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Introduction
Animal models can contribute to understanding the
mechanisms underlying anxiety disorders and to screening
and developing new medications for their treatment [1,2].
An initial focus of preclinical work was on the broad
construct of “anxiety,” and, in particular, in addressing the
issue of determining whether novel agents had anxiolytic
properties [3,4]. Barbiturates and benzodiazepines, for
example, had anxiolytic properties in particular paradigms,
and the efficacy of new molecules could be compared with
these agents. This approach was, however, problematic
insofar as it was not always based on specific cognitive-
affective processes relevant to anxiety disorders, and as
it was unable to predict the value of various medications
(eg, antidepressants) for human anxiety disorders.

Some models of anxiety have focused on changes
associated with acute stress, whereas others have aimed
at understanding the neurobiology of chronic stress
(eg, models of learned helplessness). Models of chronic
stress arguably have applicability across a range of psychi-
atric conditions, including mood [5] and anxiety disorders
[6]. Conversely, it has been argued that although these
models have provided valuable insights about the neuro-
chemistry and neuroendocrinology of stress responses,

they have not led to insights into individual psychiatric
disorders. The broad concept of a general stress response
arguably needs supplementation by more specific
understanding of the mechanisms underlying particular
cognitive-affective processes (eg, fear conditioning)
involved in particular anxiety disorders. Because these
disorders differ with respect to symptoms and age of onset,
prevalence in men and women, and treatment response,
the interface between existing behavioral models of
anxiety and the clinical profile of anxiety disorders is of
considerable relevance, as is the important issue of
accurately modeling developmental risk factors, such
as emotional neglect, family strife, maternal separation,
and overcrowding [1].

Given the increased evidence that anxiety disorders
may have distinctive symptomatology and neurobiology,
specific cognitive-affective processes may be particularly
relevant to each of the different anxiety disorders. Further-
more, although some of the anxiety disorders seem specific
to humans, a number of these cognitive-affective processes
can be studied in lower animals. This paper discusses
models of generalized anxiety disorder (GAD), obsessive-
compulsive disorder (OCD), panic disorder (PD), social
phobia (SP), and post-traumatic stress disorder (PTSD)
[7], in each case emphasizing a cognitive-affective process
that may be especially relevant to that disorder. A comput-
erized literature search was used to search for studies on
recently developed animal models for anxiety disorders.

Generalized Anxiety Disorder
Generalized anxiety disorder is characterized by excessive
and uncontrollable worries about life events. These worries
are accompanied by motor tension or hypervigilance [7].
Clinical studies point to dysregulation of monoamine [8]
and gamma-aminobutyric acid (GABA) [9] neurotransmit-
ter systems in GAD. Complementing these findings are
clinical trials showing that GAD responds reasonably well
to benzodiazepines, buspirone, and antidepressants [10].

Development of a behavioral model of GAD is com-
plicated, because core diagnostic criteria for GAD have
changed over time [11]. Generalized anxiety disorder
was originally conceptualized as a residual category for
patients whose anxiety symptoms did not meet criteria
for other anxiety disorders. Subsequent Diagnostic and
Statistical Manual of Mental Disorders definitions of
GAD have increasingly focused on “worry,” a cognitive
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symptom that may not have a clear behavioral analogue.
Another way of conceptualizing GAD, however, is in
terms of heightened activation of innate general avoid-
ance behaviors [6].

General avoidance behaviors
A number of animal models based on this principle have
been developed. Among the best known is the elevated
plus maze, but other widely used paradigms include the
open-field test [12], stress-induced vocalization model
[13], the light-dark compartment test, and the social inter-
action test [1]. In the elevated plus maze, a rat or mouse is
placed in the center of a maze, which has two open and
two closed arms, and the animal is allowed to explore
freely. The natural fear of open spaces is responsible for the
reluctance to explore the maze, and fear is measured by the
decreased percentage time spent in an open arm [3]. The
elevated plus maze is sensitive to anxiogenic and anxiolytic
agents that act on GABA receptors [3] and to corticotropin-
releasing factor receptor antagonists [14,15].

This model can be used to investigate a range of
potential neurobiologic dysfunctions relevant to GAD. For
example, mice lacking the serotonin 5-hydroxytryptamine
(5-HT1A) receptor, or 5-HT1A knockouts (5-HT1A KO),
show more anxious behavior in the elevated plus maze
[16•]. It was also found that diazepam proved anxiolytic in
this paradigm, but the effects varied according to the
mouse species [17,18]. Although the gross dysfunction
produced by a KO model may differ from the more subtle
dysfunction seen in human psychopathology, KOs have
the advantage of being able to study the effects of a single
genetic change.

From a phenomenologic perspective, it is unclear if the
elevated plus maze models the core symptom of GAD, that
is, excessive “worry.” Furthermore, the elevated plus
maze has a range of methodologic problems. These
include inter-laboratory differences and differences among
animal strains [19]. Finally, although benzodiazepines
reliably reduce anxiety in the elevated plus maze [3,19],
studies with 5-HT1A agonists and selective serotonin
reuptake inhibitors (SSRIs) have proven inconsistent [20].
This is in contrast to clinical studies that regularly demon-
strate that serotonergic anxiolytics are effective in treating
GAD [10]. Given these limitations, preclinical work that is
intended to address GAD may need to use a combination
of different behavioral models (eg, elevated plus maze and
open-field test).

Obsessive-Compulsive Disorder
Obsessive-compulsive disorder is characterized by
obsessions (recurrent and persistent thoughts) and
compulsions (repetitive behaviors or mental acts in
response to obsessions) [7]. Clinical studies have empha-
sized the importance of corticostriatal circuits in mediating
OCD, and have supported the hypothesis that serotonin

and dopamine play important roles in mediating the dis-
order [21,22]. Selective serotonin reuptake inhibitors are
currently the first-line agent in the treatment of OCD [23],
and patients refractory to these agents may respond to aug-
mentation with dopamine blockers [24••]. Autoimmune
processes may play a role in the corticostriatal dysfunction
seen in some patients with OCD [25].

Stereotypy is arguably central to OCD, because stereo-
typed behavior with its repetitive, topographically invari-
ant movements is reminiscent of the compulsions of OCD.
Animal models that focus on this phenomenon include
the behavioral model of spontaneous stereotypy in deer
mice [26••,27–29], veterinary disorders characterized by
stereotypy, such as acral lick dermatitis in canines [30••],
and a number of anatomic and molecular models of
repetitive behavior [31–33].

Control of repetitive movements
In the rodent model of spontaneous stereotypy, deer mice
(Peromyscus maniculatus bairdii) express patterns of motor
behaviors that are repetitive, excessive, and topographically
invariant. These behaviors lack any obvious function and
purpose [26••,27–29]. The patterns of motor behavior
include patterned running, jumping, and backward somer-
saulting. Apomorphine has been found to induce behav-
iors in nonstereotypic mice that are topographically
distinct from behaviors emitted by stereotypic mice.
Furthermore, apomorphine only increases two of the three
stereotypic behaviors usually emitted by deer mice with no
increase in dopamine receptor sensitivity. Thus, although
dopamine dysfunction may underlie certain aspects of
OCD, spontaneous stereotypy is only partially mediated
by the dopamine system [27]. The role of the serotonergic
system in mediating deer mice stereotypy, as well as its
response to administration of different agents, remains to
be fully clarified.

Acral lick dermatitis (ALD) is a veterinary disorder
characterized by repetitive paw licking and biting of the
extremities in different mammalian species, particularly in
large dogs. Acral lick dermatitis has some face validity as a
model for OCD, insofar as the conditions can arguably be
conceptualized as grooming disorders. Furthermore, like
OCD, ALD responds more robustly to SSRIs than to norad-
renergic agents [30••]. Although the phenomenology of
ALD differs from some subtypes of OCD, stereotypic
behaviors in other species are arguably reminiscent of such
subtypes (eg, rodent hoarding) [34]. Various stereotypes
in other animals (eg, primates) may also respond to
SSRIs [35••]. There is a need for additional research to
delineate the neurobiologic dysfunctions that underlie
ALD, and to see whether these are analogous to those
responsible for OCD.

Dopamimetic agents, such as dexamphetamine and
apomorphine, administered orally or injected into
brain regions such as the striatum, have been extensively
used to study the neurobiology of stereotypy [36–38].
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For example, rats treated chronically with the dopamine
D2/D3 receptor agonist, quinpirole, develop compulsive
checking behavior [31,32] and perform ritual-like behav-
ioral acts at specific places in an open field. Clomipramine,
another SSRI, partially attenuates quinpirole-induced
compulsive checking [31], suggesting at least a partial role
for 5-HT in this behavior, and supporting the regulatory
role of striatal 5-HT on dopamine-driven behaviors [22].
Although drug-induced stereotypy is only partly reminis-
cent of the phenomenology of OCD, it does appear to
model some aspects of the neurobiology of this condition.

Clinical research suggests that OCD and tics may be
mediated by corticostriatal circuits. One possibility is that
such dysfunction involves autoimmune processes [39],
and in a preclinical model of this phenomenon, rats were
injected with sera from patients with Tourette’s syndrome
with high levels of autoantibodies in the ventrolateral
striatum, an area associated with oral stereotypy [37].
Experimental animals exhibited significantly higher oral
stereotypy scores (wood chip eating, self-gnawing, biting,
licking not associated with grooming, and repetitive paw-
to-mouth movements) compared with animals injected
with sera from normal individuals or patients with
Tourette’s syndrome with low autoantibody titers [40].
Although there is evidence that certain immunotherapies
may be useful in pediatric autoimmune neuropsychiatric
disorders associated with streptococcal infections [39],
parallel preclinical data is not yet available. This model has
phenomenologic and neurobiologic aspects reminiscent of
OCD and deserves further study.

Panic Disorder
Panic disorder is characterized by recurrent unexpected
panic attacks followed by persistent concern about addi-
tional attacks, worry about the implications of the attack or
its consequences, and a significant change in behavior
related to the attacks [7]. A panic attack is normally accom-
panied by a range of sympathetic symptoms and clinical
studies suggest dysregulation of the noradrenergic [41–43]
and serotonergic [44,45] neurotransmitter systems. Patients
with PD respond to various antidepressants, including
tricyclics, monoamine oxidase inhibitors, SSRIs, and certain
benzodiazepines [46].

Modeling neurobiologic processes related to anxiety
can provide important information relevant to many
mental disorders. It is imperative that brain mechanisms
involved in the development and maintenance of fear and
anxiety are understood and closely reproduced in the
animal model [1]. Fear conditioning and extinction are
processes that may be relevant to the pathogenesis of a
number of different anxiety disorders and their treatment
[47]. Nevertheless, certain phenomena seen after fear
conditioning, such as fear-potentiated startle, are reminis-
cent of the symptoms of PD (and of the arousal symptoms
of PTSD). In this section, the authors discuss how pre-

clinical studies of fear conditioning may shed light on the
neuoroanatomic and molecular basis of panic disorder.

Fear conditioning
Animal models of conditioned fear examine behaviors that
are provoked by stimuli associated with an aversive stimu-
lus, for example, an electric foot shock. Fear conditioning
is a form of Pavlovian conditioning where a neutral stimu-
lus is paired with an aversive stimulus (unconditioned
stimulus). After a number of pairings, the neutral stimulus
(conditioned stimulus) elicits fear behaviors without the
presence of the aversive stimulus. A major advance has
been the delineation of the role of the amygdala and other
limbic structures in mediating innate and conditioned fear
responses [48–50].

In animals, stimulation of the amygdala results in
behavioral [51] and physiologic [52] patterns associated
with fear and anxiety, whereas stimulation of specific target
areas of the amygdala produces more selective effects [50].
The extended amygdala may be particularly relevant to
anxiety (rather than fear), and the hippocampus plays an
important role in contextual fear conditioning. Finally,
medial prefrontal cortex (anterior cingulate) plays a crucial
role in mediating the extinction of fear-conditioned
responses. Neurotransmitters that are crucial in this
circuitry include the serotonergic, glutamatergic, and
GABAergic systems.

The fear-potentiated startle response, which consists of
fast muscle contraction, especially around the face, neck,
and shoulders [53], is arguably reminiscent of a panic
attack. One of the regions that play an important role in
the fear-potentiated startle response is the periaqueductal
gray (PAG) [54]. Stimulation of the dorsal periaqueductal
gray (dPAG) elicits fear behaviors and autonomic arousal
[55,56], and lesions of the PAG prevent fear-potentiated
startle [57]. Fear-potentiated startle is sensitive to fear-
modulating drugs, for example, benzodiazepine agonists
[58], 5-HT1A agonists [59] and N-methyl-D-aspartate
(NMDA) receptor antagonists [60]. Panicogenic drugs,
such as yohimbine and caffeine, lead to an increase in
dPAG-induced aversion, whereas a number of antipanic
drugs, including clonazepam and alprazolam, lead to
a decrease [55].

Fear conditioning appears relevant to understanding
the development of agoraphobia in patients with PD,
and arguably provides a conceptual foundation for an
integrated approach to extinguishing fear by means of
medication or desensitization. Although a fear-potentiated
startle model is partly reminiscent of the phenomenology
of PTSD, there is arguably overlap with the responses to
impending danger also seen in PD [61]. Clinical studies of
PD indicate that the neurocircuitry of PD is broader than
simply the dPAG. Nevertheless, the dPAG component of
this model may have some predictive validity; as with PD,
it responds to clonazepam, alprazolam, imipramine,
and fluoxetine [62].
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There is increasing evidence for a function of amygdala
glutamate receptors in fear learning, fear-potentiated
startles, and fear extinction [50,63]. More specifically,
amygdala NMDA receptors may be involved in the neural
changes that support fear learning and also loss of fear
that accompanies extinction training [64•]. For example,
mice lacking a fully functional glutamate NMDA receptor
have been less sensitive to stress induced by the elevated
plus maze, light-dark box, and forced swimming tests [65].
Amygdala alpha-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid receptors also participate in fear learning
[66], and glutamate metabotropic group II receptor agonists
block fear learning, as well as fear-potentiated startle [67].

Augmentation of traditional antidepressants with
NMDA antagonists in various animal models of stress and
depression [68], and their ability to re-establish anti-stress
efficacy after antidepressant withdrawal [69], hints at the
potential of future treatment strategies with glutamatergic
agents [70,71]. Nevertheless, there is limited evidence for
the role of glutamate in PD and for the efficacy of NMDA
antagonists in the treatment of this disorder.

Social Phobia
Social phobia is characterized by excessive fear of social
and performance situations. Patients may experience
panic attacks, and they tend to avoid such situations [7].
Patients with SP respond to SSRIs [10], which suggests
an involvement of the 5-HT system, although there is
also evidence from clinical studies of dopaminergic
involvement [72].

Some authors have suggested that SP is a uniquely
human condition. Nevertheless, social submissiveness
is seen in lower animals, and may constitute a cognitive-
affective process that proves useful for studying the
neurobiology of SP.

Social submissiveness
Social submissiveness has been a particular focus
of attention in studies of nonhuman primates. For
example, social status and degree of social affiliation are
associated with altered hypothalamic-pituitary-adrenal
axis function among free-range wild baboons [73•].
Socially subordinate baboons exhibit hypercortisolism
and resistance to feedback inhibition after dexametha-
sone treatment. Nevertheless, it is unclear that SP
is characterized by hypothalamic-pituitary-adrenal axis
dysfunction [74].

Lower social status in monkeys is, however, associ-
ated with lower dopamine D2 striatal receptor density
[75], a finding that is consistent with clinical research
on SP [76]. Furthermore, social submissiveness in
nonhuman primates decreases in response to adminis-
tration of SSRIs [77]. These data lend support to the
thesis that SP can be conceptualized in terms of an
appeasement display [78].

Post-traumatic Stress Disorder
Post-traumatic stress disorder develops after an individual
has experienced or witnessed a life-threatening traumatic
event. The symptoms include reexperiencing the traumatic
event (eg, flashbacks and nightmares), generalized arousal,
and avoidance of stimuli associated with the trauma [7].
Clinical studies have implicated the amygdala and hippo-
campus [79], and have demonstrated enhanced negative
feedback of the hypothalamic-pituitary-adrenal axis [80]
and dysregulation of catecholamine neurotransmitter
systems [81]. Patients diagnosed with PTSD respond to a
range of medications, including tricyclic antidepressants,
monoamine oxidase inhibitors, and SSRIs [10].

Animal models of PTSD have used intense stressors,
aversive challenges, and situational reminders of a
traumatic stress in an attempt to model long-term effects
on behavioral, autonomic, and hormonal responses seen
in humans with PTSD. Examples include electric shock
[82], stress-restress or time-dependent sensitization (TDS)
[83••], underwater trauma [84], and exposure of animals
to a predator [85,86]. Models of early developmental
trauma [87,88] may also be relevant to understanding
PTSD. Relevant to this review, the authors will focus on
the process of TDS.

Time-dependent sensitization
The behavioral model of stress-restress or TDS has been
proposed as a useful model for PTSD [89••]. In this
model, animals are exposed to single session of prolonged
stress (eg, 2 hours of restraint followed by a 20 minute
forced swim, followed by exposure to ether or halothane
vapors). The animals are allowed to recover for a week,
then they are subjected to a brief restress on day 7 (30 min-
utes of restrain stress or 20 minutes swim stress). The ratio-
nale being that the frequency of exposure to situational
reminders contributes to the maintenance of fear-related
behavioral disturbances over time.

The model has proved valuable for studying hypo-
thalamic-pituitary-adrenal abnormalities relevant to PTSD
[83••,90]. Animals subjected to TDS display the enhanced
sensitivity to negative glucocorticoid feedback that is
characteristic of PTSD while also demonstrating distinct
changes in mineralocorticoid and glucocorticoid receptor
expression in the hippocampus [90]. In addition, stress-
restress evokes significant spatial memory deficits together
with lowered plasma corticosterone, which is again consis-
tent with clinical findings [91]. Stress-restress leads
to changes in hippocampal 5-HT1A and prefrontal cortex
5-HT2A receptors [91], brain areas that are intimately
involved in memory and stress responsiveness.

From a phenomenologic and biologic perspective,
the TDS model emphasizes the role of past trauma in pre-
dicting subsequent dysfunction, allows for the study
of bidirectional expression of symptoms (enhanced
or reduced responsiveness to environmental stimuli),
and provides credible intrasubject variation [89••]. Time-
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dependent sensitization–induced stress effects on spatial
memory are attenuated by fluoxetine and ketoconazole
[92]. Moreover, in line with the increasing evidence for an
involvement of glutamatergic mechanisms in the pathol-
ogy and pharmacology of stress and anxiety [70,71], it is of
interest that stress-restress evokes a significant increase in
hippocampal nitric oxide synthase activity with marked
changes in hippocampal NMDA receptors [93]. The
efficacy of other anti-PTSD agents in the TDS model still
needs further research.

With advances in genomics, it will be possible to
explore the specific genetic basis of individual differences
in processes such as TDS and susceptibility to PTSD [94]. A
genetic animal model of congenital learned helplessness
(cLH), for example, has been used to explore the role of
genetic predisposition in PTSD [95••]. The first cLH
breeding line was selected by subjecting out-bred Sprague-
Dawley rats to random electric foot shocks. Twenty-four
hours later, the animals were tested in a shock-escape
paradigm where foot shock could be eliminated by a
single bar press. Failure to eliminate the shock in 20
seconds counted as a failed trial. Rats scoring 11 to 15
failed trials in a 15-trial session were labeled cLH. Animals
from the breeding line 33 of cLH animals were monitored
for changes in pain tolerance, spatial memory, and
hypothalamic-pituitary-adrenal function after reexposure
to intermittent stress. Stress-induced analgesia was signifi-
cantly increased in cLH animals. Congenital learned
helplessness animals also exhibited significant deficits in
spatial memory as measured by the Morris water maze. In
addition, cLH animals exhibited hypothalamic-pituitary-
adrenal hyporesponsitivity to major stressors, possibly
because of enhanced negative feedback sensitivity [95••].
A decrease in pain sensitivity [96], impairment in memory
[97], and enhanced negative feedback sensitivity [80] are

features of PTSD. Further work is needed to determine if
these animals are more at risk for developing adverse
consequences after TDS, and if pharmacotherapy is
effective in reversing dysfunction in cLH animals.

Conclusions
There is a growing understanding of the phenomenology
and psychobiology of specific cognitive-affective processes
(eg, fear conditioning, social submissiveness, and trauma
sensitization) that may be relevant to the anxiety disorders.
Although some of these processes are relevant to several
different anxiety disorders, others (eg, control of stereo-
typic behaviors) are particular pertinent to specific
conditions. Although cognitive-affective processes in
humans may have unique attributes, it is possible to study
such processes in other animals.

Such work has led to a number of animal models of
anxiety that demonstrate varying degrees of face, construct,
and predictive validity (Table 1). These models have
broadened the understanding of the neuroanatomy and
neurochemistry of anxiety disorders, highlighting regions
such as the amygdala and hippocampus and systems
such as serotonergic and glutamatergic circuitry. In the
future, as new technologies become available to explore
the precise molecular and genetic bases of cognitive-
affective processes relevant to anxiety disorders, researchers
can expect further progress. Ultimately, such work may
lead to the development of novel treatment approaches.

Acknowledgments
The authors are supported by the Medical Research
Council of South Africa and the National Research
Foundation of South Africa.

Table 1. Cognitive-affective processes relevant to the molecular and anatomic basis of anxiety disorders 
as modeled by various preclinical models of anxiety

Disorder
Cognitive-affective 
process Paradigm Anatomy Molecular

Generalized anxiety 
disorder

General avoidance 
behaviors

Elevated plus maze Poorly defined Serotonin, gamma-
aminobutyric acid

Obsessive-compulsive 
disorder

Control repetitive 
movements

Spontaneous stereotypy 
(deer mice), acral lick 
dermatitis (canines), 
and drug-induced 
stereotypy

Corticostriatal circuits Serotonin, dopamine, 
autoimmune

Panic disorder Fear conditioning Fear-potentiated startle Amygdala, hippocampus, 
medial prefrontal 
cortex, dorsal 
periaqueductal gray

Serotonin, glutamate, 
gamma-aminobutyric acid

Social phobia Social submission Primate hierarchy Amygdala, 
corticostriatal 
circuitry

Serotonin, dopamine2

Post-traumatic 
stress disorder

Time-dependent 
sensitization

Rodent time-dependent 
sensitization

Hippocampus, 
prefrontal cortex

Hypothalamic-pituitary-
adrenal axis, serotonin
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