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Abstract
Purpose of Review  In this narrative review, we aim to summarize recent insights into the complex interplay between envi-
ronmental and genetic factors affecting the etiology, development, and progression of chronic migraine (CM).
Recent Findings  Environmental factors such as stress, sleep dysfunction, fasting, hormonal changes, weather patterns, 
dietary compounds, and sensory stimuli are critical triggers that can contribute to the evolution of episodic migraine into 
CM. These triggers are particularly influential in genetically predisposed individuals. Concurrently, genome-wide associa-
tion studies (GWAS) have revealed over 100 genetic loci linked to migraine, emphasizing a significant genetic basis for 
migraine susceptibility.
Summary  In CM, environmental and genetic factors are of equal importance and contribute to the pathophysiology of 
the condition. Understanding the bidirectional interactions between these elements is crucial for advancing therapeutic 
approaches and preventive strategies. This balanced perspective encourages continued research into the complex gene-
environment nexus to improve our understanding and management of CM.
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Introduction

Migraine, which affects an estimated one billion individuals 
worldwide, is a complex disorder characterized by intense 
recurring headaches. These episodes are often accompanied 
by multiple symptoms such as nausea, vomiting, and extreme 
sensitivity to light and sound. Chronic migraine (CM), a par-
ticularly debilitating subtype of migraine, is defined as the 

presence of headaches for 15 days or more per month, with at 
least 8 days meeting the specific criteria for migraine. Depend-
ing on their severity and frequency, the headaches can substan-
tially impair the quality of life and productivity of patients, 
making CM a major public health concern [1].

The etiology of CM involves a complex interplay between 
genetic and environmental factors. The genetic influences 
are substantial with heritability estimates ranging from 50 
to 80%. Recent studies have identified more than 100 genetic 
loci associated with migraine that affect nerve transmis-
sion, inflammation, and pain perception [2]. Furthermore, 
the advent of genome-wide association studies (GWAS) 
has been instrumental in elucidating the polygenic nature 
of migraine [3••]. Environmental factors also play critical 
roles, particularly in genetically predisposed populations. 
These factors not only precipitate migraine episodes but also 
contribute to migraine chronification [4].

In this review, we aim to provide an up-to-date summary of 
the genetic variants and environmental exposures with potential 
roles in CM pathogenesis. Elucidating the genetic and environ-
mental underpinnings of CM may provide biological insights 
into the development of targeted therapeutics and personalized 
prevention strategies for this disabling disorder.

Po-Kuan Yeh and Yu-Chin An contributed equally to this work.

 *	 Fu‑Chi Yang 
	 fuji-yang@yahoo.com.tw; fujiyang88@gmail.com

1	 Department of Neurology, Tri-Service General Hospital, 
National Defense Medical Center, Section 2, Cheng‑Kung 
Road, Neihu 114, No. 325, Taipei, Taiwan

2	 Department of Psychiatry, Tri‑Service General Hospital, 
National Defense Medical Center, Beitou Branch, Taipei, 
Taiwan

3	 Department of Emergency Medicine, Tri‑Service General 
Hospital, National Defense Medical Center, Taipei, Taiwan

4	 Center for Precision Medicine and Genomics, Tri‑Service 
General Hospital, National Defense Medical Center, Taipei, 
Taiwan

http://crossmark.crossref.org/dialog/?doi=10.1007/s11916-024-01228-4&domain=pdf


170	 Current Pain and Headache Reports (2024) 28:169–180

Environmental Factors in CM

A myriad of environmental exposures have been implicated 
as triggers capable of precipitating acute migraine episodes, 
especially among genetically vulnerable individuals, based 
on their polymorphic risk profile. Common triggers include 
but are not limited to stress, sleep dysfunction, fasting, hor-
monal changes, weather patterns, odors, dietary compounds, 
and sensory stimuli [4]. Exposure to a combination of these 
triggers may also contribute to migraine chronification in 
patients prone to progressive sensitization. In this section, 
we review external and lifestyle-related factors (Table 1) 
linked to either provoking individual migraine attacks or 
gradually lowering the migraine activation threshold.

Stress

Migraine can activate the autonomic nervous system, par-
ticularly the hypothalamic–pituitary–adrenal (HPA) axis, 
when stress experienced exceeds an individual’s coping 
capacity. This stress response includes the release of cortisol 
and other stress hormones, potentially triggering or exacer-
bating migraine [5]. Furthermore, emotional disorders such 
as anxiety and depression are closely linked to the occur-
rence of migraine. These emotional states may enhance pain 
perception by affecting the pain-processing mechanisms in 
the brain. Conversely, migraine can also lead to changes in a 
patient’s emotional state, especially in those with CM. These 
emotional responses, potentially stemming from the pain 
itself or the effect of headaches on daily life, form a vicious 
cycle that further intensifies the pain [6].

Patients with CM often face higher stress due to frequent, pro-
longed headaches, potentially overactivating their HPA axis and 
leading to abnormal cortisol levels. In contrast, patients with epi-
sodic migraine (EM) have fewer headache episodes and less HPA 
axis disturbance. Fluctuations in the levels of neurotransmitters, 
particularly serotonin and norepinephrine, which are key to pain 
and emotion regulation, are more pronounced in CM, possibly 
because of frequent headache episodes and a high risk of depres-
sion or anxiety [7]. Specific brain regions such as the amygdala 
and prefrontal cortex also play major roles. The amygdala, which 
is involved in emotion processing, also functions in the emo-
tionalization of pain [8]. The enhanced connectivity between the 
amygdala and visual processing areas in patients with CM, which 
has been implicated in pain and emotional response, may account 
for their increased pain sensitivity and emotional distress. This 
alteration in brain connectivity could be either a developing trait 
of CM, potentially acting as a risk factor, or an adaptive response 
mechanism of the brain to extended pain and stress, indicative 
of neural plasticity in response to continuous pain stimuli in CM 
[9•]. Some regions of the prefrontal cortex are also crucial for 
directing attention to pain and emotional responses [10].

Considering these factors, the current review emphasizes 
the importance of psychotherapy in migraine treatment strat-
egies, particularly cognitive behavioral therapy (CBT) and 
stress management techniques, which have proven effective 
in reducing migraine attacks [11].

Sleep Disturbances

Individuals with migraine are more prone to sleep problems, 
such as insomnia and poor sleep quality, than the general 
population. Insufficient sleep can trigger migraine attacks, 
and prolonged poor sleep quality may lower the pain thresh-
old, thereby exacerbating the migraine symptoms [12]. Fur-
ther studies have revealed that sleep disturbances associated 
with migraine may be linked to the hypothalamus [13]. The 
posterior hypothalamus, pivotal in managing various physi-
ological functions such as pain perception and sleep regulation, 
plays a key role in migraine pathophysiology, and its activity 
is regulated by pituitary adenylate cyclase-activating peptide 
(PACAP). PACAP, existing in forms such as PACAP-38 and 
PACAP-27, influences migraine development through its 
action on PAC1 receptors, which are closely linked to migraine 
attacks. It has been observed that PACAP can sensitize trigem-
inal neurons, an effect that can be inhibited by PAC1 antago-
nists. During migraine attacks, the concentration of PACAP-38 
reportedly increases. The posterior hypothalamus, integral to 
the circadian rhythm entrainment, is associated with intrinsi-
cally photosensitive retinal ganglion cells (ipRGCs) via the 
retinohypothalamic tract (RHT). In this pathway, PACAP is 
crucial to modulating the transmission of light signals from 
the retina to the hypothalamus, thereby playing a vital role in 
the regulation of the sleep–wake cycle [14••].

Specific sleep stages are also associated with migraine. The 
maximum episodes of migraine attacks often occur early in the 
morning or late at night, which may be related to the rapid eye 
movement (REM) sleep stage. Serotonin levels also decrease 
throughout the body during REM sleep, which potentially 
explains the relationship between REM sleep and migraine 
[15]. Lack of sleep can sensitize the trigeminal pain pathway, 
thereby triggering migraine attacks. Untreated sleep disorders, 
such as obstructive sleep apnea (OSA), may also contribute to 
the progression of migraine by affecting hypoxia and oxidative 
stress pathways, further sensitizing the trigeminal nociceptors 
[16]. However, additional research is essential to better under-
stand and define the association of sleep stages with CM.

While there is still debate over whether improving sleep 
quality can reduce the frequency of migraine, some clini-
cal studies have confirmed the positive effect of managing 
sleep disorders on headache outcomes, including the use of 
suvorexant, an orexin antagonist [17], and implementation 
of behavioral sleep intervention programs [18].
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Fasting and Meal Skipping

Delaying or missing meals are among the most frequently 
cited but underrecognized dietary contributors to migraine 
attacks. Nearly 40% of individuals with CM identify fasting 
or hunger as an attack trigger in surveys [19]. The mecha-
nisms by which fasting promotes migraine episodes likely 
involve cerebral vasodilation, cortisol release, and hypogly-
cemia, all of which can enhance cortical excitability and 
sensitize meningeal trigeminal pain fibers [20]. Maintaining 
regular eating schedules has demonstrated some efficacy in 
reducing headache frequency, plausibly by stabilizing the 
serum glucose levels and preventing hypoglycemic states 
linked to cortical spreading depression (CSD) susceptibil-
ity [21]. However, additional research is essential to better 
understand and define its association with CM.

Weather Changes

Studies have indicated that the effect of weather on migraine 
remains contentious. Numerous patients with migraine have 
reported that specific weather conditions can trigger head-
aches. Over half of the patients suffering from migraine con-
sider weather to be a trigger factor [22], especially when 
the atmospheric pressure drops by more than 5 hectopascals 
(hPa) [23]. The proposed mechanism involves changes in the 
intracranial pressure or the release of inflammatory media-
tors during storm fronts, which may promote vasodilation 
and activate meningeal nociceptors. Migraine attacks and 
the associated disabilities often peak during the transitional 
periods of spring and autumn [23].

Humidity and rainfall are also thought to affect migraine 
occurrence, but the association remains unclear. Some small-
scale studies have suggested that cloudy and thundery weather 
conditions may trigger migraine, although these conclusions 
require cautious interpretation [24]. Large-scale studies, such 
as those conducted by Zebenholzer et al. did not confirm a sig-
nificant correlation between weather conditions and migraine 
episodes [25]. High temperature has been identified as a major 
trigger of migraine and is possibly related to increased body 
temperature [26]. Some small-scale studies indicate that the 
preventative adjustment of behavioral habits based on pre-
dicted weather changes can alleviate weather-induced attacks 
in specific patients [27]. However, additional research is essen-
tial to better understand and define the association of high tem-
perature with CM.

Hormones

Migraine presents with significant sex disparities in inci-
dence rates, pathogenic mechanisms, and clinical manifesta-
tions. Female individuals exhibit a higher lifetime prevalence, 

especially during their reproductive years [28]. Estrogen has 
been linked to CM occurrence; it enhances pain sensitivity by 
increasing CSD sensitivity and disrupting neuronal vascular 
function, particularly in the central trigeminovascular system. 
It acts through estrogen receptor β (ERβ), affecting the cen-
tral nervous system and leading to neurogenic inflammation 
and central sensitization. The binding of estrogen to the recep-
tor increases calcium concentration in neurons, lowering the 
nociceptive neurotransmission threshold and contributing to 
central sensitization and cortical hyperexcitability [29]. This 
process is further amplified by enhanced N-methyl-D-aspartate 
(NMDA) receptor activity on glutamatergic neurons. Changes 
in the estrogen level also affect the levels of neurotransmitters 
such as CGRP and serotonin, potentially contributing to the 
progression of CM [30]. Prolonged-cycle oral contraceptive use 
can stabilize hormone levels and reduce symptomatic migraine 
episodes [31]. Overall, sex-dependent differences are likely the 
result of an interplay between genetics and hormones.

Clinically, migraine manifests differently in female indi-
viduals, often as unilateral headaches with photosensitivity 
and without nausea or vomiting [32]. They also frequently 
report nonspecific symptoms, such as neck stiffness, leading to 
potential misdiagnosis. Owing to physiological differences, the 
male and female individuals may respond differently to certain 
medications, with women being more sensitive to 5-HT1B/1D 
receptor agonists [28]. The transgender population experiences 
unique migraine patterns owing to hormonal changes and shifts 
in gender identity [33]. Sex-related differences also influence 
migraine treatment strategies, which is possibly related to the 
hormonal regulation of neurotransmitter signaling pathways. 
Oral contraceptives alleviate menstruation-related migraine 
attacks [34].

The biological basis of the increased susceptibility of 
females to migraine includes the distribution of estrogen recep-
tors in the central structures related to pain processing, which 
affects pain management [35]. Nitric oxide synthase plays a 
role in migraine pathology, with a more concentrated distribu-
tion in the spinal neurons of female rats, and estrogen promotes 
increased nitric oxide synthesis in migraine models [36]. Vari-
ations in osteopontin gene polymorphisms related to calcium 
metabolism have been linked to an increased susceptibility to 
migraine in females. The neuropeptide PACAP plays a major 
role in migraine onset, and genetic polymorphisms in females 
are notably related to higher susceptibility [36].

Sex-related differences are also evident in the peak inci-
dence of migraine. Before puberty, male and female indi-
viduals exhibited similar incidence rates. However, post-
menstrual women are more prone to migraine, related to 
hormonal secretions and endometrial shedding. Pregnancy 
and menopause are high-risk periods due to drastic hormo-
nal fluctuations, whereas males achieve a delayed peak, 
which is associated with increased androgen levels and 
decreased estrogen levels at puberty [28].
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Dietary Compounds

Recent studies have identified a significant correlation 
between specific foods and beverages and the occurrence 
of migraine. Tyramine, a biogenic amine present in foods 
such as aged cheese, red wine, and fermented products, has 
been implicated in the onset of migraine. It is metabolized 
to dopamine, which promotes vasodilation and contributes 
to migraine pathogenesis; dopamine may also affect sero-
tonin release [37]. Research indicates that abnormalities in 
tyrosine metabolism may play a role in the transformation 
of migraine without an aura into CM [38].

Nitrates and nitrites found in processed meat are also con-
sidered potential triggers of migraine. These compounds can 
be converted to nitric oxide (NO) in the body, causing vaso-
dilation, which may lead to changes in cerebral blood flow 
and trigger headaches. Furthermore, nitrates and nitrites 
may induce migraine by stimulating the neural system in 
the brain [39].

Caffeine has a paradoxical relationship with migraine, 
serving as both a common treatment and, in cases of excess 
intake or withdrawal, a reported trigger. Adenosine levels 
in the blood increase during migraine attacks, and caffeine, 
which blocks adenosine receptors, inhibits the effects of aden-
osine. However, the specific mechanisms by which caffeine 
controls pain and induces headaches remain unclear [40].

Monosodium glutamate (MSG) intake has been linked 
to migraine induction in sensitive individuals and plays a 
major role in its pathophysiology [41]. Alcohol can stimu-
late meningeal nociceptors in the trigeminal ganglion and 
cause vasodilation and dehydration, potentially contributing 
to alcohol-induced migraine [42]. Foods rich in flavonoids, 
such as chocolate, wine, and tea, are also recognized trig-
gers in some patients. This may be because of flavonoid-
enhancing vanilloid receptors in the neurogenic inflamma-
tory pathways associated with migraine [43].

Studies using the dietary inflammatory index (DII) as an 
assessment tool have found that higher DII scores are sig-
nificantly correlated with an increased risk of severe head-
aches or migraine [44••]. Research shows that diets with a 
low glycemic index; low fat, ketogenic diets; and Dietary 
Approaches to Stop Hypertension (DASH) can help reduce 
the frequency and severity of CM [42].

Sensory Stimuli

External sensory stimuli, especially bright or flickering 
light, loud noise, and strong odor, can immediately trigger 
acute migraines in the majority of patients with CM [45], 
causing inconvenience in their daily lives. Odor sensitivity 
(olfactory hypersensitivity) is also common among patients 
with migraine. Odors such as those of perfumes, vehicle 
exhaust, cigarette smoke, cleaning agents, and other volatile 

chemicals can quickly induce headaches in patients with 
CM [46]. Studies have suggested that patients with severe 
migraine are more prone to odor-induced attacks and are 
more likely to experience insomnia, depression, fatigue, and 
sensory hypersensitivity [47]. Flickering light sources can 
also easily trigger migraine attacks in patients with CM, 
and specific patterns and colors may evoke discomfort, 
especially black-and-white stripes and high color contrasts 
[48]. Noise in the environment is one of the risk factors for 
migraine onset. Intense sounds or specific auditory stimuli 
(such as ambulance sirens or railway-level crossing bells) 
can easily trigger migraine attacks in patients with CM. 
Exposure to such sounds during an attack exacerbates the 
pain level. To avoid sound-induced pain, patients often adopt 
avoidance strategies, attempting to stay away from specific 
sources of sound that may trigger headaches. These strate-
gies limit their daily activity range [49].

Overall, photosensitivity, odor sensitivity, and sound sen-
sitivity reflect interictal dysregulation in sensory processing, 
lowering the migraine activation threshold, and potentially 
restricting daily activities [50]. Treatments targeting the reg-
ulation of trigeminal excitability and central amplification 
have been shown to reduce the sensitivity of patients with 
migraine to odor, light, and sound [45]. However, optimizing 
the sensory environment to avoid strong triggers has also 
been proven effective in reducing the frequency and sever-
ity of migraine attacks [50]. Additional research is essential 
to better understand and define the association of sensory 
stimuli with CM.

Genetic Factors in CM

Extensive research has explored the association between 
genes and migraine, with large-scale GWAS uncovering 
numerous genetic variants [3••, 51•]. Genetic research 
has also underscored the shared genetic factors between 
migraine and major comorbidities such as depression and 
high blood pressure [2]. Although genetic predisposition is 
believed to play a role, specific genetic markers associated 
with migraine chronification have not been fully identi-
fied. The transition from episodic migraine to CM typically 
occurs gradually and involves multiple risk factors.

An early comprehensive study [52•] on single-nucleotide 
polymorphisms in patients with CM and the subsequent 
whole-genome sequencing in another large cohort [53] 
revealed no distinct genetic differences between chronic and 
episodic migraine cases. The lack of specific rare variants or 
higher polygenic risk scores suggests that environmental fac-
tors, rather than genetic factors, play a more pronounced role in 
the progression of migraine from an episodic to chronic form.

Recent studies comparing chronic and episodic migraines 
have identified some genetic variants that may contribute to 
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migraine chronification (Table 2). Additionally, several influ-
ential genes have been widely discussed in the literature as 
being involved in CM therapy. In this section, we summarize 
recent research on how genetic factors may contribute to CM.

Transient Receptor Potential Family

In CM research, transient receptor potential (TRP) ion 
channels, especially TRPV1 and TRPM8, are recognized as 
pivotal in transforming episodic migraine to CM [54–56]. 
These channels are integral in converting noxious stimuli 
into pain signals and are associated with CGRP, a key 
mediator of migraine development. Genetic variations in 
TRPV1, such as the 1911A > G variant, have been linked 
to CM and implicated in the sensitization of pain receptors 
[57]. TRPV1 activation results in increased CGRP release, 
which exacerbates migraine symptoms and prolongs menin-
geal nerve activation [58]. TRPM8, which is responsive to 
cold stimuli, also plays a role in migraine pain perception, 
with individuals carrying the rs10166942 T allele showing 
an increased risk of CM [56]. Moreover, TRPA1’s interac-
tion with NMDARs and mu-opioid receptors underscores its 
significance in the modulation of pain signals [59]. Variants 
such as TRPV1 rs222741 and TRPM8 rs7577262 are associ-
ated with increased anxiety in certain migraine populations, 
indicating the role of TRP channels in migraine-related 
comorbidities [60].

Human Leukocyte Antigen Class I

Human leukocyte antigen (HLA) class I molecules 
are crucial components of the immune system and are 
primarily involved in the presentation of peptides to T 
cells [61]. Previous studies have suggested that migraines 
have genetic similarities with inflammatory diseases [62]. 
In a case–control study, Huang et al. found that genetic 
variations in HLA class I molecules positively correlated 
with the incidence of clinic-based migraine. In addition, the 

HLA-B*58:01 and HLA-C*03:02 alleles were significantly 
associated with CM. Drug molecules may affect the immune 
responses related to migraine, which could lead to the 
aggravation or chronification of headaches, particularly 
when painkillers or medications are overused [63].

Dopamine Beta‑Hydroxylase

Dopamine beta-hydroxylase (DBH) converts dopamine to 
norepinephrine, which is important for neurotransmitter 
synthesis and plays a pivotal role in the pathophysiology of 
migraine [64]. Previous studies have indicated that the DBH 
rs7239728 and rs6271 polymorphisms increase the risk of 
migraine, and DBH rs2097629 increases the risk of migraine 
with aura [65–67]. According to a recent validation study, 
the DBH 19-bp insertion/deletion polymorphism may not 
be associated with migraine susceptibility but is linked to 
medication overuse in patients with CM. Prefrontal cortex 
hypofunction may be counteracted by lower dopaminergic 
activity in patients with CM carrying the I allele (increased 
DBH activity and reduced dopamine levels), thus shielding 
them from the risk of medication overuse [68].

Catechol‑O‑Methyltransferase

Catechol-O-methyltransferase (COMT) has been studied 
for its potential contribution to migraine. A study focused 
on assessing the significance of COMT polymorphisms 
in migraine suggested that the L allele of COMT is over-
represented in patients with migraine, particularly those 
with a family history of migraine, indicating the potential 
pharmacological importance of COMT polymorphisms in 
migraine [69]. In contrast, a study on the association of 
five single nucleotide polymorphisms (SNPs) in COMT 
with migraine in Western Japan found no significant dif-
ferences between the patients with migraine and controls 
[70]. Thus, COMT’s specific link to CM remains uncertain 
and requires further research.

Table 2   Genetic variants associated with chronic migraine

Polymorphism Gene Cases of 
episodic 
migraine

Cases of 
chronic 
migraine

Variant change Function and implication in pathophysiology Reference

rs8065080 TRPV1 27 19 A > G Non-selective cation channel, primarily involved 
in pain perception

Yakubova et al. [55]

rs10166942 TRPM8 1320 584 T > C Ligand-gated calcium channel, implicated in 
cold-induced thermogenesis and pain percep-
tion

Ling et al. [56]

HLA-B*58:01
HLA-C*03:02

HLA 104 52 - Integral to the immune system function, present-
ing endogenous peptides to T cells

Huang et al. [63]

19-bp I/D DBH 270 130 Deleted allele Influences dopamine to norepinephrine conver-
sion, related to neurotransmitter synthesis

Barbanti et al. [68]
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Calcitonin Gene‑Related Peptide

Calcitonin gene-related peptide (CGRP) exists as αCGRP 
(CALCA) and βCGRP (CALCB) in the human body and 
plays a crucial role in pain transmission in the trigemino-
vascular system, making it a significant factor in migraine 
pathophysiology [71]. CGRP receptor antagonists are effec-
tive as a therapeutic strategy for migraine treatment [72–74]. 
Although GWAS have identified new loci in CALCA/
CALCB, the relationship between CGRP gene variants 
and migraine chronification has not been fully established 
[71]. Epigenetic modifications of CALCA are associated 
with various migraine clinical features and can be potential 
targets for migraine therapy [75]. Moreover, inhibition of 
HDAC6 expression, which affects CGRP pathways, repre-
sents another promising treatment avenue [76].

Histone Deacetylase Inhibitors

Histone deacetylases (HDACs) have emerged as potential 
targets for the treatment of chronic pain syndromes such as 
CM [77]. HDACs play a crucial role in modulating neuro-
inflammatory responses. Studies have shown that HDAC 
inhibitors can effectively reduce neuroinflammation [78], 
and they have been implicated in modifying epigenetic 
changes in genes associated with chronic pain conditions 
[79]. Research using rat models has highlighted the effec-
tiveness of HDAC inhibitors in treating medication overuse 
headache (MOH), a common complication of migraine man-
agement. These inhibitors have been found to counteract the 
overexpression of genes encoding CGRP and its receptor 
subunit RAMP1 in the trigeminal ganglion [80]. Addition-
ally, HDAC6 inhibitors have shown promise in reversing 
structural neural disruptions and mitigating the symptoms 
of CM, including CSD [81]. A recent GWAS also identified 
a genetic variant of HDAC9 (rs1178326) associated with 
insomnia in patients with migraine, although its relevance 
to CM remains to be established [82].

Efficacy of Therapy

Although the association between genetic polymorphisms 
and CM remains debatable, numerous studies have discussed 
the effects of genetic variability on drug efficacy in patients 
with CM. In particular, the MAOA uVNTR polymorphism 
showed a strong correlation with triptan response. In addi-
tion, the CYP1A2*1F variant is associated with triptan over-
use and response in certain patient groups [83, 84]. Further 
research on the efficacy of onabotulinumtoxinA highlights 
the role of genetic variations in the treatment response. 
Polymorphisms in the CALCA rs3781719 and TRPV1 
rs222749 genes have been identified as potential markers 

for predicting the response to onabotulinumtoxinA in female 
patients with CM [85]. These genetic insights pave the way 
for personalized treatment approaches for CM.

Comorbidities

Numerous comorbidities have been identified as risk fac-
tors for the development of CM [86], and researchers have 
explored whether there is a correlation between genetic poly-
morphisms in migraine and these comorbidities. In a study, 
14 SNPs were found to be associated with insomnia and CM 
[82]. Among the candidate genes, SLC38A10, which acts 
as a glutamate transporter, has been studied for its potential 
relationship with migraine onset. This gene can affect neu-
ronal viability by protecting against glutamate toxicity and 
oxidative stress, which are assumed to contribute to migraine 
and insomnia onset [87, 88].

GWAS conducted in European populations have shown 
a genetic correlation between migraine and depression. The 
genetic profiles of patients who suffer from both depression 
and migraine are more closely aligned with those of patients 
with depression alone [89]. Ashina et al. utilized a validated 
questionnaire (PHQ-9 score ≥ 15) to analyze patients transi-
tioning from episodic migraine to CM. They suggested that 
depression is associated with an increased risk of progres-
sion to CM and that this risk escalates with the severity of 
depression [90]. In a study involving Chinese population, 
the intergenic SNP rs9356570 was associated with CM and 
depression [91]. However, the underlying pathophysiological 
mechanisms require further investigation.

Cognitive dysfunction is a major issue in patients with 
migraine, with many reports of subjective cognitive decline 
(SCD). Clinical and neuroscientific studies have found that 
migraine episodes often coincide with reduced cognitive 
performance [92]. Depression and limited sleep during 
workdays have been linked to SCD in adult individuals with 
migraine [93]. Genetic research has identified two specific 
SNPs, rs17111293 in LOC107984361 and rs17111293 in 
ARHGAP29, which are associated with SCD and CM [94]. 
The dysregulation of the ARHGAP29 gene is implicated in 
a range of cognitive and neurological disorders, including 
migraine without aura [95]. The potentially shared genetic 
underpinnings between CM and SCD, particularly the genes 
influencing neuronal development, present a compelling 
area for future exploration.

Suicide, migraine, and mental illnesses have been 
linked by a strong bidirectional association, most likely 
due to shared neuropathic mechanisms. To understand 
the potential genetic links to suicidal risk in patients 
with CM with affective temperamental dysregulation, 
a focused study explored the association between spe-
cific gene variants (MAO-A3, CYP1A2*1F, and GNB3) 
and suicidal tendencies. This study found a correlation 
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among high levels of affective dysregulation, increased 
hopelessness, and suicide risk. However, there was no 
direct association between the studied genetic variants 
and an increased risk of suicide. This outcome indicates 
that the risk of suicide in patients with CM is likely due 
to a multifaceted combination of genetic and environ-
mental factors [96].

Epigenetics of Migraine Chronification

Recent research has focused on the role of epigenetic 
mechanisms in the chronification of migraine by exploring 
how changes in DNA methylation and gene expression can 
influence migraine susceptibility and its evolution from an 
episodic to chronic form [97, 98•, 99]. Studies have identi-
fied specific genes, such as SH2D5 and NPTX2, that are 
involved in regulating synaptic plasticity and may play a 
role in migraine chronification, although the findings have 
been inconclusive [98•, 99]. The exact biological mecha-
nisms and effects of environmental factors, inflammation, 
and brain plasticity on these epigenetic changes are not yet 
fully understood [100].

This gene-environment interaction indicates the complex-
ity of migraine as a chronic condition. The exact biological 
mechanisms underlying these epigenetic influences remain 
as areas of active investigation. However, considering epi-
genetics as a bridge between genetic and environmental fac-
tors is important for understanding the pathophysiology of 
migraine and developing effective treatment strategies.

Conclusions

In conclusion, both genetic predisposition and environmen-
tal influences contribute significantly to the pathogenesis 
of CM (Fig. 1). GWAS have identified numerous genetic 
variants associated with migraine; however, the specific 
factors driving the transition from an episodic to chronic 
form extend beyond genetics alone. Environmental trig-
gers such as stress, sleep disturbances, and dietary factors 
are crucial in this process. Moreover, key genetic variants 
and the involvement of genes emphasize the genetic com-
plexity of CM. Additionally, epigenetic mechanisms reveal 
how environmental factors affect gene expression, thereby 

Fig. 1   Environmental and genetic factors contributing to chronic 
migraine. This diagram illustrates the association between environ-
mental and genetic factors influencing the development of chronic 

migraine. A question mark has been placed next to genetic factors 
with a low level of evidence or a degree of uncertainty regarding their 
direct association with chronic migraine
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influencing migraine susceptibility and chronification. This 
review highlights the need for a holistic approach to under-
stand and manage CM. Advancements in this field promise 
more personalized and effective treatments, potentially eas-
ing the burden of CM in patients globally.
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