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Abstract
Purpose of Review  Management of chronic daily headaches (CDH) remains challenging due to the limited efficacy of 
standard prophylactic pharmacological measures. Several studies have reported that repetitive transcranial magnetic stimu-
lation (rTMS) can effectively treat chronic headaches. The objective was to determine the utility of rTMS for immediate 
post-treatment and sustained CDH prophylaxis.
Recent Findings  All procedures were conducted per PRISMA guidelines. PubMed, Scopus, Web of Science, and ProQuest 
databases were searched for controlled clinical trials that have tested the efficacy of rTMS on populations with CDH. 
DerSimonian-Laird random-effects meta-analyses were performed using the ‘meta’ package in R to examine the post- vs. 
pre-rTMS changes in standardized headache intensity and frequency compared to sham-control conditions. Thirteen trials 
were included with a combined study population of N = 538 patients with CDH (rTMS, N = 284; Sham, N = 254). Patients 
exposed to rTMS had significantly reduced standardized CDH intensity and frequency in the immediate post-treatment period 
(Hedges’ g = -1.16 [-1.89, -0.43], p = 0.002 and Δ = -5.07 [-10.05, -0.11], p = 0.045 respectively). However, these effects 
were sustained marginally in the follow-up period (Hedges’ g = -0.43 [-0.76, -0.09], p = 0.012 and Δ = -3.33 [-5.52, -1.14], 
p = 0.003). Significant between-study heterogeneity was observed, at least partially driven by variations in rTMS protocols.
Summary  Despite the observed clinically meaningful and statistically significant benefits in the immediate post-treatment 
period, the prophylactic effects of rTMS on CDH do not seem to sustain with discontinuation. Thus, the cost-effectiveness 
of the routine use of rTMS for CDH prophylaxis remains questionable.
Registration  Protocol preregistered in PROSPERO International Prospective Register of Systematic Reviews 
(CRD42021250100)
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Abbreviations
CDH 	� Chronic daily headaches
CM	� Chronic migraine
CTTH	� Chronic tension-type headaches
TCA​	� Tricyclic antidepressants
BTX-A	� Botulinum toxin A
CGRP 	� Calcitonin gene-related peptide
rTMS 	� Repetitive transcranial magnetic stimulation
dlPFC 	� Dorsolateral prefrontal cortex
PRISMA	� Preferred Reporting Items for Systematic 

Reviews and Meta-analyses
MCID	� Minimal clinically important difference
GRADE	� Grading of Recommendations, Assessment, 

Development, and Evaluation
MC	� Motor cortex

Introduction

Chronic daily headaches (CDH) are a disabling condition 
affecting approximately 4–5% of the global population, 
significantly affecting quality-of-life [1–3]. Resistance of 
CDH to standard therapies results in substantial social and 
financial burdens [1, 4, 5]. For instance, chronic migraine 
(CM) patients incur higher healthcare costs than patients with 
episodic headaches due to more consultations, psychiatric 
interventions, hospitalizations, and medication costs [5]. 
Furthermore, 90% of patients with CDH have psychiatric 
comorbidities, such as depression, anxiety, or disordered 
sleep [2, 4], which worsen outcomes [6]. CDH, by defini-
tion, lasts ≥ 15 days/month for at least three months, for ≥ 4 h 
a day when untreated, which was initially defined by Silber-
stein and Lipton in 1996 [7]. However, later on, CDH became 
more of a category of headaches rather than a diagnosis, 
and the International Classification of Headache Disorders, 
3rd edition (ICHD-3) does not define CDH [4, 8]. Chronic 
tension-type headaches (CTTH) and chronic migraine (CM) 
comprise most cases of primary CDH and frequently evolve 
from episodic headaches [1, 4]. Less common types include 
hemicrania continua and new daily persistent headaches [1]. 
Secondary CDH may be post-traumatic brain injury (TBI) 
or medication-induced, and these causes must be identified 
before diagnosing and treating primary CDH [9].

CDH is often managed prophylactically using antide-
pressants, anticonvulsants, and antihypertensives [1]. While 
tricyclic antidepressants (TCA) have shown the greatest 
potential for reducing headache symptoms, they are poorly 
tolerated (> 30% experience side effects) [10]. Whereas 
selective serotonin and norepinephrine-reuptake inhibitors 
may be more tolerable, evidence regarding efficacy is incon-
sistent [10]. Similarly, the effectiveness of anticonvulsants is 
not entirely clear, except for topiramate [11, 12]. Recently, 
botulinum toxin A (BTX-A) and monoclonal calcitonin 

gene-related peptide (CGRP) antibodies have shown prom-
ise, as these agents directly target the pathological processes 
of CDH [1, 9, 13, 14]. BTX-A is deemed safe and effective 
in preventing CM; however, patient response varies, and 
sustained effects are not consistently observed in patients 
with severe, refractory CDH [15]. Furthermore, few stud-
ies have documented CGRP antibody use in CDH [13, 14], 
particularly for CM [16]. Moreover, abortive drugs like 
non-steroidal anti-inflammatory drugs can induce medica-
tion overuse headaches, complicating management [1]. Col-
lectively, pharmacologic treatments have limited efficacy—
improving headache duration and frequency in only 10% 
of CDH patients—and are associated with adverse effects 
that limit compliance by 25% [17]. Thus, a lack of reliable 
abortive and prophylactic treatments necessitates establish-
ing clinically effective, evidence-based solutions for CDH.

Repetitive transcranial magnetic stimulation (rTMS) 
temporally alters cortical neuron excitability through non-
invasive neurostimulation [18•]. rTMS has utility in treat-
ing psychiatric, movement, and chronic pain disorders and 
has recently gained attention as a potential treatment for 
headaches [19–21]. High-frequency rTMS (e.g., 10–20 Hz) 
results in excitatory effects, which increase cortical excit-
ability and neuronal firing, while low-frequency rTMS 
(e.g., < 1 Hz) is generally inhibitory, suppressing cortical 
excitability and neuronal activity in target brain regions [22, 
23]. Furthermore, the effects of rTMS extend beyond the 
target area to interconnected brain networks, altering func-
tional connectivity and neuroplasticity within and between 
networks [21, 24].

The mechanism underlying rTMS for reducing CDH 
remains unclear. rTMS can influence cortical areas involved 
in pain processing by modulating cortical excitability [23, 
25, 26]. Additionally, rTMS may modulate pain pathways, 
including descending inhibitory pathways, which influence 
supraspinal pain tracts and social-affective regions of the 
brain, like the right temporal lobe [27, 28]. Particularly, 
rTMS demonstrated analgesic effects in migraine and ten-
sion headaches by modulating the dorsolateral prefron-
tal cortex (dlPFC), which regulates pain perception and 
pain-related emotional/cognitive processes [18•, 25, 26, 
29–31]. Moreover, rTMS may induce analgesia by increas-
ing endogenous opioids such as β endorphin in the anterior 
cingulate cortex, hypothalamus, and peri-aqueductal gray 
matter [32, 33], dopamine in the hippocampus and caudate 
nucleus [34, 35] and glutamate levels in the neocortex [36]. 
Finally, rTMS may promote neurogenesis and modulate 
synaptic plasticity in cortex and diencephalon [37]. These 
neuroplastic changes may underlie the therapeutic effects 
of rTMS on CDH.

Several studies have compared CDH patients receiving 
high-frequency rTMS in multiple sessions for several weeks 
with placebo controls [18•, 29, 38, 39]. Here, we aimed to 
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conduct a systematic review and meta-analysis of the lit-
erature to examine the effectiveness of rTMS in managing 
CDH, with a focus on its impact on headache intensity and 
frequency, its effects on CDH subtypes, and factors influenc-
ing its efficacy through subgroup and meta-regression analy-
ses. We specifically hypothesized that exposure to regular 
treatment with rTMS will not only decrease the intensity 
and frequency of acute headache episodes in the immedi-
ate post-intervention period but will also elicit a sustained 
prophylactic effect among patients with CDH.

Methods

All procedures followed the Preferred Reporting Items for 
Systematic Reviews and Meta-analyses (PRISMA) guide-
lines [40]. The study protocol and analysis plan were pre-
registered in the PROSPERO registry (CRD42021250100).

Search Strategy

PubMed, Scopus, ProQuest, and Web-of-Science data-
bases were searched on June 6, 2021, for peer-reviewed 

interventional studies using pre-defined keyword combina-
tions (Table S1). The search was not limited by language or 
year of publication. The records identified from the initial 
database search were pooled, and the duplicate records were 
removed using an in-house pipeline used for several prior 
systematic reviews and meta-analyses. Titles and abstracts 
of all records were screened by one reviewer (ES) based on 
pre-defined eligibility criteria (Fig. 1, Table S2). All records 
were randomly divided among three additional review-
ers (AB, AH, or RH) to ensure that at least two reviewers 
screened each record. Agreements between the reviewers 
were examined, and a senior tie-breaker (CNK) resolved 
discrepancies in judgment. Full-text articles of the records 
that were deemed eligible during initial screening were thor-
oughly examined for eligibility by two study personnel (ES 
and CSD), and the discrepancies were resolved by a sen-
ior tie-breaker (CNK) (Table S3). An additional systematic 
search was performed through June 26, 2023, broadening 
the search to include Cochrane database. A manual search 
was conducted on the reference lists and citations of eligi-
ble articles; 11 additional records were added to the pool. 
Records published in other languages were translated into 
English using Google Translate®. The full-text articles that 

Records identified from*:
Databases (n =1,830):
PubMed (n = 219)
Scopus (n = 862)
Web of Science (n = 278)
ProQuest (n = 471)

Records removed before screening:
Duplicate records removed (n =
357)

Records screened
(n = 1,473)

Records excluded (n = 1,449): Not 
human (n = 332)
Conference proceedings (n = 71) 
Study sample does not include at least 
one non-overlapping group with 
tension-type headaches or chronic 
daily headaches (n = 960) 
Repetitive transcranial magnetic 
stimulation has not been applied (n = 
75)
Severity, frequency or duration of 
tension-type headache/chronic daily 
headache and associated symptoms or 
quality-of-life not measured 
quantitatively (n = 4)
Relevant narrative reviews, systematic 
reviews, opinion papers, editorials and 
clinical guidelines (n = 7)

Reports sought for retrieval
(n = 24)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 24)

Reports excluded (n = 14):
Study sample does not include at least 
one non-overlapping group with 
tension-type headaches or chronic 
daily headaches (n = 2)
Repetitive transcranial magnetic 
stimulation has not been applied (n = 
4)
Severity, frequency or duration of 
tension-type headache/chronic daily 
headache and associated symptoms or 
quality-of-life not measured 
quantitatively (n = 2)
No comparable control group (n = 5)
Findings reported in another included 
study (n =1)

Records identified from:
Citation searching (n =15)

Reports assessed for eligibility
(n = 14)

Reports excluded (n = 10):
Full-text articles not available 
(e.g., conference abstracts) (n = 
2)
Study sample does not include at 
least one non-overlapping group 
with tension-type headaches or 
chronic daily headaches (n = 4)
Repetitive transcranial magnetic 
stimulation has not been applied
(n =1)
No comparable control group (n 
= 3)

Studies included in review
(n = 14)

Identification of studies via databases and registers Identification of studies via other methods

noitacifitnedI
Sc

re
en

in
g

In
cl

ud
ed

Reports sought for retrieval
(n = 15)

Reports not retrieved
(n = 1)

Fig. 1   PRISMA flowchart
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met eligibility criteria were included for quality assessment, 
review, and data extraction for meta-analyses.

Data Extraction

Data were extracted from the eligible manuscripts into pre-
defined data fields in a spreadsheet. Immediate post-inter-
vention (i.e., soon after discontinuation of rTMS or control 
intervention) versus pre-intervention changes in headache 
intensity and frequency were extracted as primary outcomes 
from the intervention and control groups in the included 
studies. When available, post-follow-up (i.e., re-examining 
headache at least > 2 weeks after the discontinuation of 
the rTMS or control intervention) versus pre-intervention 
changes in headache intensity and frequency of intervention 
and control groups were also extracted. Quality of life meas-
ures were extracted as secondary outcomes. Migraine Dis-
ability Assessment (MIDAS) and Headache Impact Test–6 
(HIT-6) were extracted as measures of quality of life [41]. 
Year of publication, mean age, percentage of females in the 
intervention group, types of CDH observed, mean duration 
of headache, duration of intervention, frequency of rTMS 
sessions per week, length of follow-up, and total number 
of sessions (i.e., exposure to rTMS) in a given study were 
extracted. Additional data regarding the rTMS protocol (i.e., 
rTMS pulse frequency, total rTMS pulses delivered per ses-
sion, the intensity of magnetic impulses, the anatomical site 
used for rTMS, type of coil used for rTMS pulse delivery, 
and the equipment used) were also extracted to include in 
meta-regression analyses.

Data Analysis

Four separate DerSimonian-Laird random-effects meta-
analyses were performed using the ‘meta’ package (ver-
sion 4.11–0) in R software (version 4.0.3) to examine the 
immediate post- versus pre-intervention changes and post-
follow-up versus pre-intervention changes in standardized 
headache intensity and frequency of CDH following rTMS. 
When interpreting the findings, a conservative estimate of 
the standardized between-group difference of 0.5 was con-
sidered the threshold for minimal clinically important dif-
ference (MCID) [42, 43]. In addition, a decrease in head-
ache frequency by at least 1 day/month was considered the 
MCID for interpretation of outcomes regarding headache 
frequency [44, 45]. When sufficient data were available, 
subgroup meta-analyses were performed to explore the 
effects of rTMS on each primary outcome variable within 
the patient populations of subtypes of CDH (i.e., CM, TBI, 
or CTTH). Leave-one-out sensitivity analyses confirmed 
the consistency of findings. Additionally, a series of sub-
group analyses were conducted to explore the effects of fre-
quency subtypes and anatomical site of rTMS application 

on primary outcomes. The likelihood of publication bias 
was explored using funnel plots, and symmetry was assessed 
using Egger’s tests [46]. Effect-sizes of missing (i.e., unpub-
lished/unreported) studies were imputed via the trim-and-fill 
method. Heterogeneity of effect-sizes was quantified with 
the Higgins’ I2 statistic [47, 48]. Exploratory univariate 
random-effects meta-regression analyses were performed to 
explain heterogeneity using potential moderator variables 
described above [49].

Quality Check and Grading Quality of Evidence

The risk of bias was assessed within the individual studies 
using the Cochrane Collaboration’s Tool RoB 2: A revised 
Cochrane risk-of-bias tool for randomized trials [50]. The 
quality of the evidence of the short-term and long-term 
outcomes was assessed according to the Grading of Rec-
ommendations, Assessment, Development, and Evaluation 
(GRADE) methodology for risk of bias, inconsistency, indi-
rectness, imprecision, and publication bias [51]. Each quality 
criterion was rated very low, low, moderate, or high. Sum-
mary tables were constructed using the GRADE Profiler 
(GRADEpro, version 3.6) [52].

Results

Study Characteristics

The PRISMA flow diagram depicting the outcomes of the 
database search and screening of the literature based on the 
eligibility criteria is shown in Fig. 1. Fourteen randomized 
controlled trials (15 study arms) examining the effects of 
rTMS on the intensity and frequency of headache episodes 
among a total of 538 patients with CDH (284 exposed to 
rTMS; 254 exposed to sham control interventions) were 
included in the systematic review (Table 1) [18•, 29, 30, 38, 
39, 53–60, 61••]. The sample sizes of rTMS intervention 
groups of the included studies ranged from 6 to 52, and the 
sample sizes of the control groups ranged from 6 to 46. The 
percentage of female participants in the rTMS groups of the 
included studies ranged from 17–87%, and the mean age of 
the participants of the rTMS groups was 40.19 years (range 
32.93–53.28 years).

rTMS Protocols

When the protocols of rTMS were considered, only three stud-
ies used low-frequency rTMS, whereas the rest used high-
frequency rTMS. The frequency of rTMS sessions per week 
ranged from 3–5 sessions per week, with a total duration of 
treatment ranging from 1–8 weeks. Therefore, the mean total 
number of sessions was 12.4 (range 3–24 rTMS sessions), 
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and the mean rTMS pulses per session was 989.3 (range 
100–2000). The intensity of magnetic impulses was rang-
ing from 60–110%RMT. Nine study arms used left dlPFC, 
three studies used right dlPFC, and three study arms used 
left motor cortex (L/MC) as sites of stimulation. Out of all 
the included studies, ten studies used angle manipulation as a 
sham, whereas only three studies used a sham coil stimulator.

Quality of Studies

The quality of the included RCTs was evaluated using the 
Cochrane risk of bias assessment tool (Fig. S1). Six out of 
the 14 studies included were considered high quality, three 
were considered to be of moderate quality, and five were 
low quality. Quality ratings and the risks of bias of included 
studies are summarized in Fig. S1. The GRADE evidence 
profiles for the considered outcomes are summarized in 
Table S4. The GRADE Working Group grades of the level 
of evidence were low for all considered variables.

Effects of rTMS on the Intensity of Headaches 
in the Immediate Post‑intervention Period

Compared to sham control interventions, exposure to rTMS 
significantly decreased the standardized headache intensity in 
the immediate post-intervention period versus pre-intervention 
state among patients with CDH (10 studies [18•, 38, 53–60], 
pooled Hedges’ g = -1.16 [-1.89, -0.43], p = 0.002; Fig. 2A), 
which exceeded the MCID threshold of 0.5. Subgroup analyses  
revealed a significant reduction in standardized headache  
intensity following rTMS in patients with TBI and CTTH 
(pooled Hedges’ g = -0.58 [-1.05, -0.11], p = 0.016 and pooled 
Hedges’ g = -1.73 [-2.63; -0.82], p < 0.001, respectively).  
However, there was no significant difference in post-intervention  
standardized headache intensity between patients with CM  
who received rTMS and those who received a sham control 
intervention (pooled Hedges’ g = -0.90 [-3.37, 1.57], p = 0.475).

Additional subgroup analyses were performed, separat-
ing studies conducted using high-frequency rTMS and low-
frequency rTMS. There was a clinically and statistically 
significant reduction in headache intensity following expo-
sure to low-frequency rTMS, while no significant difference 
was noted with the implementation of high-frequency rTMS 
(pooled Hedges’ g = -1.73 [-2.63, -0.82], p < 0.001 and 
pooled Hedges’ g = -0.87 [-1.81, 0.06], p = 0.067, respec-
tively; Fig. S2). When the site of rTMS application was con-
sidered, right dlPFC and L/MC had statistically significant 
reductions in headache intensity (pooled Hedges’ g = -1.73 
[-2.63, -0.82], p < 0.001 and pooled Hedges’ g = -1.11 [-1.76, 
-0.47], p < 0.001, respectively; Fig. S3), whereas left dlPFC 
did not show a difference (pooled Hedges’ g = -0.78 [-2.18, 
0.61], p = 0.272).rT
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Fig. 2   Forest plots depicting results of the random-effects meta- 
analyses examining the effects of rTMS on A. the intensity of  
headaches in the immediate post-intervention period and B. the  
intensity of headaches after a standard-care follow-up period. Black 
dots and the horizontal line indicate individual trial-specific estimates  

and their 95% CIs; the size of the grey squares denotes the weight 
of the trials in the meta-analysis. The pooled estimates and the  
corresponding 95% CI are denoted by the center of diamonds and the 
width of the diamonds, respectively
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Leave-one-out sensitivity analyses did not significantly 
change the pooled estimates (Table S5). A funnel plot of 
the effect-sizes indicated minimal publication bias (Fig. 3A, 
Table 2). Imputing one effect-size using the trim-and-fill 
method to adjust for publication bias and re-analyzing  
the data using the imputed effect-size revealed a signifi- 
cant decrease in immediate post-verses pre-intervention 
headache intensity following exposure to rTMS versus 

control conditions (pooled Hedges’ g = -1.00 [-1.75, -0.24], 
p = 0.010, Table 2). Significant heterogeneity was observed 
among the standardized mean differences pooled in the 
random-effects model (τ2 = 1.121; I2 = 77.5%, p < 0.001). 
None of the considered covariates showed significant mod-
erator effects in a series of univariate meta-regression analy-
ses that attempted to explain between-study heterogeneity 
(Table S6).

Fig. 3   Funnel plots depicting publication bias in the literature 
included in the random-effects meta-analysis examining the effects of 
rTMS on A. the intensity of headaches in the immediate post-inter-
vention period, B. the frequency of headaches in the immediate post-
intervention period, C. the intensity of headaches after a standard- 

care follow-up period, and D. the frequency of headaches after  
a standard-care follow-up period. Effect-sizes of studies included in 
the literature are shown in gray-colored circles. Effect-sizes imputed 
using the trim-and-fill method to maintain funnel plot symmetry to 
correct for publication bias are shown in white-colored circles
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Effects of rTMS on the Frequency of Headache 
Episodes in the Immediate Post‑intervention Period

Exposure to rTMS decreased the frequency of headaches 
by approximately 5 days/month during the immediate post- 
intervention period compared with a sham control intervention. 
This difference was statistically and clinically significant (8 
studies—9 study arms [30, 53–55, 57, 58, 60, 61••], Δ = -5.07 
[-10.05, -0.11], p = 0.045, MCID = 1 day/month, Hedges’ 
g = -0.85 [-1.53 -0.17], p = 0.014, MCID = 0.5; Fig. 4A). On 
subgroup analyses, this rTMS-associated reduction in the  
frequency of headaches was more marked among patients with  
CM (Δ = -6.51 [-12.93, -0.10], p = 0.047) but was not significant  
among patients with TBI (Δ = -0.89 [-2.37, 0.58], p = 0.234). 
Leave-one-out sensitivity analyses did not significantly  
change the pooled estimates (Table S5). The funnel plot  
indicated possible publication bias (Fig. 3B, Table 2). When  
the data were re-analyzed, including two effect-sized imputed 
using the Trim-and-fill method to correct for funnel plot  
asymmetry, the previously observed significant post-versus pre-
intervention decrease in headache frequency was not observed 
(Δ = -1.64 [-7.84, 4.56], p = 0.604). Significant between-
study heterogeneity remained a concern (τ2 = 37.33; I2 = 86%, 
p < 0.001). Attempts to explain the significant between-study 
heterogeneity in a series of univariate meta-regression analyses 
remained unfruitful (Table S6). Subgroup analyses were not 
conducted for rTMS frequency and site of application due to a 
limited number of studies.

Effects of rTMS on the Intensity of Headaches After 
a Routine Care Follow‑up

The meta-analysis that compared the standardized post- 
follow-up versus pre-intervention changes in headache  
intensity between rTMS versus sham control groups revealed 
a statistically significant yet clinically not significant (less  
than MCID = 0.5) beneficial effect (7 studies [18•, 29, 30, 

38, 55, 57, 58], pooled Hedges’ g = -0.43 [-0.76, -0.09], 
p = 0.012; Fig. 2B). Subgroup analyses performed within 
patient populations with CM had significant rTMS versus 
control differences, whereas CDH due to TBI also did not 
yield significant rTMS versus control differences (pooled 
Hedges’ g = -0.62 [-1.15, -0.07], p = 0.028 and pooled Hedges’ 
g = -0.32 [-0.79, 0.14], p = 0.173 respectively). Leave-one-out  
sensitivity analyses did not change the observed pooled effect- 
size (Table S5). The funnel plot suggested minimal publication  
bias (Fig. 3C, Table 2). Statistical significance in the follow-up  
versus pre-intervention difference in headache intensity was 
no longer observed after adjusting for publication bias by 
imputing two effect-sizes to restore funnel plot symmetry 
(pooled Hedges’ g = -0.29 [-0.64, 0.06], p = 0.100). Significant 
between-study heterogeneity remained a concern (τ2 = 0.14, 
I2 = 63.1%, p = 0.006). The duration of intervention and total 
number of sessions had negative moderator effects (β = -0.273, 
SE = 0.112, p = 0.015 and β = -0.049, SE = 0.022, p = 0.027, 
respectively), indicating that an increased duration of rTMS 
and increased number of sessions seem to result in a long-
lasting decrease in headache intensity after the cessation of the 
rTMS intervention. Furthermore, including either the duration 
of intervention or the total number of sessions in the model 
decreased the residual heterogeneity (τ2 = 0.054, I2 = 34%, 
p = 0.152 and τ2 = 0.053, I2 = 33%, p = 0.12, respectively) 
(Table S6).

Effects of rTMS on the Frequency of Headache 
Episodes After a Routine Care Follow‑up

The frequency of headaches after a routine care follow-up  
period following an rTMS intervention decreased by 
approximately 3 days/month compared to exposure to a 
sham control condition (8 studies—9 study arms [29, 30, 
39, 53, 55, 57, 58, 61••], Δ = -3.33 [-5.52, -1.14], p = 0.003, 
MCID = 1 day/month, Hedges’ g = -0.54 [-0.91, -0.17], 
p = 0.004, MCID = 0.5; Fig. 4B). The post-follow-up versus 

Table 2   Summary of assessments for publication bias and adjusted outcomes

DV Funnel Asymmetry Egger’s test t and p-value Number  
of  
Imputes

Random-effects model

Headache intensity immediate post-
intervention period

Symmetric t = -0.28, p = 0.788 1 pooled Hedges’ g = -1.00 [-1.75, -0.24], 
p = 0.010

Headache frequency immediate 
post-intervention period

Asymmetric t = -1.69, p = 0.152 2 Δ = -1.64 [-7.84, 4.56], p = 0.604

Headache intensity after a routine 
care follow-up

Symmetric t = -1.37, p = 0.212 2 pooled Hedges’ g = -0.29 [-0.64, 0.06], 
p = 0.100

Headache frequency after a routine 
care follow-up

Symmetric t = -1.03, p = 0.337 2 Δ = -2.16 [-4.68, 0.35], p = 0.092

Quality of Life Asymmetric t = 0.48,
p = 0.653

2 pooled Hedges’ g = -1.04 [-1.69, -0.39], 
p = 0.002
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pre-intervention changes between rTMS versus control  
conditions were statistically significant within the subgroups 
of patients with CM but not significant for TBI (Δ = -3.90 
[-6.47, -1.33], p = 0.003 and Δ = -1.13 [-2.62, 0.36], 
p = 0.136, respectively). Leave-one-out sensitivity analyses 
did not significantly change the pooled outcome (Table S5). 
The funnel plot appeared symmetrical and did not suggest 

publication bias (Fig.  3D, Table  2). Nevertheless, the  
statistical significance of follow-up versus pre-intervention 
difference in headache frequency was lost with the addition 
of two effect sizes imputed based on trim-and-fill analysis 
(Δ = -2.16 [-4.68, 0.35], p = 0.092). Significant between-
study heterogeneity was a concern for this meta-analysis 
as well (τ2 = 6.110; I2 = 62.4%, p = 0.007). Meta-regression 

Fig. 4   Forest plots depicting results of the random-effects meta- 
analyses examining the effects of rTMS on A. the frequency of  
headaches in the immediate post-intervention period and B. the  
frequency of headaches after a standard-care follow-up period. Black 
dots and the horizontal line indicate individual trial-specific estimates 

and their 95% CIs; the size of the grey squares denotes the weight 
of the trials in the meta-analysis. The pooled estimates and the  
corresponding 95% CI are denoted by the center of diamonds and the 
width of the diamonds, respectively



162	 Current Pain and Headache Reports (2024) 28:149–167

analyses revealed that the anatomical site (i.e., L/MC versus  
L/dlPFC) was a negative moderator, indicating that the 
frequency of headache episodes seems to be significantly 
lower with an application of rTMS over the L/MC as  
compared to the L/dlPFC (β = -4.829, SE = 2.018, p = 0.017). 
The anatomical site also decreased residual heterogeneity 
(τ2 = 1.831; I2 = 39%, p = 0.110). On the contrary, having a 
sham coil instead of an angle manipulation as a sham had a 
positive moderator effect (β = 5.853, SE = 2.80, p = 0.037), 
indicating that the frequency of headache episodes seems 
to be significantly higher in the group with sham coil  
compared to the group with angle manipulation as a sham. 
Furthermore, an increase in the duration of the follow-up 
period decreased the frequency of headaches (β = -0.874, 
SE = 0.441, p = 0.048), which may indicate a long-term 
effect. However, we did not explore it further due to a  
limited number of studies (Table S6).

Side Effects and Tolerability

Only a few studies reported side effects, which included a 
short-lasting increase in headache intensity, mild localized 
pain, dizziness, sleepiness, and toothache [38, 58, 61••, 
62]. rTMS was well tolerated among the patients except for 
one report by Granato et al. [39] describing an episode of 
migraine with complex aura (visual, sensitive, and aphasic) 
in a patient. A summary of all the side effects is included 
in Table 1.

Effects of rTMS on Quality of Life

Compared to sham control interventions, exposure to 
rTMS significantly decreased the standardized quality 
of life measures in the post-intervention period versus 
pre-intervention state among patients with CDH (5 stud-
ies—6 study arms [38, 53, 56, 58, 61••], pooled Hedges’ 
g = -0.73 [-1.36, -0.10], p = 0.024; Fig. S4), which exceeded 
the MCID threshold of 0.5. Leave-one-out sensitivity 
analyses did not significantly change the pooled estimates 
(Table  S5). A funnel plot of the effect-sizes indicated 
minimal publication bias (Fig. S5, Table 2). Imputing two 
effect-size using the trim-and-fill method to adjust for pub-
lication bias and re-analyzing the data using the imputed 
effect-size revealed a significant decrease in post-versus 
pre-intervention headache intensity following exposure to 
rTMS versus control conditions (pooled Hedges’ g = -1.04 
[-1.69, -0.39], p = 0.002, Table 2). Significant heterogene-
ity was observed among the standardized mean differences 
pooled in the random-effects model (τ2 = 0.459; I2 = 69.3%, 
p = 0.006). Subgroup and meta-regression analyses were not 
conducted as there were only a limited number of studies.

Discussion

While meta-analyses exist on rTMS for CM [63•, 64, 65], to our 
knowledge, this is the first comprehensive systematic review and 
meta-analysis examining the effects of rTMS on immediate and 
long-term outcomes for CDH. Our meta-analyses showed rTMS 
has a statistically and clinically meaningful impact on improving 
CDH intensity and frequency post-treatment, though effects tend 
to wear off after discontinuation.

rTMS is well documented to treat neuropathic pain and 
headaches like migraine, cluster headaches, and trigeminal 
neuralgia by transiently suppressing central pain perception 
and increasing pain stimulus thresholds [66, 67]. Several 
meta-analyses have shown that rTMS is beneficial in treating 
migraine prophylactically and therapeutically [63•, 64, 65]. 
Lan et al. [65] found that rTMS was only beneficial for treat-
ing migraine attacks, not CM symptoms. In contrast, Zhong 
et al. [63•] found that headache frequencies were reduced 
in episodic and CM types. Furthermore, Mohamad Safiai 
et al. [64] found that high-frequency rTMS reduces acute 
medication intake and functional disability associated with 
migraine but not headache days or pain intensity. All these 
meta-analyses have focused primarily on episodic migraine 
or a combination of episodic and CM, not purely on CM. 
According to our subgroup analyses, rTMS seems to have 
limited short-term and long-term impact in improving CM 
headache frequency, and data regarding improvement of 
headache intensity is abstruse.

One possible reason could be that CM is more of a prob-
lem of threshold where certain predisposing factors com-
bined with frequent headache pain lower the threshold of 
migraine attacks and increase central and peripheral sensiti-
zation [68, 69]. For instance, genetic, anatomical, functional, 
and inflammatory factors change during the progression of 
a migraine attack or the transformation of episodic to CM 
[70–73]. As a result, CM becomes independent of triggers 
and depends more on fronto-limbic sensitization. Therefore, 
the application of rTMS should reset or reduce fronto-limbic 
dysfunction and cortical plasticity, which requires repeated 
exposure and long-term follow-up [17, 29, 74]. For instance, 
Fumal et al. [75] showed that daily rTMS induces cortical 
excitability and habituation patterns in migraine patients, 
which may contribute to its long-term efficacy in controlling 
headaches. Furthermore, it is essential to note that a small 
number of studies drove our results of the CM subgroup, and 
one study showed a strong placebo effect, which affected 
the overall estimates. Hence, further studies are needed to 
conclude whether this observation is generalizable.

CDH secondary to TBI is a constellation of debilitat-
ing chronic neuropathic pain, also called post-traumatic 
headaches [54, 55]. These patients are prone to adverse 
effects from chronic use of analgesics [76]. Therefore, a 
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non-systemic, targeted therapy is ideal for these patients. 
Our subgroup analysis showed that TBI patients may ben-
efit from rTMS by immediately lowering headache intensity. 
However, the number of studies and the sample size were 
limited, restricting our ability to confirm the effect [54, 55, 
58]. Therefore, more research is needed on the applicabil-
ity of rTMS. Similarly, rTMS showed limited evidence for 
reducing headache intensity for CTTH immediately post-
intervention; a limited number of studies conducted on 
patients with CTTH was the primary limiting factor [59, 60].

Our meta-analysis showed that with rTMS, there is an 
immediate effect of reducing headache frequency by 5 days/
month, and after one month, it remained reduced up to 
3 days/month. Despite these effect-sizes being derived from 
a moderately heterogeneous limited number of small studies, 
our results substantiated the utility of rTMS in CDH. In con-
trast, current literature indicates that the therapeutic effects 
of rTMS for CDH are limited, with most studies being on 
CM [77–81]. Even for CM, BTX-A and anti-CGRPs are 
more promising, significantly reducing headache days 
and intensity short and long-term, unlike rTMS [82]. For 
instance, Sacco et al. [83] showed that anti-CGRPs reduce 
CM headache frequency by 2.39 days/month [-2.69, -2.08, 
n = 8902]. Similarly, BTX-A reduced headache frequency 
by 2.0 days/month [− 2.8, − 1.1, n = 1384] [79]. Although 
we observed that rTMS may decrease headache frequency 
by days/month, the effect-sizes regarding BTX-A and anti-
CGRP effect sizes were more robust and were derived from 
larger samples [77, 84].

Our study found that the effects of rTMS on CDH wears 
off over time. Thus, while rTMS may help as an abortive 
strategy for refractory CDH, its utility for CDH prophylaxis 
seems limited. On the contrary, BTX-A and anti-CGRPs 
demonstrated persistent effects in CM patients [82]. For 
instance, Lanteri-Minet et al. [84] showed that BTX-A has 
a lasting effect on headache frequency even at 24 weeks 
and 52  weeks based on long-term follow-up studies.  
Shehatha et al. [85] showed that compared to rTMS, BTX-A 
had sustained improvement in CM symptoms even after 
three months. However, some studies observed a lack of 
sustained efficacy for CDH, indicating a need for further 
investigations [15].

Our meta-regression analyses also showed that a longer 
duration of treatment and a higher number of sessions have 
better long-term effects in terms of sustained reduction  
in headache intensity. Furthermore, our meta-regression 
analyses showed a profound and sustained effect with 
increased duration and number of sessions. This dose-
dependent effect—a notable observation—needs further 
exploration. Zhan et  al. [86] showed that at least five  
sessions of rTMS treatment are required for long-lasting 
motor functional recovery in the injured upper limb of 

stroke patients. Similarly, the motor evoked potentials last 
longer with an increased number of pulses of rTMS [23, 
87]. Furthermore, the temporal pattern of rTMS induction 
(simple protocols versus patterned rTMS protocols) also 
seems to have a substantial impact [88••]. Long-lasting 
effects of rTMS are thought to originate from synaptic 
plasticity, which produces either potentiation or depression  
of synaptic strength. Long-term potentiation involves an 
increase in synaptic strength that can last for days or even 
weeks and months. Conversely, long-term depression  
encompasses a long-lasting weakening of synaptic  
connections. Studies have shown that rTMS-induced 
changes can last for at least eight days, as evidenced by 
altered uptake of F-fluorodeoxyglucose, indicating changes 
in neuronal excitability [89]. rTMS is also capable of 
increasing the expression of genes involved in synaptic 
plasticity, such as c-Fos and zif268, which play a role in  
the induction of long-term potentiation [90]. Similarly,  
activation of the NMDA receptor leads to a post-synaptic  
influx of calcium ions, playing a pivotal role in these long-
lasting changes [91]. Furthermore, dopamine receptor 
activation was found to be involved in the maintenance of 
plasticity [92].

Of note, the treatment protocols included in the meta-
regressions were highly heterogeneous—for instance, the 
majority of studies used coil perpendicular as a sham instead 
of a sham stimulator. A sham stimulator mimics the sen-
sation of active stimulation without inducing the actual 
neurophysiological effects [93]. However, recent evidence 
suggests that sham stimulation may introduce variability, 
confound results, and pose challenges in blinding [94]. 
Using angle manipulation as a sham may provide more 
effective control conditions, as it minimizes the direct neu-
rophysiological effects while maintaining the sensation of 
stimulation [94, 95]. Nevertheless, accurate placement and 
orientation of the coil require precision and understanding 
of the orientation of the induced electric field, adding com-
plexity to the methodology [96]. Therefore, we cannot avoid 
the bias endorsed by different sham methods in this meta-
analysis. We have tried to explore the moderator effect by 
doing a meta-regression analysis, and we found that angle 
manipulation seems to be the better option.

There were variations in the target region in the protocol. 
How the mechanism of action differs according to the target 
region in the brain is an important question worth address-
ing. A strong focal activation was observed in the thalamus, 
insula, cingulate-orbitofrontal junction, and a periaque-
ductal gray area in the brainstem following rTMS to MC, 
suggesting that a direct top–down activation of descending 
pain control system mediating via motor cortex, thalamus, 
insula, anterior cingulate cortex, and periaqueductal gray 
matter, which are components of pain modulation pathways 
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[25, 97, 98]. Accordingly, rTMS applied to the MC reduces 
CM headache frequency [30, 99]. Conversely, rTMS to 
dlPFC exerts a top-down inhibitory neural circuit along the 
ascending midbrain-thalamic-cingulate pathway through 
the descending fibers from the PFC. dlPFC is involved in 
cognitive components of the pain experience, such as pain 
inhibition, perceived control of pain, and pain anticipation 
[98]. dlPFC and limbic cortex have been proposed to be 
extremely important in the pathophysiology of many chronic 
neurobehavioral conditions, such as addiction, depression, 
bipolar disorder, and migraine [29, 100]. Stimulation of 
dlPFC could reset or reduce fronto-limbic dysfunction in 
CM, leading to pain reduction [18•]. Todorov et al. [61••] 
compared rTMS to dlPFC and MC in CM and showed com-
parative results for both regions. Interestingly, our subgroup 
analyses showed that applying rTMS to MC or right dlPFC 
has a better outcome in reducing headache intensity, and our 
meta-regression analysis found rTMS to MC more effective 
versus dlPFC in reducing headache frequency. However, 
this analysis had < 10 studies, so more studies are needed to 
verify our dlPFC versus MC findings. Since our results high-
lighted several factors representing treatment protocols (e.g., 
anatomical location of stimulation, stimulation frequency, 
duration of stimulation), further exploration is needed to 
identify potential factors/parameters.

Guidelines have reiterated the high safety and tolerabil-
ity profile of rTMS [101]. The most common side effect of 
rTMS is scalp discomfort or pain during treatment (~ 40%) 
[102], followed by headaches after treatment (20–30%) [103] 
and fatigue (15–20%) [104]. rTMS has also been associated, 
albeit rarely, with more severe adverse events such as sei-
zures [105]. However, seizure risk is currently estimated to 
be minuscule overall < 1%. A large population-based study 
reported 24 seizures in 300,000 rTMS sessions (standard-
ized risk of 7/100,000 sessions). Of those, 79% (n = 19) of 
seizures have occurred in patients with pre-existing risk fac-
tors (medication, neurological condition, epilepsy) [106]. 
This study estimated that rTMS delivered within published 
guidelines to individuals without risk factors appears to 
cause fewer than one seizure per 60,000 sessions. Apart 
from that, hearing impairment necessitates the use of hear-
ing protection during treatment, EEG after-effects or abnor-
malities without overt clinical symptoms, and syncope or 
fainting episodes are some of the other side effects related 
to rTMS [101]. In conclusion, rTMS is an acceptable treat-
ment modality with overall safety and tolerability. The stud-
ies included in this meta-analysis reported minimal number 
of side effects with good tolerability.

This meta-analysis has notable limitations. First, only a 
few eligible studies met inclusion, with several excluded due 
to unavailable variance estimates or combining episodic and 
CM. Second, we initially intended to focus only on CTTH, 

but the number of studies was limited, so we combined all 
CDH subtypes. Therefore, the studies included were het-
erogeneous in various aspects. Variability in treatment 
response and potential heterogeneity of CDH in terms of 
neuroanatomical and neurophysiological differences limit 
our ability to draw solid conclusions. Furthermore, the lack 
of consensus regarding brain targets and variation in stimu-
lation parameters caused difficulties in comparing and com-
bining all the studies. However, we attempted to explore 
these variations using meta-regression analyses that partially 
explained the heterogeneity. Third, only a limited number of 
studies focused specifically on the effect of rTMS on CDH 
sub-types such as CTTH, limiting the ability to make infer-
ences on subgroups of CDH. Finally, outcomes such as the 
impact on disability, absolute or relative risk, and number 
needed to treat could not be determined due to limited stud-
ies reporting these outcomes. Nevertheless, the efficacy of 
rTMS may vary depending on individual patient character-
istics and the specific parameters of the treatment.

In conclusion, rTMS demonstrates an immediate effect on 
reducing CDH intensity and frequency, indicating a potential 
for CDH symptom control. Importantly, rTMS is non-invasive,  
targeted, and safe, making it favorable for patients who cannot 
tolerate medications. While beneficial for short-term headache  
control, its effect does not seem to persist; thus, the cost-
effectiveness of rTMS as a primary treatment is questionable. 
As the synthesized evidence stems from small, low-quality 
studies, adequately powered randomized controlled trials 
(especially for CTTH) are necessary to establish the effects 
of rTMS on CDH. Furthermore, identifying the best treatment 
protocols (in terms of frequency, motor threshold, anatomical 
site, and a minimum number of interventions) and developing  
a consensus statement/guideline is essential. Based on the  
limited available evidence, rTMS appears to be safe and has 
the potential utility as part of a comprehensive treatment 
approach that may include other interventions such as lifestyle  
modifications, oral medications, BTX-A, and anti-CGRP  
antibodies in the management of particularly refractory CDH, 
potentially leading to better patient outcomes.
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