most likely influences fibril formation or clearance of Aβ,
thus accelerating Aβ deposition [64]. The APOE4 allele is
strongly associated with increased numbers of neuritic
plaques and cerebral amyloid angiopathy in AD [65].

Candidate loci for familial Alzheimer’s disease
The first genome-wide screen for late-onset AD was per-
formed in 16 families and the chromosomal regions with a

logarithm of the odds (LOD) score higher than 1 were then
genotyped in 38 additional families [66,67]. In this study,
the region showing strongest evidence for linkage was on
chromosome 12. In a second report, the same authors
extended their analysis to 466 families. This study also
reported evidence for linkage on chromosome 12 in a 36-
cM region [66,68]. Additional studies have also reported
evidence for linkage on chromosome 12 in Caucasian and
Caribbean Hispanic families, although the precise location
of the linkage peak differs between studies [69–71]. In sev-
eral of these studies, the strongest evidence for linkage was
observed in the subset of families/sibling pairs with no
APOE4 alleles [69–71]. The differences in the exact loca-
tion of the critical linkage region between studies could
reflect the different analysis tools used for the statistical
analysis or could represent genetic heterogeneity. It is pos-
sible that there are two susceptibility loci for AD on chro-
mosome 12 and that the strength of the effect of each locus
may differ in each study, leading to differences in the pre-
cise localization of the maximum evidence for linkage. Sev-
eral candidate genes have been analyzed on chromosome
12, including alpha-2-macroglobulin and the LDL recep-
tor–related protein 1 [72,73]. However, the results of these
association studies have not been consistent.

Another chromosomal region that has been replicated
is on chromosome 9 [68,74•,75•]. Several of these studies
report two peaks on chromosome 9, suggesting that there
may be two susceptibility genes. One of the chromosomes
that had been most strongly associated with late-onset FAD
is chromosome 10. There are four linkage studies reporting
evidence of one or more susceptibility loci on chromosome
10 [50•,51•,68,76•]. In one of these studies, plasma levels
of Aβ42 were used as a quantitative trait rather than AD
diagnosis [76•]. This represents the first attempt in AD
genetics to use an endophenotype to map genes that may
underlie disease susceptibility. Similar approaches have
been used in other complex diseases with some success. For
example, electrophysiologic measurements and maximum
number of drinks in a 24-hour period have been used as
endophenotypes for alcoholism [77,78]. Among the link-
age studies on chromosome 10, there are discrepancies
again with regard to the location of linkage peaks. Several
candidate genes have been examined on chromosome 10
including insulin-degrading enzyme PLAU, and αT catenin
[79–82]. All three of these genes have been implicated in
Aβ metabolism and therefore are strong biologic candi-
dates. However, association studies have not provided con-
sistent evidence in support of any of these genes.

A study using a covariate-based linkage method to
reanalyze the genome scan data from affected sibships
reported linkage to a region of 20p in sibling pairs that
lacked APOE4 alleles [83]. Two-point analysis provide evi-
dence of strong epistasis between 20p and a region on
chromosome 21 near the APP gene, which was limited to
the oldest group of sibling pairs and to those patients lack-
ing APOE4 alleles [83]. Other linkage studies also have
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reported evidence for linkage in APOE4-negative sibling
pairs and in sibling pairs with the highest age of onset on
chromosome 21 [74•,75•]. Many other regions have been
reported in individual studies, but they do not show con-
sistent evidence of linkage between studies. One of the dif-
ficulties in comparing results between these studies is that
most of the studies use overlapping datasets, so the results
are not independent. Furthermore, studies do not use
APOE genotype in the same way to stratify the datasets.

Genetic modifiers of the phenotypic presentation of 
Alzheimer’s disease
In the past decade, several groups have attempted to dissect
the clinical phenotype to try to identify a more genetically
homogeneous subgroup of families and increase the statis-
tical power to detect linkage.

Age of onset
Age of onset is clearly an important covariate for the identifi-
cation of genes for AD. Segregation analysis of large pedigrees
with AD suggested that multiple loci associated with age at
onset exist [84]. In this study, when age of onset was exam-
ined as a quantitative trait, it was estimated that up to four
additional major genes as well as several minor AD genes
remain to be identified [84]. Presence of APOE4 alleles is cor-
related with earlier age of onset of AD [85–88]. The role of
APOE4 in modifying age of onset has been examined in AD
families with known causative mutations. Early studies
reported an association between the presence of the APOE4
allele and age of onset in small kindreds carrying APP muta-
tions, but not those carrying PS mutations [89–92].

In 1987, a Colombian family with early onset autoso-
mal dominant AD was described [93]. Screening of the PS1
gene revealed a missense mutation at codon 280 of PS1
[89]. In subsequent years, 24 additional families with the
E280A PS1 mutation have been identified [94]. This large
family with similar environmental exposures and homoge-
neous disease etiology is a unique resource for the study of
modifier genes. Kaplan-Meier Product Limit and Cox Pro-
portional Hazard Models were used in the statistical analy-
ses of age onset in these kindreds. APOE4 allele carriers are
more likely to develop AD at an earlier age than subjects
without the E4 allele (hazard ratio [HR]=2.07, 95% confi-
dence interval [CI]=1.07 to 3.99, P=0.030). Individuals
with low education were more likely to develop AD later
than those with higher education (HR=0.476, 95%
CI=0.26 to 0.87). Low educational level was associated
with rural residence (P<0.001) (Fig. 2A, B, and C) [95].
This study demonstrates that the APOE isoform and envi-
ronmental factors independently influence age of onset in
a kindred with an FAD mutation.

Scott et al. [96•] recently used age of onset as a covari-
ate in a genome-wide screen [68] and observed significant

non-parametric multipoint LOD scores for several different
intervals of age of onset. They observed a LOD score of 3.2
at D2S2944 on chromosome 2q34 in families with an age
at onset between 50 and 60 years, and a LOD score of 4.6
at D9S741 in the chromosome 9p region previously linked
to AD in families with an age at onset between 60 and 75
years. A LOD score of 2.8 was detected at D15S1507 with
age at onset 79 years or older, and a peak LOD score of 3.1
was obtained at D15S153 (62 cM) in families with mean
age at onset of greater than 80 years.

Another study, using a combined dataset of FAD and
familial Parkinson disease families, reported evidence for a
locus on chromosome 10q controlling the age of onset of
both disorders [97].

Psychosis
Psychotic symptoms occur in 30% to 40% of patients with
AD and are associated with more severe cognitive deficits
and a more rapidly deteriorating course [98]. The presence
of psychotic symptoms in AD cases confers increased risk
of similar symptoms in affected siblings [99]. The presence
of psychotic symptoms in AD therefore may represent a
distinct subphenotype that can be used to identify more
homogenous subgroups of the disease [100]. A linkage
study performed in a sample of AD families with two or
more members with AD plus psychotic symptoms found
evidence of linkage on chromosome 2p and on chromo-
some 6q [101•]. Evidence of linkage to 6q has been
reported in schizophrenia families and in bipolar families,
suggesting that a gene in this region of chromosome 6 may
influence the development of psychotic symptoms in a
variety of diseases [102,103].

Conclusions
Familial-onset AD is a genetically heterogeneous disorder.
Mendelian forms of the disease show genetic heterogeneity
with at least three genes that act through a common bio-
chemical pathway to cause disease. Late-onset AD is a com-
plex trait with genetic and environmental risk factors. To
date, the APOE4 allele is the only established genetic risk
factor in this group, although several chromosomal
regions (chromosomes 12, 9, and 10) appear to show con-
sistent evidence for linkage between studies. The use of
endophenotypes, such as plasma Aβ, or clinical variables,
such as age of onset, or special clinical presentations of the
disease could be helpful tools in the identification of addi-
tional disease modifying genes.
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